RESUMEN
Valvular heart disease (VHD) has become a burden and a growing public health problem in humans, causing significant morbidity and mortality worldwide. An increasing number of patients with severe VHD need to undergo heart valve replacement surgery, and artificial heart valves are in high demand. However, allogeneic valves from donors are lacking and cannot meet clinical practice needs. A mechanical heart valve can activate the coagulation pathway after contact with blood after implantation in the cardiovascular system, leading to thrombosis. Therefore, bioprosthetic heart valves (BHVs) are still a promising way to solve this problem. However, there are still challenges in the use of BHVs. For example, their longevity is still unsatisfactory due to the defects, such as thrombosis, structural valve degeneration, calcification, insufficient re-endothelialization, and the inflammatory response. Therefore, strategies and methods are needed to effectively improve the biocompatibility and longevity of BHVs. This review describes the recent research advances in BHVs and strategies to improve their biocompatibility and longevity.
Asunto(s)
Bioprótesis , Prótesis Valvulares Cardíacas , Humanos , Animales , Materiales Biocompatibles/química , Válvulas CardíacasRESUMEN
IMP3, an RNA-binding protein (RBP) that participates in the process of post-transcriptional modifications of mRNA transcripts, is capable of altering cellular functions, and in some cases, be involved in specific disease progression. We aimed to investigate whether IMP3 has the ability to regulate the functional properties of endothelial cells and re-endothelialization in response to arterial injury. Wire injury was introduced to the right carotid arteries of wildtype C57/BL6 mice. As a result, IMPs' expressions were up-regulated in the induced arterial lesions, and IMP3 was the most up-regulated RNA among other IMPs. We overexpressed IMP3 before the wire-injured surgery using adeno-associated virus AAV2-IMP3. In vivo studies confirmed that IMP3 overexpression accelerated the progress of re-endothelialization after arterial injury. In vitro, endothelial cells were transfected with either ad-IMP3 or Si-IMP3, cell functional studies showed that IMP3 could promote endothelial cell proliferation and migration, while reducing apoptosis. Mechanistic studies also revealed that IMP3 could enhance VEGF mRNA stability and therefore up-regulate activities of VEGF/PI3K/Akt signalling pathway. Our data indicated that IMP3 promotes re-endothelialization after arterial injury and regulates endothelial cell proliferation, migration and apoptosis via increasing stability of VEGF mRNA and activation of VEGF/PI3K/Akt signalling pathway.
Asunto(s)
Células Endoteliales , Proteínas de Unión al ARN , Lesiones del Sistema Vascular , Animales , Proliferación Celular/genética , Células Endoteliales/patología , Ratones , Fosfatidilinositol 3-Quinasas , Proteínas de Unión al ARN/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Lesiones del Sistema Vascular/patologíaRESUMEN
BACKGROUND: Neointimal hyperplasia induced by interventional surgery can lead to progressive obliteration of the vascular lumen, which has become a major factor affecting prognosis. The rate of re-endothelialization is known to be inversely related to neointima formation. Growth differentiation factor 11 (GDF11) is a secreted protein with anti-inflammatory, antioxidant, and antiaging properties. Recent reports have indicated that GDF11 can improve vascular remodeling by maintaining the differentiated phenotypes of vascular smooth muscle cells. However, it is not known whether and how GDF11 promotes re-endothelialization in vascular injury. The present study was performed to clarify the influence of GDF11 on re-endothelialization after vascular injury. METHODS: An adult Sprague-Dawley rat model of common carotid artery balloon dilatation injury was surgically established. A recombinant adenovirus carrying GDF11 was delivered into the common carotid artery to overexpress GDF11. Vascular re-endothelialization and neointima formation were assessed in harvested carotid arteries through histomolecular analysis. CCK-8 analysis, LDH release and Western blotting were performed to investigate the effects of GDF11 on endothelial NLRP3 inflammasome activation and relevant signaling pathways in vitro. RESULTS: GDF11 significantly enhanced re-endothelialization and reduced neointima formation in rats with balloon-dilatation injury by suppressing the activation of the NLRP3 inflammasome. Administration of an endoplasmic reticulum stress (ER stress) inhibitor, 4PBA, attenuated endothelial NLRP3 inflammasome activation induced by lysophosphatidylcholine. In addition, upregulation of LOX-1 expression involved elevated ER stress and could result in endothelial NLRP3 inflammasome activation. Moreover, GDF11 significantly inhibited NLRP3 inflammasome-mediated endothelial cell pyroptosis by negatively regulating LOX-1-dependent ER stress. CONCLUSIONS: We conclude that GDF11 improves re-endothelialization and can attenuate vascular remodeling by reducing endothelial NLRP3 inflammasome activation. These findings shed light on new treatment strategies to promote re-endothelialization based on GDF11 as a future target.
Asunto(s)
Neointima , Lesiones del Sistema Vascular , Animales , Arterias Carótidas , Factores de Diferenciación de Crecimiento , Hiperplasia , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas , Ratas Sprague-DawleyRESUMEN
Dysfunction of late endothelial progenitor cells (EPCs) has been suggested to be associated with hypertension. ß2-Adrenergic receptor (ß2AR) is a novel and key target for EPC homing. Here, we proposed that attenuated ß2AR signaling contributes to EPCs dysfunction, whereas enhanced ß2AR signaling restores EPCs' functions in hypertension. EPCs derived from hypertensive patients exhibited reduced cell number, impaired in vitro migratory and adhesion abilities, and impaired re-endothelialization after transplantation in nude mice with carotid artery injury. ß2AR expression of EPCs from hypertensive patients was markedly downregulated, whereas the phosphorylation of the p38 mitogen-activated protein kinase (p38-MAPK) was elevated. The cleaved caspase-3 levels were elevated in EPCs. The overexpression of ß2AR in EPCs from hypertensive patients inhibited p38-MAPK signaling, whereas it enhanced in vitro EPC proliferation, migration, and adhesion and in vivo re-endothelialization. The ß2AR-mediated effects were attenuated by treating the EPCs with a neutralizing monoclonal antibody against ß2AR, which could be partially antagonized by the p38-MAPK inhibitor SB203580. Moreover, shear stress stimulation, a classic nonpharmacological intervention, increased the phosphorylation levels of ß2AR and enhanced the in vitro and in vivo functions of EPCs from hypertensive patients. Collectively, the current investigation demonstrated that impaired ß2AR/p38-MAPK/caspase-3 signaling at least partially reduced the re-endothelialization capacity of EPCs from hypertensive patients. Restoration of ß2AR expression and shear stress treatment could improve their endothelial repair capacity by regulating the p38-MAPK/caspase-3 signaling pathway. The clinical significance of ß2AR in endothelium repair still requires further investigation.NEW & NOTEWORTHY Impaired ß2-adrenergic receptor (ß2AR) expression with an elevation of p38-MAPK/caspase-3 signaling at least partially contributes to the decline of re-endothelialization capacity of late endothelial progenitor cells (EPCs) from hypertensive patients. ß2AR gene transfer and shear stress treatment improve the late EPC-mediated enhancement of the re-endothelialization capacity in hypertensive patients through activating ß2AR/p38-MAPK/caspase-3 signaling. The present study is the first to reveal the potential molecular mechanism of the impaired endothelium-reparative capacity of late EPCs in hypertension after vascular injury and strongly suggests that ß2AR is a novel and crucial therapeutic target for increasing EPC-mediated re-endothelialization capacity in hypertension.
Asunto(s)
Traumatismos de las Arterias Carótidas/prevención & control , Proliferación Celular , Células Progenitoras Endoteliales/metabolismo , Hipertensión/metabolismo , Repitelización , Receptores Adrenérgicos beta 2/metabolismo , Animales , Apoptosis , Traumatismos de las Arterias Carótidas/metabolismo , Traumatismos de las Arterias Carótidas/patología , Estudios de Casos y Controles , Caspasa 3/metabolismo , Adhesión Celular , Movimiento Celular , Células Cultivadas , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Células Progenitoras Endoteliales/patología , Células Progenitoras Endoteliales/trasplante , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Hipertensión/patología , Masculino , Ratones Desnudos , Persona de Mediana Edad , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
BACKGROUND: Drug-eluting stents impair post-angioplasty re-endothelialization thus compromising restenosis prevention while heightening thrombotic risks. We recently found that inhibition of protein kinase RNA-like endoplasmic reticulum kinase (PERK) effectively mitigated both restenosis and thrombosis in rodent models. This motivated us to determine how PERK inhibition impacts re-endothelialization. METHODS: Re-endothelialization was evaluated in endothelial-denuded rat carotid arteries after balloon angioplasty and periadventitial administration of PERK inhibitor in a hydrogel. To study whether PERK in smooth muscle cells (SMCs) regulates re-endothelialization by paracrinally influencing endothelial cells (ECs), denuded arteries exposing SMCs were lentiviral-infected to silence PERK; in vitro, the extracellular vesicles isolated from the medium of PDGF-activated, PERK-upregulating human primary SMCs were transferred to human primary ECs. RESULTS: Treatment with PERK inhibitor versus vehicle control accelerated re-endothelialization in denuded arteries. PERK-specific silencing in the denuded arterial wall (mainly SMCs) also enhanced re-endothelialization compared to scrambled shRNA control. In vitro, while medium transfer from PDGF-activated SMCs impaired EC viability and increased the mRNA levels of dysfunctional EC markers, either PERK inhibition or silencing in donor SMCs mitigated these EC changes. Furthermore, CXCL10, a paracrine cytokine detrimental to ECs, was increased by PDGF activation and decreased after PERK inhibition or silencing in SMCs. CONCLUSIONS: Attenuating PERK activity pharmacologically or genetically provides an approach to accelerating post-angioplasty re-endothelialization in rats. The mechanism may involve paracrine factors regulated by PERK in SMCs that impact neighboring ECs. This study rationalizes future development of PERK-targeted endothelium-friendly vascular interventions.
Asunto(s)
Angioplastia de Balón/efectos adversos , Reestenosis Coronaria/prevención & control , Miocitos del Músculo Liso/efectos de los fármacos , Inhibidores de Proteínas Quinasas/administración & dosificación , Repitelización/efectos de los fármacos , eIF-2 Quinasa/antagonistas & inhibidores , Angioplastia de Balón/instrumentación , Animales , Arterias Carótidas/efectos de los fármacos , Arterias Carótidas/patología , Arterias Carótidas/cirugía , Reestenosis Coronaria/etiología , Modelos Animales de Enfermedad , Stents Liberadores de Fármacos/efectos adversos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Endotelio Vascular/citología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Humanos , Masculino , Músculo Liso Vascular/citología , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Comunicación Paracrina/efectos de los fármacos , Comunicación Paracrina/genética , ARN Interferente Pequeño/metabolismo , Ratas , Repitelización/genética , eIF-2 Quinasa/genéticaRESUMEN
Coronary artery stenting following balloon angioplasty represents the gold standard in revascularization of coronary artery stenoses. However, stent deployment as well as percutaneous transluminal coronary angioplasty (PTCA) alone causes severe injury of vascular endothelium. The damaged endothelium is intrinsically repaired by locally derived endothelial cells and by circulating endothelial progenitor cells from the blood, leading to re-population of the denuded regions within several weeks to months. However, the process of re-endothelialization is often incomplete or dysfunctional, promoting in-stent thrombosis and restenosis. The molecular and biomechanical mechanisms that influence the process of re-endothelialization in stented segments are incompletely understood. Once the endothelium is restored, endothelial function might still be impaired. Several strategies have been followed to improve endothelial function after coronary stenting. In this review, the effects of stenting on coronary endothelium are outlined and current and future strategies to improve endothelial function after stent deployment are discussed.
Asunto(s)
Angioplastia Coronaria con Balón/métodos , Constricción Patológica/fisiopatología , Estenosis Coronaria/fisiopatología , Endotelio Vascular/fisiopatología , Stents , Animales , Proliferación Celular , Constricción Patológica/cirugía , Estenosis Coronaria/cirugía , Células Endoteliales/citología , Células Endoteliales/fisiología , Humanos , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/fisiologíaRESUMEN
OBJECTIVES: Ultrasound biomicroscopy (UBM), or ultra high-frequency ultrasound, is a technique used to assess the anatomy of small research animals. In this study, UBM was used to assess differences in intimal hyperplasia thickness as a surrogate measurement of the re-endothelialization process after carotid artery balloon injury in rats. METHODS: Ultrasound biomicroscopic data from 3 different experiments and rat strains (Sprague Dawley, Wistar, and diabetic Goto-Kakizaki) were analyzed. All animals were subjected to carotid artery balloon injury and examined with UBM (30-70 MHz) 2 and 4 weeks after injury. Re-endothelialization on UBM was defined as the length from the carotid bifurcation to the most distal visible edge of the intimal hyperplasia. En face staining with Evans blue dye was performed at euthanasia 4 weeks after injury, followed by tissue harvesting for histochemical and immunohistochemical evaluations. RESULTS: A significant correlation (Spearman r = 0.63; P < .0001) was identified when comparing all measurements of re-endothelialization obtained from UBM and en face staining. The findings revealed a similar pattern for all rat strains: Sprague Dawley (Spearman r = 0.70; P < .0001), Wistar (Spearman r = 0.36; P < .081), and Goto-Kakizaki (Spearman r = 0.70; P < .05). A Bland-Altman test showed agreement between en face staining and UBM. Immunohistochemical staining confirmed the presence of the endothelium in the areas detected as re-endothelialized by the UBM assessment. CONCLUSIONS: Ultrasound biomicroscopy can be used for repeated in vivo assessment of re-endothelialization after carotid artery balloon injury in rats.
Asunto(s)
Traumatismos de las Arterias Carótidas , Endotelio Vascular , Microscopía Acústica , Túnica Íntima , Animales , Ratas , Traumatismos de las Arterias Carótidas/diagnóstico por imagen , Cateterismo/efectos adversos , Endotelio Vascular/lesiones , Exenatida/farmacología , Linagliptina/farmacología , Distribución Aleatoria , Ratas Sprague-Dawley , Ratas Wistar , Túnica Íntima/lesionesRESUMEN
BACKGROUND: Antiproliferative drugs in drug eluting stents (DES) are associated with complications due to impaired re-endothelialization. Additionally, adventitial neovascularization has been suggested to contribute to in-stent restenosis (ISR). Since Vascular Endothelial Growth Factors (VEGFs) are the key mediators of angiogenesis, we investigated feasibility and efficacy of local gene therapy for ISR utilizing soluble decoy VEGF receptors to reduce biological activity of adventitial VEGFs. METHOD: Sixty-nine adult WHHL rabbit aortas were subjected to endothelial denudation. Six weeks later catheter-mediated local intramural infusion of 1.5x10e10 pfu adenoviruses encoding soluble VEGF Receptor-1 (sVEGFR1), sVEGFR2, sVEGFR3 or control LacZ and bare metal stent implantation were performed in the same aortic segment. Marker protein expression was assessed at 6d in LacZ cohort. Immunohistochemistry, morphometrical analyses and angiography were performed at d14, d42 and d90. RESULTS: Transgene expression was localized to adventitia. All decoy receptors reduced the size of vasa-vasorum at 14d, AdsVEGFR2 animals also had reduced density of adventitial vasa-vasorum, whereas AdsVEGFR3 increased the density of vasa-vasorum. At d42, AdsVEGFR1 and AdsVEGFR2 reduced ISR (15.7⯱â¯6.9% stenosis, Pâ¯<â¯0.01 and 16.5⯱â¯2.7%, Pâ¯<â¯0.05, respectively) vs. controls (28.3⯱â¯7.6%). Moreover, AdsVEGFR-3 treatment led to a non-significant trend in the reduction of adventitial lymphatics at all time points and these animals had significantly more advanced neointimal atherosclerosis at 14d and 42d vs. control animals. CONCLUSIONS: Targeting adventitial neovascularization using sVEGFR1 and sVEGFR2 is a novel strategy to reduce ISR. The therapeutic effects dissipate at late follow up following short expression profile of adenoviral vectors. However, inhibition of VEGFR3 signaling accelerates neoatherosclerosis.
Asunto(s)
Constricción Patológica/terapia , Reestenosis Coronaria/terapia , Terapia Genética , Neointima/terapia , Neovascularización Patológica/tratamiento farmacológico , Adventicia/fisiopatología , Animales , Aorta/fisiopatología , Constricción Patológica/genética , Constricción Patológica/fisiopatología , Reestenosis Coronaria/genética , Reestenosis Coronaria/fisiopatología , Stents Liberadores de Fármacos , Endotelio/citología , Endotelio/efectos de los fármacos , Endotelio/crecimiento & desarrollo , Endotelio Vascular/fisiopatología , Humanos , Neointima/genética , Neointima/fisiopatología , Neovascularización Patológica/genética , Neovascularización Patológica/fisiopatología , Conejos , Vasa Vasorum/fisiopatología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/uso terapéutico , Factores de Crecimiento Endotelial Vascular/genética , Factores de Crecimiento Endotelial Vascular/uso terapéuticoRESUMEN
In this paper, we present the effect of micron size holes on proliferation and growth of human aortic endothelial cells (HAECs). Square shaped micron size holes (5, 10, 15, 20 and 25 µm) separated by 10 µm wide struts are fabricated on 5 µm thick sputter deposited Nitinol films. HAECs are seeded onto these micropatterned films and analyzed after 30 days with fluorescence microscopy. Captured images are used to quantify the nucleus packing density, size, and aspect ratio. The films with holes ranging from 10 to 20 µm produce the highest cell packing densities with cell nucleus contained within the hole. This produces a geometrically regular grid like cellular distribution pattern. The cell nucleus aspect ratio on the 10-20 µm holes is more circular in shape when compared to aspect ratio on the continuous film or larger size holes. Finally, the 25 µm size holes prevented the formation of a continuous cell monolayer, suggesting the critical length that cells cannot bridge is between 20 to 25 µm.
Asunto(s)
Aleaciones/farmacología , Aorta/citología , Técnicas de Cultivo de Célula/métodos , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Propiedades de SuperficieRESUMEN
BACKGROUND/AIMS: The aim of present study was to test the hypothesis that preconditioning with sodium hydrosulfide (NaHS) could enhance the capacity of migration, adhesion and proliferation of endothelial progenitor cells (EPCs) in vitro, and also could improve the efficacy of EPCs transplantation for re-endothelialization in nude mice with carotid artery injury. The paper further addressed the underlying mechanisms. METHODS: EPCs were isolated from peripheral blood mononuclear cells of healthy male volunteers and the markers of EPCs were analyzed by flow cytometry. Thereafter, different concentrations of NaHS (25, 50, 100, 200 and 500 uM) were used for preconditioning EPCs. In vitro and in vivo migration, adhesion and proliferation as well as nitric oxide (NO) production of EPCs were evaluated. Carotid artery injury model was produced in nude mice and thereafter, NaHS-preconditioned EPCs were transplanted in order to evaluate their capacity of re-endothelialization. RESULTS: Cellular immuno-staining showed that isolated cells expressed the key markers of EPCs. In vitro, EPCs proliferation rates and NO production were gradually increased in a NaHS-concentration dependent manner, while these benefits were blocked at a concentration of 500 uM NaHS. Similarly, the migration and adhesion rates of EPCs were also increased the most prominently at a concentration of 200 µM NaHS. In vivo, compared to the control group, treatment with NaHS-preconditioned EPCs significantly enhanced the capacity of re-endothelialization of EPCs. Fluorescent microscope revealed that there were more EPCs homing to the injury vessels in the NaHS-preconditioned EPCs group than the non-preconditioned group. With the administration of AMPK or eNOS inhibitors respectively, the above benefits of NaHS-preconditioning were abrogated. CONCLUSION: These results suggested that NaHS-preconditioning enhanced the biological function and re-endothelialization of EPCs through the AMPK/eNOS signaling pathway.
Asunto(s)
Traumatismos de las Arterias Carótidas/terapia , Proliferación Celular/efectos de los fármacos , Células Progenitoras Endoteliales/trasplante , Sulfuro de Hidrógeno/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Adulto , Animales , Traumatismos de las Arterias Carótidas/patología , Traumatismos de las Arterias Carótidas/veterinaria , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Células Progenitoras Endoteliales/citología , Células Progenitoras Endoteliales/metabolismo , Humanos , Leucocitos Mononucleares/citología , Masculino , Ratones , Ratones Desnudos , Microscopía Fluorescente , Neovascularización Fisiológica/efectos de los fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Transducción de Señal/efectos de los fármacos , Adulto JovenRESUMEN
S100B is a biomarker of nervous system injury, but it is unknown if it is also involved in vascular injury. In the present study, we investigated S100B function in vascular remodeling following injury. Balloon injury in rat carotid artery progressively induced neointima formation while increasing S100B expression in both neointimal vascular smooth muscle (VSMC) and serum along with an induction of proliferating cell nuclear antigen (PCNA). Knockdown of S100B by its shRNA delivered by adenoviral transduction attenuated the PCNA expression and neointimal hyperplasia in vivo and suppressed PDGF-BB-induced VSMC proliferation and migration in vitro. Conversely, overexpression of S100B promoted VSMC proliferation and migration. Mechanistically, S100B altered VSMC phenotype by decreasing the contractile protein expression, which appeared to be mediated by NF-κB activity. S100B induced NF-κB-p65 gene transcription, protein expression and nuclear translocation. Blockade of NF-κB activity by its inhibitor reversed S100B-mediated downregulation of VSMC contractile protein and increase in VSMC proliferation and migration. It appeared that S100B regulated NF-κB expression through, at least partially, the Receptor for Advanced Glycation End products (RAGE) because RAGE inhibitor attenuated S100B-mediated NF-κB promoter activity as well as VSMC proliferation. Most importantly, S100B secreted from VSMC impaired endothelial tube formation in vitro, and knockdown of S100B promoted re-endothelialization of injury-denuded arteries in vivo. These data indicated that S100B is a novel regulator for vascular remodeling following injury and may serve as a potential biomarker for vascular damage or drug target for treating proliferative vascular diseases.
Asunto(s)
Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Neointima/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100/biosíntesis , Remodelación Vascular , Animales , Regulación de la Expresión Génica , Músculo Liso Vascular/lesiones , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Neointima/patología , Ratas , Ratas Sprague-Dawley , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Factor de Transcripción ReIA/metabolismoRESUMEN
BACKGROUND: Impaired re-endothelialization and stent thrombosis are a safety concern associated with drug-eluting stents (DES). PI3K/p110α controls cellular wound healing pathways, thereby representing an emerging drug target to modulate vascular homoeostasis after injury. METHODS AND RESULTS: PI3K/p110α was inhibited by treatment with the small molecule inhibitor PIK75 or a specific siRNA. Arterial thrombosis, neointima formation, and re-endothelialization were studied in a murine carotid artery injury model. Proliferation and migration of human vascular smooth muscle cell (VSMC) and endothelial cell (EC) were assessed by cell number and Boyden chamber, respectively. Endothelial senescence was evaluated by the ß-galactosidase assay, endothelial dysfunction by organ chambers for isometric tension. Arterial thrombus formation was delayed in mice treated with PIK75 when compared with controls. PIK75 impaired arterial expression and activity of tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1); in contrast, plasma clotting and platelet aggregation did not differ. In VSMC and EC, PIK75 inhibited expression and activity of TF and PAI-1. These effects occurred at the transcriptional level via the RhoA signalling cascade and the transcription factor NFkB. Furthermore, inhibition of PI3K/p110α with PIK75 or a specific siRNA selectively impaired proliferation and migration of VSMC while sparing EC completely. Treatment with PIK75 did not induce endothelial senescence nor inhibit endothelium-dependent relaxations. In line with this observation, treatment with PIK75 selectively inhibited neointima formation without affecting re-endothelialization following vascular injury. CONCLUSION: Following vascular injury, PI3K/p110α inhibition selectively interferes with arterial thrombosis and neointima formation, but not re-endothelialization. Hence, PI3K/p110α represents an attractive new target in DES design.
Asunto(s)
Stents Liberadores de Fármacos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Trombosis/enzimología , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Quimiotaxis/efectos de los fármacos , Endotelio Vascular/enzimología , GTP Fosfohidrolasas/metabolismo , Hidrazonas/farmacología , Inmunosupresores/farmacología , Leucocitos Mononucleares/enzimología , Masculino , Ratones Endogámicos C57BL , Músculo Liso Vascular/efectos de los fármacos , Neointima/enzimología , Óxido Nítrico/biosíntesis , Paclitaxel/farmacología , Inhibidor 1 de Activador Plasminogénico/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Sirolimus/farmacología , Sulfonamidas/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Quinasa de Factor Nuclear kappa BRESUMEN
AIMS: Understanding endothelial cell repopulation post-stenting and how this modulates in-stent restenosis is critical to improving arterial healing post-stenting. We used a novel murine stent model to investigate endothelial cell repopulation post-stenting, comparing the response of drug-eluting stents with a primary genetic modification to improve endothelial cell function. METHODS AND RESULTS: Endothelial cell repopulation was assessed en face in stented arteries in ApoE(-/-) mice with endothelial-specific LacZ expression. Stent deployment resulted in near-complete denudation of endothelium, but was followed by endothelial cell repopulation, by cells originating from both bone marrow-derived endothelial progenitor cells and from the adjacent vasculature. Paclitaxel-eluting stents reduced neointima formation (0.423 ± 0.065 vs. 0.240 ± 0.040 mm(2), P = 0.038), but decreased endothelial cell repopulation (238 ± 17 vs. 154 ± 22 nuclei/mm(2), P = 0.018), despite complete strut coverage. To test the effects of selectively improving endothelial cell function, we used transgenic mice with endothelial-specific overexpression of GTP-cyclohydrolase 1 (GCH-Tg) as a model of enhanced endothelial cell function and increased NO production. GCH-Tg ApoE(-/-) mice had less neointima formation compared with ApoE(-/-) littermates (0.52 ± 0.08 vs. 0.26 ± 0.09 mm(2), P = 0.039). In contrast to paclitaxel-eluting stents, reduced neointima formation in GCH-Tg mice was accompanied by increased endothelial cell coverage (156 ± 17 vs. 209 ± 23 nuclei/mm(2), P = 0.043). CONCLUSION: Drug-eluting stents reduce not only neointima formation but also endothelial cell repopulation, independent of strut coverage. In contrast, selective targeting of endothelial cell function is sufficient to improve endothelial cell repopulation and reduce neointima formation. Targeting endothelial cell function is a rational therapeutic strategy to improve vascular healing and decrease neointima formation after stenting.
Asunto(s)
Aterosclerosis/patología , Células Endoteliales/patología , Endotelio Vascular/patología , Stents , Animales , Aspirina/farmacología , Stents Liberadores de Fármacos , Fibrinolíticos/farmacología , Masculino , Ratones , Ratones Endogámicos , Neointima/patología , Paclitaxel/farmacología , Moduladores de Tubulina/farmacologíaRESUMEN
Endovascular interventions often fail due to restenosis, primarily caused by smooth muscle cell (SMC) proliferation, leading to intimal hyperplasia (IH). Current strategies to prevent restenosis are far from perfect and impose significant collateral damage on the fragile endothelial cell (EC), causing profound thrombotic risks. Nicotinamide adenine dinucleotide (NAD+) is a co-enzyme and signaling substrate implicated in redox and metabolic homeostasis, with a pleiotropic role in protecting against cardiovascular diseases. However, a functional link between NAD+ repletion and the delicate duo of IH and EC regeneration has yet to be established. NAD+ repletion has been historically challenging due to its poor cellular uptake and low bioavailability. We have recently invented the first nanocarrier that enables direct intracellular delivery of NAD+ in vivo. Combining the merits of this prototypic NAD+-loaded calcium phosphate (CaP) nanoparticle (NP) and biomimetic surface functionalization, we created a biomimetic P-NAD+-NP with platelet membrane coating, which enabled an injectable modality that targets IH with excellent biocompatibility. Using human cell primary culture, we demonstrated the benefits of NP-assisted NAD+ repletion in selectively inhibiting the excessive proliferation of aortic SMC, while differentially protecting aortic EC from apoptosis. Moreover, in a rat balloon angioplasty model, a single-dose treatment with intravenously injected P-NAD+-NP immediately post angioplasty not only mitigated IH, but also accelerated the regeneration of EC (re-endothelialization) in vivo in comparison to control groups (i.e., saline, free NAD+ solution, empty CaP-NP). Collectively, our current study provides proof-of-concept evidence supporting the role of targeted NAD+ repletion nanotherapy in managing restenosis and improving reendothelialization.
RESUMEN
BACKGROUND: Current polymer-based drug-eluting stents (DESs) have fundamental issues about inflammation and delayed re-endothelializaton of the vessel wall. Substance-P (SP), which plays an important role in inflammation and endothelial cells, has not yet been applied to coronary stents. Therefore, this study compares poly lactic-co-glycolic acid (PLGA)-based everolimus-eluting stents (PLGA-EESs) versus 2-methacryloyloxyethyl phosphorylcholine (MPC)-based SP-eluting stents (MPC-SPs) in in-vitro and in-vivo models. METHODS: The morphology of the stent surface and peptide/drug release kinetics from stents were evaluated. The in-vitro proliferative effect of SP released from MPC-SP is evaluated using human umbilical vein endothelial cell. Finally, the safety and efficacy of the stent are evaluated after inserting it into a pig's coronary artery. RESULTS: Similar to PLGA-EES, MPC-SP had a uniform surface morphology with very thin coating layer thickness (2.074 µm). MPC-SP showed sustained drug release of SP for over 2 weeks. Endothelial cell proliferation was significantly increased in groups treated with SP (n = 3) compared with the control (n = 3) and those with everolimus (n = 3) (SP: 118.9 ± 7.61% vs. everolimus: 64.3 ± 12.37% vs. the control: 100 ± 6.64%, p < 0.05). In the animal study, the percent stenosis was higher in MPC-SP group (n = 7) compared to PLGA-EES group (n = 7) (MPC-SP: 28.6 ± 10.7% vs. PLGA-EES: 16.7 ± 6.3%, p < 0.05). MPC-SP group showed, however, lower inflammation (MPC-SP: 0.3 ± 0.26 vs. PLGA-EES: 1.2 ± 0.48, p < 0.05) and fibrin deposition (MPC-SP: 1.0 ± 0.73 vs. PLGA-EES: 1.5 ± 0.59, p < 0.05) around the stent strut. MPC-SP showed more increased expression of cluster of differentiation 31, suggesting enhanced re-endothelialization. CONCLUSION: Compared to PLGA-EES, MPC-SP demonstrated more decreased inflammation of the vascular wall and enhanced re-endothelialization and stent coverage. Hence, MPC-SP has the potential therapeutic benefits for the treatment of coronary artery disease by solving limitations of currently available DESs.
Asunto(s)
Reestenosis Coronaria , Stents Liberadores de Fármacos , Intervención Coronaria Percutánea , Porcinos , Humanos , Animales , Everolimus/farmacología , Sustancia P , Vasos Coronarios , Stents , Inflamación , Células Endoteliales de la Vena Umbilical HumanaRESUMEN
Coronary stents have saved millions of lives in the last three decades by treating atherosclerosis especially, by preventing plaque protrusion and subsequent aneurysms. They attenuate the vascular SMC proliferation and promote reconstruction of the endothelial bed to ensure superior revascularization. With the evolution of modern stent types, nanotechnology has become an integral part of stent technology. Nanocoating and nanosurface fabrication on metallic and polymeric stents have improved their drug loading capacity as well as other mechanical, physico-chemical, and biological properties. Nanofeatures can mimic the natural nanofeatures of vascular tissue and control drug-delivery. This review will highlight the role of nanotechnology in addressing the challenges of coronary stents and the recent advancements in the field of related medical devices. Different generations of stents carrying nanoparticle-based formulations like liposomes, lipid-polymer hybrid NPs, polymeric micelles, and dendrimers are discussed highlighting their roles in local drug delivery and anti-restenotic properties. Drug nanoparticles like Paclitaxel embedded in metal stents are discussed as a feature of first-generation drug-eluting stents. Customized precision stents ensure safe delivery of nanoparticle-mediated genes or concerted transfer of gene, drug, and/or bioactive molecules like antibodies, gene mimics via nanofabricated stents. Nanotechnology can aid such therapies for drug delivery successfully due to its easy scale-up possibilities. However, limitations of this technology such as their potential cytotoxic effects associated with nanoparticle delivery that can trigger hypersensitivity reactions have also been discussed in this review. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Asunto(s)
Antineoplásicos , Stents Liberadores de Fármacos , Stents , Nanotecnología , PaclitaxelRESUMEN
BACKGROUND AND AIMS: Vascular injury-induced endothelium-denudation and profound vascular smooth muscle cells (VSMCs) proliferation and dis-regulated apoptosis lead to post-angioplasty restenosis. Coptisine (CTS), an isoquinoline alkaloid, has multiple beneficial effects on the cardiovascular system. Recent studies identified it selectively inhibits VSMCs proliferation. However, its effects on neointimal hyperplasia, re-endothelialization, and the underlying mechanisms are still unclear. METHODS: Cell viability was assayed by 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and cell counting kit-8 (CCK-8). Cell proliferation and apoptosis were measured by flow cytometry and immunofluorescence of Ki67 and TUNEL. Quantitative phosphoproteomics (QPP) was employed to screen CTS-responsive phosphor-sites in the key regulators of cell proliferation and apoptosis. Neointimal hyperplasia was induced by balloon injury of rat left carotid artery (LCA). Adenoviral gene transfer was conducted in both cultured cells and LCA. Re-endothelialization was evaluated by Evan's blue staining of LCA. RESULTS: 1) CTS had strong anti-proliferative and pro-apoptotic effects in cultured rat VSMCs, with the EC50 4â¼10-folds lower than that in endothelial cells (ECs). 2) Rats administered with CTS, either locally to LCA's periadventitial space or orally, demonstrated a potently inhibited balloon injury-induced neointimal hyperplasia, but had no delaying effect on re-endothelialization. 3) The QPP results revealed that the phosphorylation levels of Pak1S144/S203, Pak2S20/S197, Erk1T202/Y204, Erk2T185/Y187, and BadS136 were significantly decreased in VSMCs by CTS. 4) Adenoviral expression of phosphomimetic mutants Pak1D144/D203/Pak2D20/D197 enhanced Pak1/2 activities, stimulated the downstream pErk1T202/Y204/pErk2T185/Y187/pErk3S189/pBadS136, attenuated CTS-mediated inhibition of VSMCs proliferation and promotion of apoptosis in vitro, and potentiated neointimal hyperplasia in vivo. 5) Adenoviral expression of phosphoresistant mutants Pak1A144/A203/Pak2A20/A197 inactivated Pak1/2 and totally simulated the inhibitory effects of CTS on platelet-derived growth factor (PDGF)-stimulated VSMCs proliferation and PDGF-inhibited apoptosis in vitro and neointimal hyperplasia in vivo. 6) LCA injury significantly enhanced the endogenous phosphorylation levels of all but pBadS136. CTS markedly attenuated all the enhanced levels. CONCLUSIONS: These results indicate that CTS is a promising medicine for prevention of post-angioplasty restenosis without adverse impact on re-endothelialization. CTS-directed suppression of pPak1S144/S203/pPak2S20/S197 and the subsequent effects on downstream pErk1T202/Y204/pErk2T185/Y187/pErk3S189 and pBadS136 underline its mechanisms of inhibition of VSMCs proliferation and stimulation of apoptosis. Therefore, the phosphor-sites of Pak1S144/S203/Pak2S20/S197 constitute a potential drug-screening target for fighting neointimal hyperplasia restenosis.
Asunto(s)
Berberina/análogos & derivados , Traumatismos de las Arterias Carótidas , Músculo Liso Vascular , Ratas , Animales , Hiperplasia/patología , Músculo Liso Vascular/patología , Células Endoteliales/metabolismo , Proliferación Celular , Neointima/metabolismo , Traumatismos de las Arterias Carótidas/patología , Células Cultivadas , Miocitos del Músculo Liso/patología , Movimiento CelularRESUMEN
Coronary artery bypass grafting (CABG) utilizing saphenous vein grafts (SVGs) stands as a fundamental approach to surgically treating coronary artery disease. However, the long-term success of CABG is often compromised by the development of intimal hyperplasia (IH) and subsequent graft failure. Understanding the mechanisms underlying this pathophysiology is crucial for improving graft patency and patient outcomes. Objectives: This study aims to explore the potential of an ex vivo model utilizing SVG to investigate IH and re-endothelialization. Methods: A thorough histological examination of 15 surplus SVG procured from CABG procedures at Hospital Canselor Tuanku Muhriz, Malaysia, was conducted to establish their baseline characteristics. Results: SVGs exhibited a mean diameter of 2.65 ± 0.93 mm with pre-existing IH averaging 0.42 ± 0.13 mm in thickness, alongside an observable lack of luminal endothelial cell lining. Analysis of extracellular matrix components, including collagen, elastin, and glycosaminoglycans, at baseline and after 7 days of ex vivo culture revealed no significant changes in collagen but demonstrated increased percentages of elastin and glycosaminoglycans. Despite unsuccessful attempts at re-endothelialization with blood outgrowth endothelial cells, the established ex vivo SVG IH model underscores the multifaceted nature of graft functionality and patency, characterized by IH presence, endothelial impairment, and extracellular matrix alterations post-CABG. Conclusions: The optimized ex vivo IH model provides a valuable platform for delving into the underlying mechanisms of IH formation and re-endothelialization of SVG. Further refinements are warranted, yet this model holds promise for future research aimed at enhancing graft durability and outcomes for CAD patients undergoing CABG.
RESUMEN
Drug-eluting stents (DESs) implantation is an effective method to tackle in-stent restenosis (ISR), which has been considered as an efficient treatment for coronary atherosclerosis. Although fruitful results have been achieved in treating coronary artery diseases (CAD), concern has arisen regarding the long-term safety and efficacy of DESs, primarily due to adverse events such as delayed re-endothelialization, persistent inflammatory response, and late stent thrombosis (LST). Taking inspiration from the immunomodulatory functions of camouflage strategies, this study designed a bio-inspired nanoparticle-coated stent. Briefly, the platelet membrane-coated poly (lactic-co-glycolic acid)/Rapamycin nanoparticles (PNP) were sprayed onto stents, forming a homogenous nanoparticle coating. The bilayer of poly (lactic-co-glycolic acid) (PLGA) and platelet membrane works synergistically to promote the sustained-release effect of rapamycin. In vitro studies revealed that the PNP-coated surfaces promoted the competitive adhesion of endothelia cells while inhibiting smooth muscle cells. Subsequent in vivo studies demonstrated that these surfaces expedite re-endothelialization and elicit immunomodulatory effects by regulating the cGMP-PKG and NF-kappa B signaling pathways, influencing the biosynthesis cofactors and immune system signaling. The study successfully deviced a novel and biomimetic drug-eluting stent system, unraveling its detailed functions and molecular mechanism of action for enhanced vascular healing.
Asunto(s)
Stents Liberadores de Fármacos , Nanopartículas , FN-kappa B , Stents , Transducción de Señal , SirolimusRESUMEN
Introduction: Most drug-eluting stents (DESs) inhibit intimal hyperplasia but impair re-endothelialization. This study aimed to evaluate in vivo strut coverage and neointimal growth in a new glycyrrhizin acid (GA)-eluting stent. Methods: New Zealand White rabbits (n = 20) with atherosclerotic plaques were randomly divided into three groups based on implanted iliac artery stents: bare-metal stents (BMSs), rapamycin-eluting stents, and GA-eluting stents. After the in vivo intravascular ultrasound (IVUS) assessment at 28 days, the vessels were harvested for scanning electron microscopy (SEM) and histology. After 4 weeks of follow-up, the stent and external elastic lamina (EEL) areas were compared among the groups. Results: The rapamycin- or GA-eluting stents significantly reduced the neointimal area compared with BMSs, though GA-eluting stents had the lowest reduction. There were more uncovered struts for rapamycin-eluting stents than those for GA-eluting stents and bare-metal stents. The endothelial nitric oxide synthase (eNOS) expression in GA-eluting stents was much higher than that in BMSs and rapamycin-eluting stents, even though the endothelial coverage between struts was equivalent between BMSs and GA-eluting stents. Moreover, GA-eluting stents markedly promoted re-endothelialization and improved arterial healing compared to rapamycin-eluting stents in a rabbit atherosclerotic model. Conclusion: In conclusion, the novel GA-coated stent used in this study inhibited intimal hyperplasia and promoted re-endothelialization.