Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Pestic Biochem Physiol ; 201: 105876, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685244

RESUMEN

Black shank, a devastating disease in tobacco production worldwide, is caused by the oomycete plant pathogen Phytophthora nicotianae. Fluopicolide is a pyridinylmethyl-benzamides fungicide with a unique mechanism of action and has been widely used for controlling a variety of oomycetes such as Plasmopara viticola, Phytophthora infestans, Pseudoperonospora cubensis, P. nicotianae and Bremia lactucae. However, the fluopicolide-resistance risk and molecular basis in P. nicotianae have not been reported. In this study, the sensitivity profile of 141 P. nicotianae strains to fluopicolide was determined, with a mean median effective concentration (EC50) value of 0.12 ± 0.06µg/mL. Five stable fluopicolide-resistant mutants of P. nicotianae were obtained by fungicide adaptation, and the compound fitness index of these resistant mutants were lower than that of their parental isolates. Additionally, cross-resistance tests indicated that the sensitivity of fluopicolide did not correlate with other oomycete fungicides, apart from fluopimomide. DNA sequencing revealed two point mutations, G765E and N769Y, in the PpVHA-a protein in the fluopicolide-resistant mutants. Transformation and expression of PpVHA-a genes carrying G765E and N769Y in the sensitive wild-type isolate confirmed that it was responsible for fluopicolide resistance. These results suggest that P. nicotianae has a low to medium resistance risk to fluopicolide in laboratory and that point mutations, G765E and N769Y, in PpVHA-a are associated with the observed fluopicolide resistance.


Asunto(s)
Fungicidas Industriales , Mutación , Nicotiana , Phytophthora , Enfermedades de las Plantas , Phytophthora/efectos de los fármacos , Phytophthora/genética , Nicotiana/microbiología , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/microbiología , Benzamidas/farmacología , Piridinas/farmacología , Farmacorresistencia Fúngica/genética
2.
Pestic Biochem Physiol ; 200: 105806, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582572

RESUMEN

Boscalid, a widely used SDHI fungicide, has been employed in plant disease control for over two decades. However, there is currently no available information regarding its antifungal activity against Sclerotium rolfsii and the potential risk of resistance development in this pathogen. In this study, we evaluated the sensitivity of 100 S. rolfsii strains collected from five different regions in China during 2018-2019 to boscalid using mycelial growth inhibition method and assessed the risk of resistance development. The EC50 values for boscalid ranged from 0.2994 µg/mL to 1.0766 µg/mL against the tested strains, with an average EC50 value of 0.7052 ± 0.1473 µg/mL. Notably, a single peak sensitivity baseline was curved, indicating the absence of any detected resistant strains. Furtherly, 10 randomly selected strains of S. rolfsii were subjected to chemical taming to evaluate its resistance risk to boscalid, resulting in the successful generation of six stable and inheritable resistant mutants. These mutants exhibited significantly reduced mycelial growth, sclerotia production, and virulence compared to their respective parental strains. Cross-resistance tests revealed a correlation between boscalid and flutolanil, benzovindiflupyr, pydiflumetofen, fluindapyr, and thifluzamide; however, no cross-resistance was observed between boscalid and azoxystrobin. Thus, we conclude that the development risk of resistance in S. rolfsii to boscalid is low. Boscalid can be used as an alternative fungicide for controlling peanut sclerotium blight when combined with other fungicides that have different mechanisms of action. Finally, the target genes SDHB, SDHC, and SDHD in S. rolfsii were initially identified, cloned and sequenced to elucidate the mechanism of S. rolfsii resistance to boscalid. Two mutation genotypes were found in the mutants: SDHD-D111H and SDHD-H121Y. The mutants carrying SDHD-H121Y exhibited moderate resistance, while the mutants with SDHD-D111H showed low resistance. These findings contribute to our comprehensive understanding of molecular mechanisms underlying plant pathogens resistance to SDHI fungicides.


Asunto(s)
Basidiomycota , Compuestos de Bifenilo , Fungicidas Industriales , Niacinamida/análogos & derivados , Fungicidas Industriales/farmacología , Succinato Deshidrogenasa , Medición de Riesgo , Enfermedades de las Plantas/microbiología
3.
Pestic Biochem Physiol ; 203: 105990, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084767

RESUMEN

Rice blast, caused by Magnaporthe oryzae, is a devastating fungal disease worldwide. Pydiflumetofen (Pyd) is a new succinate dehydrogenase inhibitor (SDHI) that exhibited anti-fungal activity against M. oryzae. However, control of rice blast by Pyd and risk of resistance to Pyd are not well studied in this pathogen. The baseline sensitivity of 109 M. oryzae strains to Pyd was determined using mycelial growth rate assay, with EC50 values ranging from 0.291 to 2.1313 µg/mL, and an average EC50 value of 1.1005 ± 0.3727 µg/mL. Totally 28 Pyd-resistant (PydR) mutants with 15 genotypes of point mutations in succinate dehydrogenase (SDH) complex were obtained, and the resistance level could be divided into three categories of very high resistance (VHR), high resistance (HR) and moderate resistance (MR) with the resistance factors (RFs) of >1000, 105.74-986.13 and 81.92-99.48, respectively. Molecular docking revealed that all 15 mutations decreased the binding-force score for the affinity between Pyd and target subunits, which further confirmed that these 15 genotypes of point mutations were responsible for the resistance to Pyd in M. oryzae. There was positive cross resistance between Pyd and other SDHIs, such as fluxapyroxad, penflufen or carboxin, while there was no cross-resistance between Pyd and carbendazim, prochloraz or azoxystrobin in M. oryzae, however, PydR mutants with SdhBP198Q, SdhCL66F or SdhCL66R genotype were still sensitive to the other 3 SDHIs, indicating lack of cross resistance. The results of fitness study revealed that the point mutations in MoSdhB/C/D genes might reduce the hyphae growth and sporulation, but could improve the pathogenicity in M. oryzae. Taken together, the risk of resistance to Pyd might be moderate to high, and it should be used as tank-mixtures with other classes of fungicides to delay resistance development when it is used for the control of rice blast in the field.


Asunto(s)
Sustitución de Aminoácidos , Farmacorresistencia Fúngica , Fungicidas Industriales , Succinato Deshidrogenasa , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/antagonistas & inhibidores , Succinato Deshidrogenasa/metabolismo , Farmacorresistencia Fúngica/genética , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Simulación del Acoplamiento Molecular , Magnaporthe/efectos de los fármacos , Magnaporthe/genética , Mutación Puntual , Oryza/microbiología , Ascomicetos
4.
Pestic Biochem Physiol ; 201: 105862, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685239

RESUMEN

Phomopsis longicolla, a causal agent of soybean root rot, stem blight, seed decay, pod and stem canker, which seriously affects the yield and quality of soybean production worldwide. The phenylpyrrole fungicide fludioxonil exhibits a broad spectrum and high activity against phytopathogenic fungi. In this study, the baseline sensitivity of 100 P. longicolla isolates collected from the main soybean production areas of China to fludioxonil were determined. The result showed that the EC50 values of all the P. longicolla isolates ranged from 0.013 to 0.035 µg/ml. Furthermore, 12 fludioxonil-resistance (FluR) mutants of P. longicolla were generated from 6 fludioxonil-sensitive (FluS) isolates. and the resistance factors (RF) of 12 FluR mutants were >3500. Sequence alignment showed that multiple mutation types were found in PlOS1, PlOS4 or/and PlOS5 of FluR mutants. All the FluR mutants exhibited fitness penalty in mycelial growth, conidiation, virulence and osmo-adaptation. Under fludioxonil or NaCl treatment condition, the glycerol accumulation was significantly increased in FluS isolates, but was slightly increased in FluR mutants, and the phosphorylation level of most FluR mutants was significantly decreased when compared to the FluS isolates. Additionally, positive cross-resistance was observed between fludioxonil and procymidone but not fludioxonil and pydiflumetofen, pyraclostrobin or fluazinam. This is first reported that the baseline sensitivity of P. longicolla to fludioxonil, as well as the biological and molecular characterizations of P. longicolla FluR mutants to fludioxonil. These results can provide scientific directions for controlling soybean diseases caused by P. longicolla using fludioxonil.


Asunto(s)
Ascomicetos , Dioxoles , Farmacorresistencia Fúngica , Fungicidas Industriales , Pirroles , Pirroles/farmacología , Fungicidas Industriales/farmacología , Farmacorresistencia Fúngica/genética , Dioxoles/farmacología , Ascomicetos/efectos de los fármacos , Ascomicetos/genética , Ascomicetos/metabolismo , Mutación , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas/microbiología , Glycine max/microbiología , Glycine max/efectos de los fármacos
5.
Pestic Biochem Physiol ; 198: 105723, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38225078

RESUMEN

Cyclobutrifluram (TYMIRIUM® technology), a new succinate dehydrogenase inhibitor (SDHI) fungicide, is currently being registered by SYNGENTA for controlling Fusarium crown rot (FCR) of wheat in China. The application of 15 or 30 g of active ingredient/100 kg seed of cyclobutrifluram significantly reduced pre-emergence damping-off, discoloration on the stem base and formation of whiteheads caused by FCR. The EC50 values of cyclobutrifluram for 60 isolates of F. pseudograminearum, 30 isolates of F. asiaticum and 30 isolates of F. graminearum ranged from 0.016 to 0.142 mg L-1, 0.010 to 0.041 mg L-1 and 0.012 to 0.059 mg L-1, respectively. One hundred and seven cyclobutrifluram-resistant (CR) mutants were obtained from three Fusarium species isolates, with ten types of mutations identified in Sdh genes. Three Fusarium species isolates exhibited similar resistance mechanisms, with the most prevalent mutations, SdhC1A83V and SdhC1R86K, accounting for 61.68% of mutants. The CR mutants possessed comparable or slightly impaired fitness compared to the corresponding parental isolates. The CR mutants carrying FpSdhBH248Y/Q/D exhibited increased sensitivity to fluopyram. An overall moderate risk of resistance development in three Fusarium species was recommended for cyclobutrifluram.


Asunto(s)
Fusarium , Fusarium/genética , Triticum , Enfermedades de las Plantas/prevención & control , Mutación , Ácido Succínico
6.
Pestic Biochem Physiol ; 203: 106025, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084764

RESUMEN

Peanut web blotch (PWB) caused by Phoma arachidicola, is one of the most serious foliar diseases of peanut. Although prochloraz is an active fungicide with broad anti-fungal spectrum, it has not been registered for the control of PWB in China. The activity of prochloraz against P. arachidicola and the risk of resistance to prochloraz in P. arachidicola are still unclear. In current study, the inhibitory activity of prochloraz against 96 P. arachidicola strains was determined with the average EC50 value of 1.2700 ± 0.7786 µg/mL. Prochloraz exhibited excellent protective and curative effect on detached peanut leaves, and the effect was obviously better than that of carbendazim and difenoconazole at the same concentration. After prochloraz treatment, the mycelium of P. arachidicola contorted, shrunk and ruptured, with shrinking of cell wall and membrane, enhanced cell membrane permeability, and reduced ergosterol content. Totally 80 prochloraz-resistant mutants were obtained by fungicide adaptation with the frequency of 6.7 × 10-3. All the selected 12 prochloraz-resistant mutants lost their resistance to prochloraz after 10 transfers on PDA plates. And these mutants exhibited decreased biological fitness in mycelial growth and pathogenicity. Moreover, there was positive cross-resistance between prochloraz and other demethylation inhibitor (DMI) fungicides, such as tebuconazole, triflumizole and difenoconazole, but no cross-resistance was found between prochloraz and other classes of fungicides, such as carbendazim, pydiflumetofen or fludioxonil. Overexpression of PaCYP51 and PaAtrB genes were detected in the resistant mutants. All the above results demonstrated that prochloraz has a great potential in management of PWB. The risk of P. arachidicola developing resistance to prochloraz is relatively low-to-medium. Overexpressing of PaCYP51 and PaAtrB might be linked to prochloraz resistance in P. arachidicola.


Asunto(s)
Arachis , Ascomicetos , Farmacorresistencia Fúngica , Fungicidas Industriales , Imidazoles , Enfermedades de las Plantas , Ascomicetos/efectos de los fármacos , Ascomicetos/genética , Fungicidas Industriales/farmacología , Imidazoles/farmacología , Farmacorresistencia Fúngica/genética , Enfermedades de las Plantas/microbiología , Arachis/microbiología , Medición de Riesgo , Carbamatos/farmacología , Mutación , Bencimidazoles
7.
Pestic Biochem Physiol ; 199: 105786, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38458686

RESUMEN

Ipconazole is a broad-spectrum triazole fungicide that is highly effective against Fusarium pseudograminearum. However, its risk of developing resistance and mechanism are not well understood in F. pseudograminearum. Here, the sensitivities of 101 F. pseudograminearum isolates to ipconazole were investigated, and the average EC50 value was 0.1072 µg/mL. Seven mutants resistant to ipconazole were obtained by fungicide adaption, with all but one showing reduced fitness relative to the parental isolates. Cross-resistance was found between ipconazole and mefentrifluconazole and tebuconazole, but none between ipconazole and pydiflumetofen, carbendazim, fludioxonil, or phenamacril. In summary, these findings suggest that there is a low risk of F. pseudograminearum developing resistance to ipconazole. Additionally, a point mutation, G464S, was seen in FpCYP51B and overexpression of FpCYP51A, FpCYP51B and FpCYP51C was observed in ipconazole-resistant mutants. Assays, including transformation and molecular docking, indicated that G464S conferred ipconazole resistance in F. pseudograminearum.


Asunto(s)
Fungicidas Industriales , Fusarium , Farmacorresistencia Fúngica/genética , Fungicidas Industriales/farmacología , Simulación del Acoplamiento Molecular , Fusarium/genética , Desmetilación , Enfermedades de las Plantas
8.
Plant Dis ; 108(3): 658-665, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37773329

RESUMEN

Gummy stem blight, caused by Didymella bryoniae, is an important disease in watermelon in China. Fluxapyroxad, a new succinate dehydrogenase inhibitor fungicide, shows strong inhibition of the mycelia growth of D. bryoniae. However, its resistance risk in D. bryoniae is unclear. In this research, the sensitivities of 60 D. bryoniae strains to fluxapyroxad were investigated. The average EC50 value and MIC values of 60 D. bryoniae strains against fluxapyroxad were 0.022 ± 0.003 µg/ml and ≤0.1 µg/ml for mycelial growth, respectively. Eight fluxapyroxad-resistant mutants with medium resistance levels were acquired from three wild-type parental strains. The mycelial growth and dry weight of mycelia of most mutants were significantly lower than those of their parental strains. However, four resistant mutants showed a similar phenotype in pathogenicity compared with their parental strains. The above results demonstrated that there was a medium resistance risk for fluxapyroxad in D. bryoniae. The cross-resistance assay showed that there was positive cross-resistance between fluxapyroxad and pydiflumetofen, thifluzamide, and boscalid, but there was no cross-resistance between fluxapyroxad and tebuconazole and mepronil. These results will contribute to evaluating the resistance risk of fluxapyroxad for managing diseases caused by D. bryoniae and further increase our understanding about the mode of action of fluxapyroxad.


Asunto(s)
Ascomicetos , Fungicidas Industriales , Fungicidas Industriales/farmacología , Ascomicetos/fisiología , Amidas
9.
Ecotoxicol Environ Saf ; 252: 114615, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36773438

RESUMEN

The diseases caused by Vibrio during shrimp breeding program have the risk of spreading in different aquatic areas through larvae transportation between different regions. Therefore, the population distribution and the virulence and antibiotic resistance risk of 5 pathogenic Vibrio in shrimp (Penaeus vannamei) breeding system in China were evaluated for the first time. A total of 418 isolates were recovered from shrimp, breeding water and biological baits samples, and 312 isolates were identified as Vibrio genus based on 16s rDNA, among which V. alginolyticus, V. harveyi, V. parahaemolyticus, V. cholerae and V. campbellii were the dominant species. And 10/20 kinds of virulence genes (chiA, luxR, vhh, tlh, chxA, sepro, flaA, vch, VAC and rpoS) were detected among the 5 Vibrio species. Multiple antibiotic resistance (MAR) index of the 5 dominant Vibrio isolates were 0.13-0.88 %, and 36.5 % isolates with MAR < 0.2. But the antibiotic resistance pattern abundance (ARPA) index ranged from 0.25 to 0.56, which indicated the antibiotic phenotypes of Vibrio species in the shrimp breeding system in China were homogeneity. Furthermore, resistance quotients (RQs) calculation results displayed that the dominant Vibrio species in the shrimp breeding system in China showed no or low selection pressure for resistance to cefoperazone/sulbactam, enrofloxacin, ciprofloxacin, fluoroquine, florfenicol, tetracycline and doxycycline. But only 5 resistance genes were detected, which were strA (43.8 %), strB (11.7 %), QnrVC (2.9 %), sul2 (8.8 %) and Int4 (8.8 %), respectively, and the antimicrobial resistance genotypes were not previously correlated with their phenotypes. The relevant research results provide theoretical basis for epizootic tracking in aquatic system in China, and targeting its final risk in aquatic ecosystem and public health perspectives.


Asunto(s)
Penaeidae , Vibrio , Animales , Antibacterianos/farmacología , Penaeidae/genética , Virulencia/genética , Ecosistema , Farmacorresistencia Bacteriana/genética , Vibrio/genética
10.
Pestic Biochem Physiol ; 191: 105346, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36963928

RESUMEN

Fusarium crown rot (FCR), primarily caused by Fusarium pseudograminearum, poses significant threats to cereal crops worldwide. Prothioconazole is a demethylation inhibitor (DMI) fungicide used to control FCR. However, the risk of resistance in F. pseudograminearum to prothioconazole has not yet been evaluated. In this study, the sensitivity of a total of 255 F. pseudograminearum strains obtained from Henan Province, China to prothioconazole were determined by the mycelial growth inhibition. The results showed that the effective concentration to 50% growth inhibition (EC50) of these strains ranged from 0.4228 µg/mL to 2.5284 µg/mL, with a mean EC50 value of 1.0692 ± 0.4527 µg/mL (mean ± SD). Thirty prothioconazole-resistant mutants were obtained out of six selected sensitive parental strains by means of fungicide taming. The resistant mutants exhibited defects in vegetative growth, conidia production, and pathogenicity on wheat seedlings compared to their parental strains. Under ion, cell wall, and temperature stress conditions but not osmotic stress, all the mutants exhibited decreased growth rates compared with their parental strains, which was consistent with the control treatment. Cross-resistance test showed that there was a cross-resistance relationship between prothioconazole and four DMI fungicides, including prochloraz, metconazole, tebuconazole and hexaconazole, but no cross-resistance was observed between prothioconazole and carbendazim, phenamacril, fludioxonil, or azoxystrobin. Although no site mutation occurred on Cyp51a and Cyp51b genes, the constitutive expression level of the Cyp51a gene was significantly increased in all mutants. After being treated with prothioconazole, the Cyp51a and Cyp51b genes were significantly increased in both the resistant mutants and their parents. These results suggested that the resistance to prothioconazole of the mutants may be attributed to the changes of the relative expression level of Cyp51a and Cyp51b genes. Taken together, these results could provide a theoretical basis for the scientific use of prothioconazole in the field and fungicide resistance management strategies.


Asunto(s)
Fungicidas Industriales , Fusarium , Fusarium/genética , Triticum , Grano Comestible , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/prevención & control
11.
Pestic Biochem Physiol ; 196: 105617, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37945253

RESUMEN

Anthracnose caused by Colletotrichum scovillei is one of the most destructive diseases of chili worldwide. Florylpicoxamid is a new quinone inside inhibitor (QiI) fungicide, which shows intensively inhibitory activity against C. scovillei. Currently, florylpicoxamid is in the registration process to control chili anthracnose in China. This study investigated the risk of resistance and resistance genetic mechanism of C. scovillei to florylpicoxamid. Baseline sensitivity of 141C. scovillei isolates to florylpicoxamid was established with an average EC50 value of 0.2328 ± 0.0876 µg/mL. A total of seven stable florylpicoxamid-resistant mutants were obtained with resistance factors ranging from 41 to 276. The mutants showed similar or weaker traits in mycelial growth, sporulation, conidial germination and pathogenicity than their parental isolates. Generally, the resistance risk of C. scovillei to florylpicoxamid would be moderate. In addition, there was no cross-resistance between florylpicoxamid and the commercially available fungicides tested. A37V and S207L mutations in the cytochrome b protein were detected in four high-resistance and three moderate-resistance mutants, respectively, of which, S207L is a new mutation. Molecular docking showed that the two mutations conferred different resistance levels to florylpicoxamid. These results provide a new perspective for QiI fungicide-resistance mechanism and may help in the reasonable use of florylpicoxamid against chili anthracnose in the future.


Asunto(s)
Fungicidas Industriales , Mutación Puntual , Citocromos b/genética , Simulación del Acoplamiento Molecular , Enfermedades de las Plantas , Fungicidas Industriales/farmacología
12.
Pestic Biochem Physiol ; 197: 105685, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38072542

RESUMEN

Cyantraniliprole is a highly effective diamide insecticide used to control of Laodelphax striatellus (Fallén). This study aimed to assess the insecticide resistance risk of L. striatellus and its metabolic resistance mechanisms. After 25 continuous generations of selection, the resistance of L. striatellus to cyantraniliprole increased by 17.14-fold. The realistic heritability of resistance was 0.0751. After successive rearing for five generations without exposure to insecticides, the resistance ratio for the resistant strain of L. striatellus decreased by 3.47-fold, and the average resistance decline rate per generation was 0.0266. Cyantraniliprole-resistant strains did not exhibit cross-resistance to triflumezopyrim, pymetrozine, flonicamid, sulfoxaflor, dinotefuran, clothianidin, thiamethoxam, nitenpyram, or imidacloprid. Compared to those of the sensitive strain, the 2nd, 3rd, and 4th instars, nymphal stage durations, total preoviposition period, and average generation time of the resistant strain were markedly reduced. Furthermore, the activity of cytochrome P450 monooxygenase (P450) and carboxylesterase (CarE) were markedly increased. The upregulation of CYP419A1v2 expression was most evident among the P450 genes, with a 6.10-fold increase relative to that in the sensitive strain. The CarE gene LsCarE5 was significantly upregulated by 1.94-fold compared with that in the sensitive strain. With the continuous use of cyantraniliprole, L. striatellus may develop resistance to this insecticide. This resistance may be related to the increase in metabolic enzyme activities regulated by the overexpression of P450 and CarE genes.


Asunto(s)
Hemípteros , Insecticidas , Animales , Insecticidas/farmacología , Tiametoxam , Pirazoles/farmacología , ortoaminobenzoatos/farmacología , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Resistencia a los Insecticidas/genética , Hemípteros/metabolismo
13.
J Environ Manage ; 348: 119194, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37832300

RESUMEN

Even after pre-treatment, livestock and poultry wastewater still contain high concentrations of ammonia and residual antibiotics. These could be removed economically using the aerobic granular sludge (AGS) process with zero-valent iron (ZVI). The interaction of antibiotics and nitrogen in this process needs to be clarified and controlled, however, to achieve good removal performance. Otherwise, antibiotics might generate transformation products (TPs) with higher toxicity and lead to the emergence of antibiotic-resistant bacteria carrying antibiotic resistance genes (ARGs), which could cause persistent toxicity and the risk of disease transmission to the ecological environment. This study investigated the impact of ZVI on AGS for nitrogen and sulfamethoxazole (SMX) removal. The results show that AGS could maintain good ammonia removal performance and that the existence of SMX had a negative impact on ammonia oxidation activities. ZVI contributed to an increase in the abundance of nitrite oxidation bacteria, denitrifying bacteria and the functional genes of nitrogen removal. This led to better total nitrogen removal and a decrease in N2O emission. Accompanied by biological nitrogen transformation, SMX could be transformed into 14 TPs through five pathways. ZVI has the potential to enhance transformation pathways with TPs of lower ecotoxicity, thereby reducing the acute and chronic toxicity of the effluent. Unfortunately, ZVI might enhance the abundance of sul1, sul2, and sul3 in AGS, which increases the risk of sulfonamide antibiotic resistance. In AGS, Opitutaceae, Xanthomonas, Spartobacteria and Mesorhizobium were potential hosts for ARGs. This study provides theoretical references for the interaction of typical antibiotics and nitrogen in the biological treatment process of wastewater and bioremediation of natural water bodies.


Asunto(s)
Antibacterianos , Sulfametoxazol , Antibacterianos/farmacología , Aguas del Alcantarillado , Aguas Residuales , Hierro , Nitrógeno , Amoníaco , Farmacorresistencia Microbiana/genética , Bacterias/genética
14.
Pestic Biochem Physiol ; 180: 105006, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34955180

RESUMEN

Pyraoxystrobin is a new QoI fungicide developed in China. The present study was aimed at determining the baseline sensitivity of M. oryzae to pyraoxystrobin and investigating the potential resistance risk and resistance mechanism of pyraoxystrobin in M. oryzae. The results showed that the mean EC50 of 109 M. oryzae isolates to pyraoxystrobin was 0.0094 µg/mL and the sensitivity exhibited a unimodal distribution. The established baseline sensitivity could provide critical data for monitoring sensitivity changes of M. oryzae to pyraoxystrobin in rice fields. The potential resistance risk was assessed by investigating the biological characteristics of the resistant mutants obtained by fungicide adaptation. The results indicated that the resistance risk of pyraoxystrobin in M. oryzae was medium to high with positive cross-resistance between pyraoxystrobin and azoxystrobin, but without cross resistance between pyraoxystrobin and carbendazim, isoprothiolane, and prochloraz. Further investigation revealed that the pyraoxystrobin-resistant mutants had a G143S mutation in the cyt b protein. Molecular docking confirmed that the G143S substitution conferred high resistance to pyraoxystrobin in M. oryzae. Collectively, the results of this study provided essential data for monitoring the emergence of resistance and developing resistance management strategies for pyraoxystrobin.


Asunto(s)
Magnaporthe , Oryza , Acrilatos , Ascomicetos , Citocromos b/genética , Magnaporthe/genética , Simulación del Acoplamiento Molecular , Enfermedades de las Plantas , Mutación Puntual , Pirazoles
15.
Pestic Biochem Physiol ; 184: 105130, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35715068

RESUMEN

The succinate dehydrogenase inhibitor (SDHI) fungicide boscalid is an excellent broad-spectrum fungicide but has not been registered in China to control Penicillium digitatum, the causal agent of green mold of citrus. The present study evaluated the risk and molecular mechanisms for boscalid resistance in P. digitatum. Resistance induction with four arbitrarily selected sensitive isolates of P. digitatum by ultraviolet (UV) irradiation on conidia plated on boscalid-amended potato dextrose agar (PDA) and consecutive growing on boscalid-amended PDA produced five highly resistant isolates with EC50 values greater than 1000 µg/mL and two resistant isolates with EC50 lower than 200 µg/mL. Boscalid resistance of the five mutants with EC50 values above 1000 µg/mL was stable after successive transfers on PDA for 16 generations. However, for the other two mutants with EC50 lower than 200 µg/mL, the EC50 values decreased significantly after successive transfers. There was significant cross-resistance between boscalid and carboxin (r = 0.925, P < 0.001), but no significant cross-resistance was detected between boscalid and fludioxonil (r = 0.533,P = 0.095) or between boscalid and prochloraz (r = -0.543,P = 0.088). The seven resistant mutants varied greatly in the mycelia growth, sporulation, pathogenicity, and sensitivities to exogenous stresses including NaCl, salicylhydroxamic acid (SHAM), and H2O2. Alignment of the deduced amino acid sequence showed that there was no point mutation in the target enzyme succinate dehydrogenase (Sdh) subunits SdhA, SdhC, or SdhD in each of the seven resistant mutants, and the mutation of a conserved histidine residue to tyrosine (H243Y) in the subunit SdhB (i.e., iron­sulfur protein) occurred in only three highly resistant isolates. Molecular docking indicated that mutation H243Y could not prevent the binding of boscalid into the quinone-binding site of SDH in the presence of the heme moiety. However, for SDH without the heme moiety, boscalid could bind into a deeper site with a much higher affinity, and the mutation H243Y spatially blocked the docking of boscalid into the deeper site. This may be the molecular mechanism for boscalid resistance caused by SdhB-H243Y mutation.


Asunto(s)
Fungicidas Industriales , Succinato Deshidrogenasa , Compuestos de Bifenilo , Farmacorresistencia Fúngica/genética , Fungicidas Industriales/farmacología , Hemo/metabolismo , Peróxido de Hidrógeno/metabolismo , Simulación del Acoplamiento Molecular , Niacinamida/análogos & derivados , Penicillium , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo
16.
Plant Dis ; 104(11): 2779-2785, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32991254

RESUMEN

Necrotic lesions on leaves caused by Corynespora leaf spot (CLS) seriously threaten the quality and yield of cucumber in China. Corynespora cassiicola has developed different degrees of sensitivity to various fungicides due to its long-term and extensive application. In our work, the effect of isopyrazam and mefentrifluconazole on different life stages of C. cassiicola was examined. To determine the optimal effect of binary mixtures of isopyrazam and mefentrifluconazole, the two fungicides were mixed at different proportions. Furthermore, the disease suppression of isopyrazam, mefentrifluconazole, and their compound mixture against CLS was evaluated in greenhouse experiments. Ultraviolet (UV) mutagenesis and fungicide-selection methods were performed to assess the risk of resistance development. Among the three life stages tested, isopyrazam showed the weakest inhibition on mycelial growth, and mefentrifluconazole showed the strongest inhibition of germ tube elongation. According to Wadley's and cotoxicity coefficient methods, the optimal proportion of the two-component mixture of isopyrazam and mefentrifluconazole was 1:1. Isopyrazam, mefentrifluconazole, and their binary mixture at 1:1 reduced the disease severity of CLS on potted cucumber plants, with protective effects of 31.11, 24.65, and 42.12% and curative effect of 33.90, 37.48, and 42.84%, respectively. Compared with isopyrazam or mefentrifluconazole alone, the binary mixture of the two fungicides at 1:1 did not exert significant influence on the change of C. cassiicola sensitivity. Undoubtedly, such data will greatly facilitate the screening of new fungicides for CLS and resistance management.


Asunto(s)
Ascomicetos , Cucumis sativus , China , Norbornanos , Enfermedades de las Plantas , Pirazoles
17.
Plant Dis ; 104(10): 2563-2570, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32762501

RESUMEN

Rhizoctonia solani is a widely distributed soilborne plant pathogen, and can cause significant economic losses to crop production. In chemical controls, SYP-14288 is highly effective against plant pathogens, including R. solani. To examine the sensitivity to SYP-14288, 112 R. solani isolates were collected from infected rice plants. An established baseline sensitivity showed that values of effective concentration for 50% growth inhibition (EC50) ranged from 0.0003 to 0.0138 µg/ml, with an average of 0.0055 ± 0.0030 µg/ml. The frequency distribution of the EC50 was unimodal and the range of variation factor (the ratio of maximal over minimal EC50) was 46.03, indicating that all wild-type strains were sensitive to SYP-14288. To examine the risk of fungicide resistance, 20 SYP-14288-resistant mutants were generated on agar plates amended with SYP-14288. Eighteen mutants remained resistant after 10 transfers, and their fitness was significantly different from the parental strain. All of the mutants grew more slowly but showed high virulence to rice plants, though lower than the parental strain. A cross-resistance assay demonstrated that there was a positive correlation between SYP-14288 and fungicides having or not having the same mode of action with SYP-14288, including fluazinam, fentin chloride, fludioxonil, difenoconazole, cyazofamid, chlorothalonil, and 2,4-dinitrophen. This result showed a multidrug resistance induced by SYP-14288, which could be a concern in increasing the spectrum of resistance in R. solani to commonly used fungicides.


Asunto(s)
Fungicidas Industriales/farmacología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Enfermedades de las Plantas , Rhizoctonia/efectos de los fármacos
18.
Phytopathology ; 109(12): 2096-2106, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31559903

RESUMEN

Ethaboxam is a ß-tubulin inhibitor registered for the control of oomycete pathogens. The current study was established to determine the ethaboxam sensitivity of the plant pathogen Phytophthora sojae and investigate the potential for the emergence of fungicide resistance. The effective concentration for 50% inhibition (EC50) of 112 Phytophthora sojae isolates exhibited a unimodal distribution with a mean EC50 for ethaboxam of 0.033 µg/ml. Establishing this baseline sensitivity provided critical data for monitoring changes in ethaboxam-sensitivity in field populations. The potential for fungicide resistance was investigated using adaptation on ethaboxam-amended V8 agar, which resulted in the isolation of 20 resistant mutants. An assessment of the biological characteristics of the mutants including mycelial growth, sporulation, germination rate and pathogenicity indicated that the resistance risk in Phytophthora sojae was low to medium with no cross-resistance between ethaboxam and cymoxanil, metalaxyl, flumorph, and oxathiapiprolin being detected. However, positive cross-resistance was found between ethaboxam and zoxamide for Q8L and I258V but negative cross-resistance for C165Y. Further investigation revealed that the ethaboxam-resistant mutants had point mutations at amino acids Q8L, C165Y, or I258V of their ß-tubulin protein sequences. CRISPR/Cas9-mediated transformation experiments confirmed that the Q8L, C165Y, or I258V mutations could confer ethaboxam resistance in Phytophthora sojae and that the C165Y mutation induces high levels of resistance. Taken together, the results of the study provide essential data for monitoring the emergence of resistance and resistance management strategies for ethaboxam, as well as for improving the design of novel ß-tubulin inhibitors for future development.


Asunto(s)
Resistencia a Medicamentos , Phytophthora , Mutación Puntual , Tiazoles , Tiofenos , Tubulina (Proteína) , Resistencia a Medicamentos/genética , Phytophthora/efectos de los fármacos , Phytophthora/genética , Enfermedades de las Plantas/parasitología , Glycine max/parasitología , Tiazoles/farmacología , Tiofenos/farmacología , Tubulina (Proteína)/genética
19.
Pestic Biochem Physiol ; 156: 123-128, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31027571

RESUMEN

Sclerotinia homoeocarpa causes dollar spot disease on turfgrass and is a serious problem on many species worldwide. Fludioxonil, a phenylpyrrole fungicide, is not currently registered for dollar spot control in China. In this study, the baseline sensitivity to fludioxonil was established using an in vitro assay for 105 isolates of S. homoeocarpa collected from 10 locations in different regions of China. Results indicate that the frequency distribution of effective concentration for 50% inhibition of mycelial growth (EC50) values of the S. homoeocarpa isolates was unimodal (W = 0.9847, P = .2730). The mean EC50 value was 0.0020 ±â€¯0.0006 µg/ml with a range from 0.0003 to 0.0035 µg/ml. A total of 7 fludioxonil-resistant mutants were obtained in laboratory, the mutants were stable in fludioxonil sensitivity after the 10th transfer, with resistance factor (RF) ranging from 4.320 to >13,901.4. The mutants showed a positive cross-resistance between fludioxonil and the dicarboximide fungicide iprodione, but not propiconazole, fluazinam, and thiophanate-methyl. When mycelial growth rate, pathogenicity and osmotic sensitivity were assessed, the mutants decreased in the fitness compared with their parental isolates. Sequence alignment of the histidine kinase gene Shos1 revealed a 13-bp fragment deletion only in one mutant, no mutations were observed on Shos1 in the rest resistant mutants.


Asunto(s)
Ascomicetos/efectos de los fármacos , Ascomicetos/metabolismo , Dioxoles/farmacología , Fungicidas Industriales/farmacología , Pirroles/farmacología , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Aminopiridinas/farmacología , Ascomicetos/genética , China , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/genética , Hidantoínas/farmacología , Mutación/genética , Tiofanato/farmacología , Triazoles/farmacología
20.
Pestic Biochem Physiol ; 152: 76-83, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30497714

RESUMEN

Iprovalicarb is a carboxylic acid amide (CAA) fungicide, highly effective in the control of potato late blight, causing by Phytophthora infestans. Due to cross-resistance with other CAA fungicides and moderate resistance risk of P. capsici to iprovalicarb, the evolutionary risk of P. infestans resistance to this fungicide and the contribution of inherited genes and environmental effect was evaluated using a common garden experiment. The results showed that the ratio of heritability and plasticity of iprovalicarb in the seven populations equaled 1.0, indicating both inherited genes and environmental factors were essential to iprovalicarb sensitivity in P. infestans. The pairwise population differentiation determined by SSR loci (FST) between populations ranged from 0.007 to 0.133 and the overall FST was significantly higher than population differentiation in RGR (QST), suggesting constraining selection acting on iprovalicarb sensitivity. We also found a new indicator of growth rate inhibition (GRI) for fungicide sensitivity, which was negatively correlated to growth rate in the absence of iprovalicarb, indicating a trade-off between iprovalicarb resistance and pathogen's growth. The constraining selection plus a trade-off between GRI and growth rate revealed low risk of P. infestans evolving resistance to iprovalicarb.


Asunto(s)
Carbamatos/farmacología , Resistencia a Medicamentos , Fungicidas Industriales/farmacología , Phytophthora infestans/efectos de los fármacos , Valina/análogos & derivados , Fenotipo , Phytophthora infestans/genética , Valina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA