Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 98(7): e0040924, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38869284

RESUMEN

Aerosol transmission remains a major challenge for control of respiratory viruses, particularly those causing recurrent epidemics, like influenza A virus (IAV). These viruses are rarely expelled alone, but instead are embedded in a consortium of microorganisms that populate the respiratory tract. The impact of microbial communities and inter-pathogen interactions upon stability of transmitted viruses is well-characterized for enteric pathogens, but is under-studied in the respiratory niche. Here, we assessed whether the presence of five different species of commensal respiratory bacteria could influence the persistence of IAV within phosphate-buffered saline and artificial saliva droplets deposited on surfaces at typical indoor air humidity, and within airborne aerosol particles. In droplets, presence of individual species or a mixed bacterial community resulted in 10- to 100-fold more infectious IAV remaining after 1 h, due to bacterial-mediated flattening of drying droplets and early efflorescence. Even when no efflorescence occurred at high humidity or the bacteria-induced changes in droplet morphology were abolished by aerosolization instead of deposition on a well plate, the bacteria remained protective. Staphylococcus aureus and Streptococcus pneumoniae were the most stabilizing compared to other commensals at equivalent density, indicating the composition of an individual's respiratory microbiota is a previously unconsidered factor influencing expelled virus persistence.IMPORTANCEIt is known that respiratory infections such as coronavirus disease 2019 and influenza are transmitted by release of virus-containing aerosols and larger droplets by an infected host. The survival time of viruses expelled into the environment can vary depending on temperature, room air humidity, UV exposure, air composition, and suspending fluid. However, few studies consider the fact that respiratory viruses are not alone in the respiratory tract-we are constantly colonized by a plethora of bacteria in our noses, mouth, and lower respiratory system. In the gut, enteric viruses are known to be stabilized against inactivation and environmental decay by gut bacteria. Despite the presence of a similarly complex bacterial microbiota in the respiratory tract, few studies have investigated whether viral stabilization could occur in this niche. Here, we address this question by investigating influenza A virus stabilization by a range of commensal bacteria in systems representing respiratory aerosols and droplets.


Asunto(s)
Aerosoles , Virus de la Influenza A , Virus de la Influenza A/fisiología , Humanos , Staphylococcus aureus/fisiología , Streptococcus pneumoniae/fisiología , Sistema Respiratorio/microbiología , Sistema Respiratorio/virología , Animales , Gripe Humana/virología , Gripe Humana/transmisión , Bacterias , Microbiota , Perros , Simbiosis , Células de Riñón Canino Madin Darby
2.
Microb Pathog ; 195: 106881, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39197690

RESUMEN

BACKGROUND: The etiology of allergic rhinitis (AR) is not fully understood. Studies have shown that the maturation of children's immune systems is closely related to microecology. However, few studies have focused simultaneously on changes in respiratory and gut microbiota in AR and their correlation between microecological changes and Th1/Th2/Treg. OBJECTIVE: The aim is to investigate the pathogenesis of AR based on respiratory microecology, gut microecology, and Th1/Th2/Treg levels by applying microbiome techniques and correlation analysis. METHODS: Standardized OVA-induced AR mice were established. Serum OVA-sIgE, IL-4, IFN-γ, IL-10 were measured by ELISA, Tregs in lymph nodes were determined by flow cytometry, and the histological characteristics of nasal tissues were evaluated by Hematoxylin & Eosin (H&E). Nasal symptoms were observed to determine the reliability of the AR mouse model. Nasal lavage fluid (NALF) and fecal samples were collected after the last OVA challenge. The composition of respiratory microbiota in NALF and gut microbial in feces samples via 16S rRNA gene sequencing between the two groups, further explored the relationship between microbiota and Th1/Th2/Treg levels. RESULTS: In the AR group, the incidence of nose rubbing and sneezing in each mouse was significantly increased compared with the control group (all P < 0.001) and the inflammatory cell infiltration of NALF shows a significant increase in eosinophilic and neutrophilic infiltrates upon the AR group; H&E showed that the nasal mucosa of AR mice infiltration of massive eosinophils cells and neutrophils cells. OVA-sIgE and IL-4 in the AR group were increased (P < 0.01, P < 0.05) and IFN-γ, IL-10 were significantly decreased (P < 0.01, P < 0.05). Tregs showed a downward trend in the AR group, but there was no statistical difference. Compared with the control group, the respiratory microbiota of AR mice did not change significantly, while the gut microbiota changed significantly. In gut microbiota, compared to the control group, Shannon index in the AR group revealed a significant decrease at the genus level (P < 0.01), and Simpson index was significantly increased at all levels (all P < 0.05). PCoA also showed significant differences in beta diversity between the two groups (all P < 0.05). Compared to the control group, Deferribacteres at phylum level, Roseburia, Ruminiclostridium, Anaerotruncus at genus level were significantly decreased in the AR group (all P < 0.05). Spearman's rank correlation showed that OVA-sIgE was positively correlated with Bacteroidetes, Muribaculaceae and Erysipelotrichaceae (all P < 0.05); IL-4 was significantly negatively correlated with Epsilonbacteraeota and Deferribacteres (all P < 0.05). Treg was significantly positively correlated with Patescibacteria, Lachnospiraceae, and Saccharimonadaceae in gut microecology. CONCLUSION: Our results showed that the respiratory microbiota of AR mice was not significantly altered, but the gut microbiota varied significantly and there was a correlation between gut microbiota and Th1/Th2/Treg.


Asunto(s)
Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Ovalbúmina , ARN Ribosómico 16S , Sistema Respiratorio , Rinitis Alérgica , Linfocitos T Reguladores , Células TH1 , Células Th2 , Animales , Ratones , Microbioma Gastrointestinal/inmunología , Linfocitos T Reguladores/inmunología , Células Th2/inmunología , Rinitis Alérgica/inmunología , Rinitis Alérgica/microbiología , Células TH1/inmunología , Ovalbúmina/inmunología , ARN Ribosómico 16S/genética , Sistema Respiratorio/microbiología , Sistema Respiratorio/inmunología , Femenino , Ratones Endogámicos BALB C , Citocinas/metabolismo , Interleucina-10/genética , Inmunoglobulina E/sangre , Heces/microbiología , Líquido del Lavado Nasal/inmunología , Líquido del Lavado Nasal/microbiología , Interferón gamma/genética , Interleucina-4
3.
Vet Res ; 55(1): 136, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39390593

RESUMEN

Influenza remains a severe respiratory illness that poses significant global health threats. Recent studies have identified distinct microbial communities within the respiratory tract, from nostrils to alveoli. This research explores specific anti-influenza respiratory microbes using a mouse model supported by 16S rDNA sequencing and untargeted metabolomics. The study found that transferring respiratory microbes from mice that survived H9N2 influenza to antibiotic-treated mice enhanced infection resistance. Notably, the levels of Aeromicrobium were significantly higher in the surviving mice. Mice pre-treated with antibiotics and then inoculated with Aeromicrobium camelliae showed reduced infection severity, as evidenced by decreased weight loss, higher survival rates, and lower lung viral titres. Metabolomic analysis revealed elevated LysoPE (16:0) levels in mildly infected mice. In vivo and in vitro experiments indicated that LysoPE (16:0) suppresses inducible nitric oxide synthase (INOS) and cyclooxygenase-2 (COX2) expression, enhancing anti-influenza defences. Our findings suggest that Aeromicrobium camelliae could serve as a potential agent for influenza prevention and a prognostic marker for influenza outcomes.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , Animales , Ratones , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/virología , Subtipo H9N2 del Virus de la Influenza A/fisiología , Femenino , Ratones Endogámicos BALB C , Antibacterianos/farmacología
4.
Ann Clin Microbiol Antimicrob ; 23(1): 83, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39252020

RESUMEN

BACKGROUND: Respiratory microbiota is closely related to tuberculosis (TB) initiation and progression. However, the dynamic changes of respiratory microbiota during treatment and its association with TB progression remains unclear. METHODS: A total of 16 healthy individuals and 16 TB patients (10 drug-sensitive TB (DS-TB) and 6 drug-resistant TB (DR-TB)) were recruited. Sputum samples were collected at baseline for all anticipants and after anti-TB treatment at Month-6 for TB patients. High throughput 16 S RNA sequencing was used to characterize the respiratory microbiota composition. RESULTS: Compared to the healthy individuals, TB patients exhibited lower respiratory microbiota diversity (p < 0.05). This disruption was alleviated after anti-TB treatment, especially for DS-TB patients. Parvimonas spp. numbers significantly increased after six months of anti-TB treatment in both DS-TB and DR-TB patients (p < 0.05). Rothia spp. increase during treatment was associated with longer sputum-culture conversion time and worse pulmonary lesion absorption (p < 0.05). Besides, Moraxella spp. prevalence was associated with longer sputum-culture conversion time, while Gemella spp. increase was associated with worsening resolving of pulmonary lesions (p < 0.05). CONCLUSION: Dynamic changes of respiratory microbiota during anti-TB treatment is closely related to TB progression. The involvement of critical microorganisms, such as Parvimonas spp., Rothia spp., Moraxella, and Gemella spp., appears to be associated with pulmonary inflammatory conditions, particularly among DR-TB. These microorganisms could potentially serve as biomarkers or even as targets for therapeutic intervention to enhance the prognosis of tuberculosis patients.


Asunto(s)
Antituberculosos , Microbiota , Esputo , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis Pulmonar , Humanos , Esputo/microbiología , Masculino , Femenino , Antituberculosos/uso terapéutico , Microbiota/efectos de los fármacos , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/microbiología , Adulto , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Persona de Mediana Edad , Resultado del Tratamiento , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , ARN Ribosómico 16S/genética
5.
Respir Res ; 24(1): 131, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173744

RESUMEN

BACKGROUNDS: The respiratory microbiota and radiomics correlate with the disease severity and prognosis of chronic obstructive pulmonary disease (COPD). We aim to characterize the respiratory microbiota and radiomics features of COPD patients and explore the relationship between them. METHODS: Sputa from stable COPD patients were collected for bacterial 16 S rRNA gene sequencing and fungal Internal Transcribed Spacer (ITS) sequencing. Chest computed tomography (CT) and 3D-CT analysis were conducted for radiomics information, including the percentages of low attenuation area below - 950 Hounsfield Units (LAA%), wall thickness (WT), and intraluminal area (Ai). WT and Ai were adjusted by body surface area (BSA) to WT/[Formula: see text] and Ai/BSA, respectively. Some key pulmonary function indicators were collected, which included forced expiratory volume in one second (FEV1), forced vital capacity (FVC), diffusion lung carbon monoxide (DLco). Differences and correlations of microbiomics with radiomics and clinical indicators between different patient subgroups were assessed. RESULTS: Two bacterial clusters dominated by Streptococcus and Rothia were identified. Chao and Shannon indices were higher in the Streptococcus cluster than that in the Rothia cluster. Principal Co-ordinates Analysis (PCoA) indicated significant differences between their community structures. Higher relative abundance of Actinobacteria was detected in the Rothia cluster. Some genera were more common in the Streptococcus cluster, mainly including Leptotrichia, Oribacterium, Peptostreptococcus. Peptostreptococcus was positively correlated with DLco per unit of alveolar volume as a percentage of predicted value (DLco/VA%pred). The patients with past-year exacerbations were more in the Streptococcus cluster. Fungal analysis revealed two clusters dominated by Aspergillus and Candida. Chao and Shannon indices of the Aspergillus cluster were higher than that in the Candida cluster. PCoA showed distinct community compositions between the two clusters. Greater abundance of Cladosporium and Penicillium was found in the Aspergillus cluster. The patients of the Candida cluster had upper FEV1 and FEV1/FVC levels. In radiomics, the patients of the Rothia cluster had higher LAA% and WT/[Formula: see text] than those of the Streptococcus cluster. Haemophilus, Neisseria and Cutaneotrichosporon positively correlated with Ai/BSA, but Cladosporium negatively correlated with Ai/BSA. CONCLUSIONS: Among respiratory microbiota in stable COPD patients, Streptococcus dominance was associated with an increased risk of exacerbation, and Rothia dominance was relevant to worse emphysema and airway lesions. Peptostreptococcus, Haemophilus, Neisseria and Cutaneotrichosporon probably affected COPD progression and potentially could be disease prediction biomarkers.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Pulmón , Volumen Espiratorio Forzado , Capacidad Vital
6.
Eur J Pediatr ; 182(8): 3649-3658, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37261548

RESUMEN

Changes in airway microbiota among infants with pneumonia and their impact on subsequent respiratory health are largely unknown. The present study aimed to analyze the oropharyngeal microbiota of infants with pneumonia and to explore the impact of disturbances of the microbiota on disease severity and long-term respiratory morbidities. The oropharyngeal microbiome was characterized using 16S ribosomal RNA-based sequencing, while serum immune mediators were assessed using cytometric bead array, and invariant natural killer T (iNKT) cells were detected using flow cytometry in infants with pneumonia < 6 months of age. Patients were followed up to 3 years of age, and clinical and respiratory morbidity data were collected. A total of 106 infants with pneumonia were enrolled in this study. Diversity of the respiratory microbiota was inversely correlated with the severity of pneumonia and length of hospitalization. Patients who experienced wheezing during pneumonia exhibited lower percentages of total iNKT cells, CD8-positive ( +), and CD4-CD8- subsets, and higher CD4 + subsets than those without. The relative abundances of Prevotella and Veillonella species were lower in patients with severe pneumonia. The abundance of Veillonella was higher in patients who experienced wheezing during pneumonia and in those with subsequent recurrent wheezing than in those without wheezing. The relative abundance and total counts of Bifidobacterium, Lactobacillus, and Neisseria were higher in patients who did not experience subsequent recurrent wheezing. CONCLUSIONS: Diversity of the respiratory microbiota was inversely associated with pneumonia severity, and the percentage of iNKT cells was associated with wheezing during pneumonia. Several species may be associated with subsequent respiratory morbidities and warrant further investigation. WHAT IS KNOWN: • Early life airway microbiota symbiosis affects the severity of respiratory infection and the risk for the development of asthma. • Changes in airway microbiota among infants with pneumonia and their impact on subsequent respiratory health are largely unknown. WHAT IS NEW: • The diversity of the airway microbiome was inversely associated with the severity of pneumonia and length of hospitalization. • The abundance of Veillonella was higher in patients who experienced wheezing during pneumonia and in those with subsequent recurrent wheezing.


Asunto(s)
Microbiota , Neumonía , Humanos , Lactante , Ruidos Respiratorios , Morbilidad , Inmunidad
7.
Int J Mol Sci ; 23(12)2022 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-35743234

RESUMEN

The intestinal microbiota is known to influence local immune homeostasis in the gut and to shape the developing immune system towards elimination of pathogens and tolerance towards self-antigens. Even though the lung was considered sterile for a long time, recent evidence using next-generation sequencing techniques confirmed that the lower airways possess their own local microbiota. Since then, there has been growing evidence that the local respiratory and intestinal microbiota play a role in acute and chronic pediatric lung diseases. The concept of the so-called gut-lung axis describing the mutual influence of local microbiota on distal immune mechanisms was established. The mechanisms by which the intestinal microbiota modulates the systemic immune response include the production of short-chain fatty acids (SCFA) and signaling through pattern recognition receptors (PRR) and segmented filamentous bacteria. Those factors influence the secretion of pro- and anti-inflammatory cytokines by immune cells and further modulate differentiation and recruitment of T cells to the lung. This article does not only aim at reviewing recent mechanistic evidence from animal studies regarding the gut-lung axis, but also summarizes current knowledge from observational studies and human trials investigating the role of the respiratory and intestinal microbiota and their modulation by pre-, pro-, and synbiotics in pediatric lung diseases.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Pulmonares , Microbiota , Animales , Niño , Ácidos Grasos Volátiles , Microbioma Gastrointestinal/fisiología , Humanos , Pulmón
8.
Clin Infect Dis ; 72(2): 212-221, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-31919525

RESUMEN

BACKGROUND: Recent research suggests that the microbiota affects susceptibility to both respiratory tract infections (RTIs) and gastrointestinal infections (GIIs). In order to optimize global treatment options, it is important to characterize microbiota profiles across different niches and geographic/socioeconomic areas where RTI and GII prevalences are high. METHODS: We performed 16S sequencing of nasopharyngeal swabs from 209 Venezuelan Amerindian children aged 6 weeks-59 months who were participating in a 13-valent pneumococcal conjugate vaccine (PCV13) study. Using random forest models, differential abundance testing, and regression analysis, we determined whether specific bacteria were associated with RTIs or GIIs and variation in PCV13 response. RESULTS: Microbiota compositions differed between children with or without RTIs (P = .018) or GIIs (P = .001). Several species were associated with the absence of infections. Some of these health-associated bacteria are also observed in developed regions, such as Corynebacterium (log2(fold change [FC]) = 3.30 for RTIs and log2(FC) = 1.71 for GIIs), while others are not commonly observed in developed regions, such as Acinetobacter (log2(FC) = 2.82 and log2(FC) = 5.06, respectively). Klebsiella spp. presence was associated with both RTIs (log2(FC) = 5.48) and GIIs (log2(FC) = 7.20). CONCLUSIONS: The nasopharyngeal microbiota of rural Venezuelan children included several bacteria that thrive in tropical humid climates. Interestingly, nasopharyngeal microbiota composition not only differed in children with an RTI but also in those with a GII, which suggests a reciprocal interplay between the 2 environments. Knowledge of region-specific microbiota patterns enables tailoring of preventive and therapeutic approaches.


Asunto(s)
Enfermedades Transmisibles , Microbiota , Infecciones Neumocócicas , Infecciones del Sistema Respiratorio , Bacterias/genética , Niño , Humanos , Lactante , Recién Nacido , Nasofaringe , Vacunas Neumococicas , Infecciones del Sistema Respiratorio/epidemiología
9.
Arch Microbiol ; 203(9): 5817-5823, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34420080

RESUMEN

Thanks to its ability to isolate previously uncultured bacterial species, culturomics has dynamized the study of the human microbiota. A new bacterial species, Gemella massiliensis Marseille-P3249T, was isolated from a sputum sample of a healthy French man. Strain Marseille-P3249T is a facultative anaerobe, catalase-negative, Gram positive, coccus, and unable to sporulate. The major fatty acids were C16:0 (34%), C18:1n9 (28%), C18:0 (15%) and C18:2n6 (13%). Its 16S rRNA sequence exhibits a 98.3% sequence similarity with Gemella bergeri strain 617-93T, its phylogenetically closest species with standing in nomenclature. Its digital DNA-DNA hybridization (dDDH) and OrthoANI values with G. bergeri of only 59.7 ± 5.6% and 94.8%, respectively. These values are lower than the thresholds for species delineation (> 70% and > 95%, respectively). This strain grows optimally at 37 °C and its genome is 1.80 Mbp long with a 30.5 mol% G + C content. Based on these results, we propose the creation of the new species Gemella massilienis sp. nov., strain Marseille-P3249T (= CSUR P3249 = DSMZ 103940).


Asunto(s)
Gemella , Filogenia , Esputo/microbiología , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Gemella/clasificación , Gemella/aislamiento & purificación , Humanos , Masculino , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética
10.
Appl Environ Microbiol ; 86(12)2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32276973

RESUMEN

Communities of gut bacteria (microbiota) are known to play roles in resistance to pathogen infection and optimal weight gain in turkey flocks. However, knowledge of turkey respiratory microbiota and its link to gut microbiota is lacking. This study presents a 16S rRNA gene-based census of the turkey respiratory microbiota (nasal cavity and trachea) alongside gut microbiota (cecum and ileum) in two identical commercial Hybrid Converter turkey flocks raised in parallel under typical field commercial conditions. The flocks were housed in adjacent barns during the brood stage and in geographically separated farms during the grow-out stage. Several bacterial taxa, primarily Staphylococcus, that were acquired in the respiratory tract at the beginning of the brood stage persisted throughout the flock cycle. Late-emerging predominant taxa in the respiratory tract included Deinococcus and Corynebacterium Tracheal and nasal microbiota of turkeys were identifiably distinct from one another and from gut microbiota. Nevertheless, gut and respiratory microbiota changed in parallel over time and appeared to share many taxa. During the brood stage, the two flocks generally acquired similar gut and respiratory microbiota, and their average body weights were comparable. However, there were qualitative and quantitative differences in microbial profiles and body weight gain trajectories after the flocks were transferred to geographically separated grow-out farms. Lower weight gain corresponded to the emergence of Deinococcus and Ornithobacterium in the respiratory tract and Fusobacterium and Parasutterella in gut. This study provides an overview of turkey microbiota under field conditions and suggests several hypotheses concerning the respiratory microbiome.IMPORTANCE Turkey meat is an important source of animal protein, and the industry around its production contributes significantly to the agricultural economy. The microorganisms present in the gut of turkeys are known to impact bird health and flock performance. However, the respiratory microbiota in turkeys is entirely unexplored. This study has elucidated the microbiota of respiratory tracts of turkeys from two commercial flocks raised in parallel throughout a normal flock cycle. Further, the study suggests that bacteria originating in the gut or in poultry house environments influence respiratory communities; consequently, they induce poor performance, either directly or indirectly. Future attempts to develop microbiome-based interventions for turkey health should delimit the contributions of respiratory microbiota and aim to limit disturbances to those communities.


Asunto(s)
Ciego/microbiología , Íleon/microbiología , Microbiota , Cavidad Nasal/microbiología , Tráquea/microbiología , Pavos/microbiología , Aumento de Peso , Animales , Fenómenos Fisiológicos Bacterianos , Trayectoria del Peso Corporal , Microbioma Gastrointestinal , Masculino
11.
Cancer Invest ; 38(3): 158-168, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32073913

RESUMEN

Background: Previous studies have reported mixed results regarding the composition of respiratory microbiota in lung cancer patients. Therefore, relying on previously published studies, we sought to estimate the relative proportion of respiratory microbiota between lung cancer cases and controls.Methods: MEDLINE, Embase, The Cochrane Library, and Web of Science online databases were systematically searched from inception up to October 14, 2019, to retrieve relevant studies. The relative abundance of each predominant taxon of respiratory microbiota in lung cancer patients and controls was pooled using the reported outcome data.Results: A total of 8 studies comprising 530 participants were included in the final analysis. The pooled phylum level analysis revealed that Bacteroidetes and Proteobacteria were the most abundant bacterial phyla among all participants, recording 17.5%, 47.5% in lung cancer patients, 28.2%, 39.27% in patients with benign pulmonary diseases and 40.62%, 32.09% in healthy controls, respectively. In addition, Actinobacteria and Firmicutes phyla were abundant in lung cancer cases compared to other groups (14.8%, 17.62% for lung cancer versus 13.04%, 13.16% for benign pulmonary nodules and 12.43%, 12.45% for healthy controls). At genus level, Prevotella was predominant in all the participants, and its proportion was relatively lower in cancer patients (25.74% for lung cancer versus 35.59% and 36.75% for benign pulmonary nodules and healthy controls, respectively). Comparatively, Streptococcus was more abundant in lung cancer cases (9.65% in lung cancer versus 7.98%, 7.26% in benign pulmonary nodules and healthy controls).Conclusions: The respiratory microbiota composition of respiratory microbiota significantly differs between lung cancer patients and healthy individuals, and may be used as potential biomarker of lung cancer. In addition, larger sample size, standardized procedures, dynamic monitoring, metabolomics, and culturomics are needed to confirm these results.


Asunto(s)
Bacterias/clasificación , Disbiosis/diagnóstico , Neoplasias Pulmonares/microbiología , Bacterias/aislamiento & purificación , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Filogenia , ARN Ribosómico 16S/genética , Estudios Retrospectivos , Tamaño de la Muestra , Análisis de Secuencia de ADN
12.
Am J Respir Crit Care Med ; 200(6): 760-770, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30883192

RESUMEN

Rationale: The respiratory microbiota is increasingly being appreciated as an important mediator in the susceptibility to childhood respiratory tract infections (RTIs). Pathogens are presumed to originate from the nasopharyngeal ecosystem.Objectives: To investigate the association between early life respiratory microbiota and development of childhood RTIs.Methods: In a prospective birth cohort (Microbiome Utrecht Infant Study: MUIS), we characterized the oral microbiota longitudinally from birth until 6 months of age of 112 infants (nine regular samples/subject) and compared them with nasopharyngeal microbiota using 16S-rRNA-based sequencing. We also characterized oral and nasopharynx samples during RTI episodes in the first half year of life.Measurements and Main Results: Oral microbiota were driven mostly by feeding type, followed by age, mode of delivery, and season of sampling. In contrast to our previously published associations between nasopharyngeal microbiota development and susceptibility to RTIs, oral microbiota development was not directly associated with susceptibility to RTI development. However, we did observe an influx of oral taxa, such as Neisseria lactamica, Streptococcus, Prevotella nanceiensis, Fusobacterium, and Janthinobacterium lividum, in the nasopharyngeal microbiota before and during RTIs, which was accompanied by reduced presence and abundance of Corynebacterium, Dolosigranulum, and Moraxella spp. Moreover, this phenomenon was accompanied by reduced niche differentiation indicating loss of ecological topography preceding confirmed RTIs. This loss of ecological topography was further augmented by start of daycare, and linked to consecutive development of symptomatic infections.Conclusions: Together, our results link the loss of topography to subsequent development of RTI episodes. This may lead to new insights for prevention of RTIs and antibiotic use in childhood.


Asunto(s)
Microbiota , Boca/microbiología , Nasofaringe/microbiología , Infecciones del Sistema Respiratorio/microbiología , Infecciones del Sistema Respiratorio/fisiopatología , Femenino , Humanos , Lactante , Recién Nacido , Estudios Longitudinales , Masculino , Estudios Prospectivos
13.
Appl Environ Microbiol ; 85(9)2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30824436

RESUMEN

The digestive and respiratory tracts of chickens are colonized by bacteria that are believed to play important roles in the overall health and performance of the birds. Most of the current research on the commensal bacteria (microbiota) of chickens has focused on broilers and gut microbiota, and less attention has been given to layers and respiratory microbiota. This research bias has left significant gaps in our knowledge of the layer microbiome. This study was conducted to define the core microbiota colonizing the upper respiratory tract (URT) and lower intestinal tract (LIT) in commercial layers under field conditions. One hundred eighty-one chickens were sampled from a flock of >80,000 birds at nine times to collect samples for 16S rRNA gene-based bacterial metabarcoding. Generally, the body site and age/farm stage had very dominant effects on the quantity, taxonomic composition, and dynamics of core bacteria. Remarkably, ileal and URT microbiota were compositionally more related to each other than to that from the cecum. Unique taxa dominated in each body site yet some taxa overlapped between URT and LIT sites, demonstrating a common core. The overlapping bacteria also contained various levels of several genera with well-recognized avian pathogens. Our findings suggest that significant interaction exists between gut and respiratory microbiota, including potential pathogens, in all stages of the farm sequence. The baseline data generated in this study can be useful for the development of effective microbiome-based interventions to enhance production performance and to prevent and control disease in commercial chicken layers.IMPORTANCE The poultry industry is faced with numerous challenges associated with infectious diseases and suboptimal performance of flocks. As microbiome research continues to grow, it is becoming clear that poultry health and production performance are partly influenced by nonpathogenic symbionts that occupy different habitats within the bird. This study has defined the baseline composition and overlaps between respiratory and gut bacteria in healthy, optimally performing chicken layers across all stages of the commercial farm sequence. Consequently, the study has set the groundwork for the development of interventions that seek to enhance production performance and to prevent and control infectious diseases through the modulation of gut and respiratory bacteria.


Asunto(s)
Bacterias/aislamiento & purificación , Pollos/microbiología , Tracto Gastrointestinal Inferior/microbiología , Microbiota , Sistema Respiratorio/microbiología , Factores de Edad , Crianza de Animales Domésticos , Animales , Bacterias/clasificación , Código de Barras del ADN Taxonómico/veterinaria , Microbioma Gastrointestinal , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis
14.
Curr Allergy Asthma Rep ; 19(7): 33, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31161313

RESUMEN

PURPOSE OF REVIEW: To examine the relationship between vitamin D and otitis media. RECENT FINDINGS: Vitamin D deficiency has been associated with several respiratory diseases, including otitis media. Vitamin D supplementation may reduce the risk of otitis media. This relationship may be explained by vitamin D supporting the immune system by upregulating antimicrobial peptides which are effective against otopathogens and biofilm formation, supporting a less inflammatory immune response, or promoting beneficial commensal bacteria. This review will explore risk factors of both otitis media and vitamin D deficiency, the evidence of vitamin D being beneficial for various forms of otitis media, and possible mechanisms of action.


Asunto(s)
Otitis Media/etiología , Suplementos Dietéticos , Humanos , Vitamina D/farmacología , Deficiencia de Vitamina D/complicaciones , Vitaminas/farmacología
15.
Am J Respir Crit Care Med ; 196(12): 1582-1590, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-28665684

RESUMEN

RATIONALE: Perinatal and postnatal influences are presumed important drivers of the early-life respiratory microbiota composition. We hypothesized that the respiratory microbiota composition and development in infancy is affecting microbiota stability and thereby resistance against respiratory tract infections (RTIs) over time. OBJECTIVES: To investigate common environmental drivers, including birth mode, feeding type, antibiotic exposure, and crowding conditions, in relation to respiratory tract microbiota maturation and stability, and consecutive risk of RTIs over the first year of life. METHODS: In a prospectively followed cohort of 112 infants, we characterized the nasopharyngeal microbiota longitudinally from birth on (11 consecutive sample moments and the maximum three RTI samples per subject; in total, n = 1,121 samples) by 16S-rRNA gene amplicon sequencing. MEASUREMENTS AND MAIN RESULTS: Using a microbiota-based machine-learning algorithm, we found that children experiencing a higher number of RTIs in the first year of life already demonstrate an aberrant microbial developmental trajectory from the first month of life on as compared with the reference group (0-2 RTIs/yr). The altered microbiota maturation process coincided with decreased microbial community stability, prolonged reduction of Corynebacterium and Dolosigranulum, enrichment of Moraxella very early in life, followed by later enrichment of Neisseria and Prevotella spp. Independent drivers of these aberrant developmental trajectories of respiratory microbiota members were mode of delivery, infant feeding, crowding, and recent antibiotic use. CONCLUSIONS: Our results suggest that environmental drivers impact microbiota development and, consequently, resistance against development of RTIs. This supports the idea that microbiota form the mediator between early-life environmental risk factors for and susceptibility to RTIs over the first year of life.


Asunto(s)
Ambiente , Microbiota/fisiología , Nasofaringe/microbiología , Infecciones del Sistema Respiratorio/epidemiología , Antibacterianos/uso terapéutico , Lactancia Materna/estadística & datos numéricos , Niño , Estudios de Cohortes , Parto Obstétrico/estadística & datos numéricos , Femenino , Humanos , Lactante , Alimentos Infantiles/estadística & datos numéricos , Estudios Longitudinales , Masculino , Países Bajos/epidemiología , Estudios Prospectivos
16.
Appl Environ Microbiol ; 83(12)2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28389539

RESUMEN

The lung microbiota is commonly sampled using relatively invasive bronchoscopic procedures. Exhaled breath condensate (EBC) collection potentially offers a less invasive alternative for lung microbiota sampling. We compared lung microbiota samples retrieved by protected specimen brushings (PSB) and exhaled breath condensate collection. We also sought to assess whether aerosolized antibiotic treatment would influence the lung microbiota and whether this change could be detected in EBC. EBC was collected from 6 conscious sheep and then from the same anesthetized sheep during mechanical ventilation. Following the latter EBC collection, PSB samples were collected from separate sites within each sheep lung. On the subsequent day, each sheep was then treated with nebulized colistimethate sodium. Two days after nebulization, EBC and PSB samples were again collected. Bacterial DNA was quantified using 16S rRNA gene quantitative PCR. The V2-V3 region of the 16S rRNA gene was amplified by PCR and sequenced using Illumina MiSeq. Quality control and operational taxonomic unit (OTU) clustering were performed with mothur. The EBC samples contained significantly less bacterial DNA than the PSB samples. The EBC samples from anesthetized animals clustered separately by their bacterial community compositions in comparison to the PSB samples, and 37 bacterial OTUs were identified as differentially abundant between the two sample types. Despite only low concentrations of colistin being detected in bronchoalveolar lavage fluid, PSB samples were found to differ by their bacterial compositions before and after colistimethate sodium treatment. Our findings indicate that microbiota in EBC samples and PSB samples are not equivalent.IMPORTANCE Sampling of the lung microbiota usually necessitates performing bronchoscopic procedures that involve a hospital visit for human participants and the use of trained staff. The inconvenience and perceived discomfort of participating in this kind of research may deter healthy volunteers and may not be a safe option for patients with advanced lung disease. This study set out to evaluate a less invasive method for collecting lung microbiota samples by comparing samples taken via protected specimen brushings (PSB) to those taken via exhaled breath condensate (EBC) collection. We found that there was less bacterial DNA in EBC samples compared with that in PSB samples and that there were differences between the bacterial communities in the two sample types. We conclude that while EBC and PSB samples do not produce equivalent microbiota samples, the study of the EBC microbiota may still be of interest.


Asunto(s)
Bacterias/aislamiento & purificación , Pulmón/microbiología , Microbiota , Animales , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Pulmón/fisiología , Filogenia , ARN Ribosómico 16S/genética , Respiración , Ovinos
17.
BMC Microbiol ; 16: 62, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-27052615

RESUMEN

BACKGROUND: Haemophili are representative microbiota of the upper respiratory tract. The aim of this study was to assess the effects of perioperative antimicrobial prophylaxis and/or postoperative treatment on Haemophilus parainfluenzae prevalence, and antimicrobial sensitivity in short-term hospitalized patients with lung cancer who underwent surgery. RESULTS: Samples were collected from 30 short-term hospitalized patients with lung cancer and from 65 healthy people. The nasal and throat specimens were taken twice from each patient: before (EI, Examination I), on the fourth/fifth day (EII, Examination II) after surgery, and once from healthy people. The isolates identification and antimicrobial susceptibility were detected by routine diagnostic methods. H. parainfluenzae was found in throat specimens of 42/65 (64.6 %) healthy people, while in 19/30 (63.3 %) lung cancer patients in EI (p = 0.6203) and in 13/30 (43.3 %) ones in EII (p = 0.0106). Neither the disease itself nor short-term hospitalization with perioperative prophylaxis alone affected H. parainfluenzae prevalence in EII, while perioperative prophylaxis with postoperative treatment significantly decreased its colonization in EII. The differences in the number of patients colonized by Candida spp. in EI and in EII were observed (p = 0.0082).Totally, 23/58 (39.7 %) of H. parainfluenzae isolates were resistant mainly to beta-lactams; among 11 ampicillin-resistant isolates only 3 were beta-lactamase positive. CONCLUSIONS: The antimicrobial perioperative prophylaxis together with postoperative treatment may disturb the composition of the airways microbiota represented by H. parainfluenzae, in addition to selecting the resistant strains of bacteria and promoting yeasts colonization in lung cancer patients undergoing surgery.


Asunto(s)
Antibacterianos/uso terapéutico , Profilaxis Antibiótica/métodos , Infecciones por Haemophilus/epidemiología , Haemophilus parainfluenzae/efectos de los fármacos , Neoplasias Pulmonares/cirugía , Sistema Respiratorio/microbiología , Adulto , Anciano , Cefazolina/uso terapéutico , Cefuroxima/uso terapéutico , Farmacorresistencia Bacteriana , Femenino , Infecciones por Haemophilus/microbiología , Infecciones por Haemophilus/prevención & control , Haemophilus parainfluenzae/aislamiento & purificación , Humanos , Neoplasias Pulmonares/complicaciones , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Nariz/microbiología , Atención Perioperativa/métodos , Faringe/microbiología , Prevalencia , Resultado del Tratamiento
18.
BMC Infect Dis ; 16(1): 449, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27562460

RESUMEN

BACKGROUND: Healthy condition and chronic diseases may be associated with microbiota composition and its properties. The prevalence of respiratory haemophili with respect to their phenotypes including the ability to biofilm formation in patients with sarcoidosis was assayed. METHODS: Nasopharynx and sputum specimens were taken in 31 patients with sarcoidosis (average age 42.6 ± 13), and nasopharynx specimens were taken in 37 healthy people (average age 44.6 ± 11.6). Haemophili were identified by API-NH microtest and by the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) system. Biofilm was visualised by crystal violet staining and confocal scanning laser microscopy (CSLM). The statistical analysis was performed with Statgraphics Plus for Windows. RESULTS: In total, 30/31 patients with sarcoidosis and 31/37 healthy people were colonized by Haemophilus influenzae (6/30 vs. 1/31) and Haemophilus parainfluenzae (28/30 vs. 31/31) in the nasopharynx. The overall number of nasopharyngeal haemophili isolates was 59 in patients with sarcoidosis and 67 in healthy volunteers (H. influenzae 6/59 vs. 1/67, P = 0.05; H. parainfluenzae 47/59 vs. 65/67, P = 0.0032). Moreover, the decreased number of H. parainfluenzae biofilm-producing isolates was shown in nasopharyngeal samples in patients with sarcoidosis as compared to healthy people (19/31 vs. 57/65, P = 0.006), especially with respect to isolates classified as strong and very strong biofilm-producers (8/31 vs. 39/65, P = 0.002). CONCLUSIONS: The obtained data suggest that the qualitative and quantitative changes within the respiratory microbiota concerning the overall prevalence of H. influenzae together with the decreased number of H. parainfluenzae strains and the decreased rate of H. parainfluenzae biofilm-producing isolates as compared to healthy people may be associated with sarcoidosis.


Asunto(s)
Biopelículas , Infecciones por Haemophilus/complicaciones , Haemophilus influenzae/fisiología , Haemophilus parainfluenzae/fisiología , Nasofaringe/microbiología , Sarcoidosis/microbiología , Esputo/microbiología , Adulto , Anciano , Estudios de Casos y Controles , Femenino , Infecciones por Haemophilus/diagnóstico , Infecciones por Haemophilus/epidemiología , Haemophilus influenzae/aislamiento & purificación , Haemophilus parainfluenzae/aislamiento & purificación , Humanos , Masculino , Microbiota/fisiología , Persona de Mediana Edad , Prevalencia
19.
Poult Sci ; 103(8): 103942, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908119

RESUMEN

Mycoplasma gallisepticum (MG) can cause chronic respiratory disease (CRD) in chickens, which has a significant negative economic impact on the global poultry sector. Respiratory flora is the guardian of respiratory health, and its disorder is closely related to respiratory immunity and respiratory diseases. As a common probiotic in the chicken respiratory tract, Lactobacillus salivarius (L. salivarius) has potential antioxidant, growth performance enhancing, and anti-immunosuppressive properties. However, the specific mechanism through which L. salivarius protects against MG infection has not yet been thoroughly examined. This study intends to investigate whether L. salivarius could reduce MG-induced tracheal inflammation by modulating the respiratory microbiota and metabolites. The results indicated that L. salivarius reduced MG colonization significantly and alleviated the anomalous morphological changes by using the MG-infection model. L. salivarius also reduced the level of Th1 cell cytokines, increased the level of Th2 cell cytokines, and ameliorated immune imbalance during MG infection. In addition, L. salivarius improved the mucosal barrier, heightened immune function, and suppressed the Janus kinase/Signal transducer, and activator of transcription (JAK/STAT) signaling pathway. Notably, MG infection changed the composition of the respiratory microbiota and metabolites, and L. salivarius therapy partially reversed the aberrant respiratory microbiota and metabolite composition. Our results highlighted that these findings demonstrated that L. salivarius played a role in MG-mediated inflammatory damage and demonstrated that L. salivarius, by altering the respiratory microbiota and metabolites, could successfully prevent MG-induced inflammatory injury in chicken trachea.


Asunto(s)
Pollos , Inflamación , Ligilactobacillus salivarius , Infecciones por Mycoplasma , Mycoplasma gallisepticum , Enfermedades de las Aves de Corral , Probióticos , Transducción de Señal , Animales , Mycoplasma gallisepticum/fisiología , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/prevención & control , Infecciones por Mycoplasma/veterinaria , Infecciones por Mycoplasma/prevención & control , Infecciones por Mycoplasma/microbiología , Probióticos/administración & dosificación , Probióticos/farmacología , Inflamación/veterinaria , Inflamación/prevención & control , Ligilactobacillus salivarius/fisiología , Microbiota , Quinasas Janus/metabolismo , Factores de Transcripción STAT/metabolismo
20.
Pediatr Pulmonol ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39282716

RESUMEN

BACKGROUND: The respiratory microbiota plays a crucial role in the development of tuberculosis (TB). While existing research has underscored imbalances in the respiratory microbiota of adult patients with TB, information regarding the lower respiratory tract (LRT) microbiota in pediatric patients with TB remains scarce. METHODS: We employed 16S rRNA gene sequencing technology to investigate the LRT microbial communities of 85 children of different ages with active TB of different severities, 33 children with infectious diseases other than TB, and 48 sex- and age-matched healthy children. RESULTS: A marked imbalance in the respiratory microbiota was observed in children with TB, highlighted by reduced alpha diversity and a distinct microbial community structure. Comparative analysis indicated that patients with severe TB exhibited lower Neisseria levels than those with non-severe TB (1.01% vs. 3.93%, respectively; p = .02). Streptococcus and Gemella levels were lower in bacteriologically confirmed TB cases compared with clinically diagnosed cases, and higher in healthy children younger than 10 years old than in the older group. Spearman correlation analysis demonstrated significant associations between the microbiota of the LRT and cytokine concentrations in the sputum of children with TB (e.g., an inverse correlation between Veillonella and interleukin-17A). CONCLUSIONS: TB induced significant dysbiosis in the LRT microbiota of children that was associated with disease severity and the immunological response in the respiratory tract. Our findings may offer a deeper understanding of the role of the respiratory microbiome in TB pathogenesis and progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA