Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.030
Filtrar
Más filtros

Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 289, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500021

RESUMEN

BACKGROUND: Rahnella perminowiae S11P1 and Variovorax sp. S12S4 are two plant growth-promoting rhizobacteria that were previously isolated from the rhizosphere of Crocus sativus L. (saffron), and have demonstrated interesting PGP activities and promising results when used as inoculants in field trials. To further elucidate the molecular mechanisms underlying their beneficial effects on plant growth, comprehensive genome mining of S11P1 and S12S4 and comparative genomic analysis with closely related strains were conducted. RESULTS: Functional annotation of the two strains predicted a large number of genes involved in auxin and siderophore production, nitrogen fixation, sulfur metabolism, organic acid biosynthesis, pyrroloquinoline quinone production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, volatile organic compounds production, and polyamine biosynthesis. In addition, numerous genes implicated in plant-bacteria interactions, such as those involved in chemotaxis and quorum sensing, were predicted. Moreover, the two strains carried genes involved in bacterial fitness under abiotic stress conditions. Comparative genomic analysis revealed an open pan-genomic structure for the two strains. COG annotation showed that higher fractions of core and accessory genes were involved in the metabolism and transport of carbohydrates and amino acids, suggesting the metabolic versatility of the two strains as effective rhizosphere colonizers. Furthermore, this study reports the first comparison of Multilocus sequence analysis (MLSA) and core-based phylogenies of the Rahnella and Variovorax genera. CONCLUSIONS: The present study unveils the molecular mechanisms underlying plant growth promotion and biocontrol activity of S11P1 and S12S4, and provides a basis for their further biotechnological application in agriculture.


Asunto(s)
Alphaproteobacteria , Crocus , Rahnella , Rizosfera , Desarrollo de la Planta , Bacterias , Genómica , Raíces de Plantas/metabolismo , Microbiología del Suelo
2.
BMC Plant Biol ; 24(1): 660, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38987664

RESUMEN

Arsenic (As) contamination is a major environmental pollutant that adversely affects plant physiological processes and can hinder nutrients and water availability. Such conditions ultimately resulted in stunted growth, low yield, and poor plant health. Using rhizobacteria and composted biochar (ECB) can effectively overcome this problem. Rhizobacteria have the potential to enhance plant growth by promoting nutrient uptake, producing growth hormones, and suppressing diseases. Composted biochar can enhance plant growth by improving aeration, water retention, and nutrient cycling. Its porous structure supports beneficial microorganisms, increasing nutrient uptake and resilience to stressors, ultimately boosting yields while sequestering carbon. Therefore, the current study was conducted to investigate the combined effect of previously isolated Bacillus faecalis (B. faecalis) and ECB as amendments on maize cultivated under different As levels (0, 300, 600 mg As/kg soil). Four treatments (control, 0.5% composted biochar (0.5ECB), B. faecalis, and 0.5ECB + B. faecalis) were applied in four replications following a completely randomized design. Results showed that the 0.5ECB + B. faecalis treatment led to a significant rise in maize plant height (~ 99%), shoot length (~ 55%), root length (~ 82%), shoot fresh (~ 87%), and shoot dry weight (~ 96%), root fresh (~ 97%), and dry weight (~ 91%) over the control under 600As stress. There was a notable increase in maize chlorophyll a (~ 99%), chlorophyll b (~ 81%), total chlorophyll (~ 94%), and shoot N, P, and K concentration compared to control under As stress, also showing the potential of 0.5ECB + B. faecalis treatment. Consequently, the findings suggest that applying 0.5ECB + B. faecalis is a strategy for alleviating As stress in maize plants.


Asunto(s)
Arsénico , Carbón Orgánico , Zea mays , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo , Zea mays/microbiología , Arsénico/toxicidad , Bacillus/fisiología , Contaminantes del Suelo/toxicidad , Clorofila/metabolismo
3.
BMC Plant Biol ; 24(1): 546, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872113

RESUMEN

BACKGROUND: Apple Replant Disease (ARD) is common in major apple-growing regions worldwide, but the role of rhizosphere microbiota in conferring ARD resistance and promoting plant growth remains unclear. RESULTS: In this study, a synthetic microbial community (SynCom) was developed to enhance apple plant growth and combat apple pathogens. Eight unique bacteria selected via microbial culture were used to construct the antagonistic synthetic community, which was then inoculated into apple seedlings in greenhouse experiments. Changes in the rhizomicroflora and the growth of aboveground plants were monitored. The eight strains, belonging to the genera Bacillus and Streptomyces, have the ability to antagonize pathogens such as Fusarium oxysporum, Rhizoctonia solani, Botryosphaeria ribis, and Physalospora piricola. Additionally, these eight strains can stably colonize in apple rhizosphere and some of them can produce siderophores, ACC deaminase, and IAA. Greenhouse experiments with Malus hupehensis Rehd indicated that SynCom promotes plant growth (5.23%) and increases the nutrient content of the soil, including soil organic matter (9.25%) and available K (1.99%), P (7.89%), and N (0.19%), and increases bacterial richness and the relative abundance of potentially beneficial bacteria. SynCom also increased the stability of the rhizosphere microbial community, the assembly of which was dominated by deterministic processes (|ß NTI| > 2). CONCLUSIONS: Our results provide insights into the contribution of the microbiome to pathogen inhibition and host growth. The formulation and manipulation of similar SynComs may be a beneficial strategy for promoting plant growth and controlling soil-borne disease.


Asunto(s)
Malus , Enfermedades de las Plantas , Rizosfera , Malus/microbiología , Malus/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Microbiología del Suelo , Microbiota/fisiología , Rhizoctonia/fisiología , Agentes de Control Biológico , Bacillus/fisiología , Antibiosis
4.
Plant Cell Environ ; 47(4): 1084-1098, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38037476

RESUMEN

Beneficial Bacillus subtilis (BS) symbiosis could combat root pathogenesis, but it relies on root-secreted sugars. Understanding the molecular control of sugar flux during colonization would benefit biocontrol applications. The SWEET (Sugar Will Eventually Be Exported Transporter) uniporter regulates microbe-induced sugar secretion from roots; thus, its homologs may modulate sugar distribution upon BS colonization. Quantitative polymerase chain reaction revealed that gene transcripts of SWEET2, but not SWEET16 and 17, were significantly induced in seedling roots after 12 h of BS inoculation. Particularly, SWEET2-ß-glucuronidase fusion proteins accumulated in the apical mature zone where BS abundantly colonized. Yet, enhanced BS colonization in sweet2 mutant roots suggested a specific role for SWEET2 to constrain BS propagation, probably by limiting hexose secretion. By employing yeast one-hybrid screening and ectopic expression in Arabidopsis protoplasts, the transcription factor AHL29 was identified to function as a repressor of SWEET2 expression through the AT-hook motif. Repression occurred despite immunity signals. Additionally, enhanced SWEET2 expression and reduced colonies were specifically detected in roots of BS-colonized ahl29 mutant. Taken together, we propose that BS colonization may activate repression of AHL29 on SWEET2 transcription that would be enhanced by immunity signals, thereby maintaining adequate sugar secretion for a beneficial Bacillus association.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bacillus subtilis/metabolismo , Raíces de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Azúcares/metabolismo
5.
Plant Cell Environ ; 47(3): 782-798, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37994626

RESUMEN

The relationship between plants and pollinators is known to be influenced by ecological interactions with other community members. While most research has focused on aboveground communities affecting plant-pollinator interactions, it is increasingly recognized that soil-dwelling organisms can directly or indirectly impact these interactions. Although studies have examined the effects of arbuscular mycorrhizal fungi on floral traits, there is a gap in research regarding similar effects associated with plant growth-promoting rhizobacteria (PGPR), particularly concerning floral scent. Our study aimed to investigate the influence of the PGPR Bacillus amyloliquefaciens on the floral traits of wild (Solanum habrochaites, Solanum pimpinellifolium and Solanum peruvianum) and cultivated tomato (Solanum lycopersicum), as well as the impact of microbially-driven changes in floral scent on the foraging behaviour of the stingless bee Melipona quadrifasciata. Our findings revealed that inoculating tomatoes with PGPR led to an increased number of flowers and enhanced overall floral volatile emission. Additionally, we observed higher flower biomass and pollen levels in all species, except S. peruvianum. Importantly, these changes in volatile emissions influenced the foraging behaviour of M. quadrifasciata significantly. Our results highlight the impact of beneficial soil microbes on plant-pollinator interactions, shedding light on the multiple effects that plant-microbial interactions can have on aboveground organisms.


Asunto(s)
Solanum lycopersicum , Solanum , Animales , Polinización , Flores , Plantas , Polen , Suelo
6.
J Exp Bot ; 75(11): 3388-3400, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38497798

RESUMEN

Nitrogen fertilizer is widely used in agriculture to boost crop yields. Plant growth-promoting rhizobacteria (PGPRs) can increase plant nitrogen use efficiency through nitrogen fixation and organic nitrogen mineralization. However, it is not known whether they can activate plant nitrogen uptake. In this study, we investigated the effects of volatile compounds (VCs) emitted by the PGPR strain Bacillus velezensis SQR9 on plant nitrogen uptake. Strain SQR9 VCs promoted nitrogen accumulation in both rice and Arabidopsis. In addition, isotope labeling experiments showed that strain SQR9 VCs promoted the absorption of nitrate and ammonium. Several key nitrogen-uptake genes were up-regulated by strain SQR9 VCs, such as AtNRT2.1 in Arabidopsis and OsNAR2.1, OsNRT2.3a, and OsAMT1 family members in rice, and the deletion of these genes compromised the promoting effect of strain SQR9 VCs on plant nitrogen absorption. Furthermore, calcium and the transcription factor NIN-LIKE PROTEIN 7 play an important role in nitrate uptake promoted by strain SQR9 VCs. Taken together, our results indicate that PGPRs can promote nitrogen uptake through regulating plant endogenous signaling and nitrogen transport pathways.


Asunto(s)
Arabidopsis , Bacillus , Nitrógeno , Oryza , Transducción de Señal , Bacillus/metabolismo , Bacillus/fisiología , Bacillus/genética , Nitrógeno/metabolismo , Oryza/microbiología , Oryza/metabolismo , Oryza/genética , Arabidopsis/metabolismo , Arabidopsis/microbiología , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Compuestos Orgánicos Volátiles/metabolismo
7.
Microb Pathog ; 187: 106517, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159617

RESUMEN

Atractylodes chinensis is one of the most commonly used bulk herbs in East Asia; however, root rot can seriously affect its quality and yields. In contrast to chemical pesticides, biological control strategies are environmentally compatible and safe. For this study, 68 antagonistic bacterial strains were isolated from the rhizospheres of healthy Atractylodes chinensis. Strain SY42 exhibited the most potent fungicidal activities, with inhibition rates against F. oxysporum, F. solani, and F. redolens of 67.07 %, 63.40 % and 68.45 %, respectively. Through morphological observation and molecular characterization, strain SY42 was identified as Paenibacillus polymyxa. The volatile organic components (VOCs) produced by SY42 effectively inhibited the mycelial growth of pathogenic fungi through diffusion. SY42 significantly inhibited the germination of pathogenic fungal spores. Following co-culturing with SY42, the mycelium of the pathogenic fungus was deformed, folded, and even ruptured. SY42 could produce cellulases and proteases to degrade fungal cell walls. Pot experiments demonstrated the excellent biocontrol efficacy of SY42. This study revealed that P. polymyxa SY42 inhibited pathogenic fungi through multiple mechanisms, which verified its utility as a biocontrol agent for the control of A. chinensis root rot.


Asunto(s)
Atractylodes , Fusarium , Paenibacillus polymyxa , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Micelio
8.
Artículo en Inglés | MEDLINE | ID: mdl-38536209

RESUMEN

Three bacterial strains, FP250T, FP821, and FP53, were isolated from the rhizosphere soil of oilseed rape, licorice, and habanero pepper in Anhui Province, Xinjiang Uygur Autonomous Region, and Jiangsu Province, PR China, respectively. All strains were shown to grow at 4-37 °C and pH 6.0-9.0, and in the presence of 0-4.0 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences or housekeeping genes (16S rRNA, gyrB, rpoB, and rpoD) and phylogenomic analysis showed that strains FP250T, FP821, and FP53 belong to the genus Pseudomonas, and are closely related to Pseudomonas kilonensis DSM 13647T, Pseudomonas brassicacearum JCM 11938T, Pseudomonas viciae 11K1T, and Pseudomonas thivervalensis DSM 13194T. The DNA G+C content of strain FP205T was 59.8 mol%. The average nucleotide identity and digital DNA-DNA hybridization values of strain FP205T with the most closely related strain were 93.2 % and 51.4 %, respectively, which is well below the threshold for species differentiation. Strain FP205T contained summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c), summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) as major fatty acids, and diphosphatidylglycerol along with phosphatidylethanolamine and aminophospholipid as major polar lipids. The predominant isoprenoid quinone was ubiquinone-9. Based on these phenotypic, phylogenetic, and chemotaxonomic results, strain FP205T represents a novel species of the genus Pseudomonas, for which the name Pseudomonas hefeiensis sp. nov. is proposed. The type strain is FP205T (=ACCC 62447T=JCM 35687T).


Asunto(s)
Ácidos Grasos , Rizosfera , Composición de Base , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , China
9.
Int Microbiol ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581482

RESUMEN

Salt affected cotton rhizospheric soil was explored for multi-stress resistance microbes to obtain 46 rhizobacteria. Of these, seven strains strongly inhibited the growth of phytopathogenic fungus Rhizoctonia solani by virtue of antifungal compound 2,4-diacetylphloroglucinol (DAPG) production. These seven strains demonstrated an array of plant growth-promoting activities as follows: (i) production of indole-3-acetic acid, ammonia, siderophore; (ii) solubilisation of phosphate, while two isolates showed Zn solubilisation. The phenetic and 16S ribotyping revealed affiliation of all the isolates to Pseudomonas guariconensis and presence of phlD gene marker for DAPG production. Among the seven isolates, strain VDA8 showed the highest DAPG production (0.16 µg ml-1) in liquid synthetic medium under aerobic conditions at 28 °C. Furthermore, sucrose, peptone, sodium hydrogen phosphate, ZnSO4, pH 8.0, and NaCl (1%) were observed as the best carbon, nitrogen, phosphate, trace element, pH, and salt concentration, respectively for maximum production of DAPG by strain VDA8 (3.62 ± 0.04 µg ml-1). The strain VDA8 was further assessed for wheat (Triticum aestivum) growth promotion by seed biopriming under laboratory (plate assay) and field condition in alkaline saline soil with pH 8.5. The field scale (324 m2) trials demonstrated 28.6% enhanced grain production compared to control demonstrating the newly isolated Pseudomonas sp. as multi-potent bioinoculant.

10.
Environ Sci Technol ; 58(25): 11063-11073, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38869036

RESUMEN

Rhizosphere iron plaques derived from Fe-based nanomaterials (NMs) are a promising tool for sustainable agriculture. However, the requirement for flooded conditions to generate iron plaque limits the scope of the NM application. In this study, we achieved in situ Fenton oxidation of a highly chlorinated persistent organic pollutant (2,2',4,5,5'-pentachlorobiphenyl, PCB101) through iron plaque mediated by the interaction between α-Fe2O3 NMs and plant-rhizobacteria symbionts under dryland conditions. Mechanistically, the coexistence of α-Fe2O3 NMs and Pseudomonas chlororaphis JD37 stimulated alfalfa roots to secrete acidic and reductive agents as well as H2O2, which together mediated the rhizosphere Fenton reaction and converted α-Fe2O3 NMs into iron plaque rich in Fe(II)-silicate. Further verifications reproduced the Fenton reaction in vitro using α-Fe2O3 NMs and rhizosphere compounds, confirming the critical role of •OH in the oxidative degradation of PCB101. Significant reductions in PCB101 content by 18.6%, 42.9%, and 23.2% were respectively found in stem, leaf, and soil after a 120-d treatment, proving the effectiveness of this NMs-plant-rhizobacteria technique for simultaneously safe crop production and soil remediation. These findings can help expand the potential applications of nanobio interaction and its mediated iron plaque generation for both agricultural practice and soil remediation.


Asunto(s)
Hierro , Contaminantes del Suelo , Hierro/metabolismo , Contaminantes del Suelo/metabolismo , Nanoestructuras/química , Compuestos Férricos , Suelo/química , Rizosfera
11.
J Appl Microbiol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960398

RESUMEN

AIM: Bacterial exopolysaccharide (EPS) possesses numerous properties beneficial for the growth of microbes and plants under hostile conditions. The study aimed to develop a bioformulation with bacterial EPS to enhance the bioinoculant's shelf-life and functional efficacy under salinity stress. METHODS AND RESULTS: High EPS-producing and salt-tolerant bacterial strain (SD2) exhibiting auxin-production, phosphate-solubilization, and biofilm-forming ability was selected. EPS-based bioformulation of SD2 improved the growth of three legumes under salt stress, from which pigeonpea was selected for further experiments. SD2 improved the growth and lowered the accumulation of stress markers in plants under salt stress. Bioformulations with varying EPS concentrations (1% and 2%) were stored for 6 months at 4°C, 30°C, and 37°C to assess their shelf-life and functional efficacy. The shelf life and efficacy of EPS-based bioformulation was sustained at higher temperature, enhancing pigeonpea growth under stress after six months of storage in both control and natural conditions. However, the efficacy of non-EPS-based bioformulation declined following four months of storage. The bioformulation modulated bacterial abundance in the plant's rhizosphere under stress conditions. CONCLUSIONS AND IMPACT STATEMENT: The study brings forth a new strategy for developing next-generation bioformulations with higher shelf-life and efficacy for salinity stress management in pigeonpea under saline conditions.

12.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38906841

RESUMEN

AIMS: Climate change is endangering olive groves. Farmers are adapting by exploring new varieties of olive trees and examining the role of microbiomes in plant health.The main objectives of this work were to determine the primary factors that influence the microbiome of olive trees and to analyze the connection between the rhizosphere and endosphere compartments. METHODS AND RESULTS: The rhizosphere and xylem sap microbiomes of two olive tree varieties were characterized by next-generation 16S rRNA amplicon sequencing, and soil descriptors were analyzed. Bacterial communities in the rhizosphere of olive trees were more diverse than those found in the xylem sap. Pseudomonadota, Actinobacteriota, Acidobacteriota, and Bacillota were the dominant phyla in both compartments. At the genus level, only very few taxa were shared between soil and sap bacterial communities. CONCLUSIONS: The composition of the bacteriome was more affected by the plant compartment than by the olive cultivar or soil properties, and a direct route from the rhizosphere to the endosphere could not be confirmed. The large number of plant growth-promoting bacteria found in both compartments provides promising prospects for improving agricultural outcomes through microbiome engineering.


Asunto(s)
Bacterias , Microbiota , Olea , ARN Ribosómico 16S , Rizosfera , Microbiología del Suelo , Xilema , Olea/microbiología , ARN Ribosómico 16S/genética , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Xilema/microbiología , Raíces de Plantas/microbiología , Suelo/química
13.
Appl Microbiol Biotechnol ; 108(1): 212, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38358431

RESUMEN

The development of novel biotechnologies that promote a better use of N to optimize crop yield is a central goal for sustainable agriculture. Phytostimulation, biofertilization, and bioprotection through the use of bio-inputs are promising technologies for this purpose. In this study, the plant growth-promoting rhizobacteria Pseudomonas koreensis MME3 was genetically modified to express a nitric oxide synthase of Synechococcus SyNOS, an atypical enzyme with a globin domain that converts nitric oxide to nitrate. A cassette for constitutive expression of synos was introduced as a single insertion into the genome of P. koreensis MME3 using a miniTn7 system. The resulting recombinant strain MME3:SyNOS showed improved growth, motility, and biofilm formation. The impact of MME3:SyNOS inoculation on Brachypodium distachyon growth and N uptake and use efficiencies under different N availability situations was analyzed, in comparison to the control strain MME3:c. After 35 days of inoculation, plants treated with MME3:SyNOS had a higher root dry weight, both under semi-hydroponic and greenhouse conditions. At harvest, both MME3:SyNOS and MME3:c increased N uptake and use efficiency of plants grown under low N soil. Our results indicate that synos expression is a valid strategy to boost the phytostimulatory capacity of plant-associated bacteria and improve the adaptability of plants to N deficiency. KEY POINTS: • synos expression improves P. koreensis MME3 traits important for rhizospheric colonization • B. distachyon inoculated with MME3:SyNOS shows improved root growth • MME3 inoculation improves plant N uptake and use efficiencies in N-deficient soil.


Asunto(s)
Óxido Nítrico Sintasa , Pseudomonas , Pseudomonas/genética , Agricultura , Suelo
14.
Antonie Van Leeuwenhoek ; 117(1): 105, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043973

RESUMEN

A rhizosphere strain, Achromobacter insolitus LCu2, was isolated from alfalfa (Medicago sativa L.) roots. It was able to degrade of 50% glyphosate as the sole phosphorus source, and was found resistant to 10 mM copper (II) chloride, and 5 mM glyphosate-copper complexes. Inoculation of alfalfa seedlings and potato microplants with strain LCu2 promoted plant growth by 30-50%. In inoculated plants, the toxicity of the glyphosate-copper complexes to alfalfa seedlings was decreased, as compared with the noninoculated controls. The genome of A. insolitus LCu2 consisted of one circular chromosome (6,428,890 bp) and encoded 5843 protein genes and 76 RNA genes. Polyphasic taxonomic analysis showed that A. insolitus LCu2 was closely related to A. insolitus DSM23807T on the basis of the average nucleotide identity of the genomes of 22 type strains and the multilocus sequence analysis. Genome analysis revealed genes putatively responsible for (1) plant growth promotion (osmolyte, siderophore, and 1-aminocyclopropane-1-carboxylate deaminase biosynthesis and auxin metabolism); (2) degradation of organophosphonates (glyphosate oxidoreductase and multiple phn clusters responsible for the transport, regulation and C-P lyase cleavage of phosphonates); and (3) tolerance to copper and other heavy metals, effected by the CopAB-CueO system, responsible for the oxidation of copper (I) in the periplasm, and by the efflux Cus system. The putative catabolic pathways involved in the breakdown of phosphonates are predicted. A. insolitus LCu2 is promising in the production of crops and the remediation of soils contaminated with organophosphonates and heavy metals.


Asunto(s)
Achromobacter , Cobre , Glicina , Glifosato , Medicago sativa , Rizosfera , Glicina/análogos & derivados , Glicina/metabolismo , Cobre/metabolismo , Achromobacter/genética , Achromobacter/metabolismo , Achromobacter/clasificación , Achromobacter/efectos de los fármacos , Medicago sativa/microbiología , Filogenia , Genoma Bacteriano , Microbiología del Suelo , Raíces de Plantas/microbiología , Genómica , Biodegradación Ambiental
15.
Can J Microbiol ; 70(5): 150-162, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427979

RESUMEN

This study characterizes seedling exudates of peas, tomatoes, and cucumbers at the level of chemical composition and functionality. A plant experiment confirmed that Rhizobium leguminosarum bv. viciae 3841 enhanced growth of pea shoots, while Azospirillum brasilense Sp7 supported growth of pea, tomato, and cucumber roots. Chemical analysis of exudates after 1 day of seedling incubation in water yielded differences between the exudates of the three plants. Most remarkably, cucumber seedling exudate did not contain detectable sugars. All exudates contained amino acids, nucleobases/nucleosides, and organic acids, among other compounds. Cucumber seedling exudate contained reduced glutathione. Migration on semi solid agar plates containing individual exudate compounds as putative chemoattractants revealed that R. leguminosarum bv. viciae was more selective than A. brasilense, which migrated towards any of the compounds tested. Migration on semi solid agar plates containing 1:1 dilutions of seedling exudate was observed for each of the combinations of bacteria and exudates tested. Likewise, R. leguminosarum bv. viciae and A. brasilense grew on each of the three seedling exudates, though at varying growth rates. We conclude that the seedling exudates of peas, tomatoes, and cucumbers contain everything that is needed for their symbiotic bacteria to migrate and grow on.


Asunto(s)
Azospirillum brasilense , Cucumis sativus , Pisum sativum , Rhizobium leguminosarum , Plantones , Solanum lycopersicum , Solanum lycopersicum/microbiología , Solanum lycopersicum/crecimiento & desarrollo , Cucumis sativus/microbiología , Cucumis sativus/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Plantones/microbiología , Rhizobium leguminosarum/crecimiento & desarrollo , Rhizobium leguminosarum/metabolismo , Azospirillum brasilense/crecimiento & desarrollo , Azospirillum brasilense/metabolismo , Pisum sativum/microbiología , Pisum sativum/crecimiento & desarrollo , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Quimiotaxis , Exudados de Plantas/química , Exudados de Plantas/metabolismo
16.
Ecotoxicol Environ Saf ; 271: 115969, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38219621

RESUMEN

Phytoremediation is an effective way to remediate metal-contaminated soils. During phytoremediation, plants immobilize heavy metals through the roots to reduce the mobility, toxicity and dispersal of the metals, and the changes in the activity of the roots are often accompanied by changes in the rhizosphere ecosystems, in which rhizobacteria are essential components and interact with roots to maintain the stability of the rhizosphere ecosystem and improve soil health. In this study, the phytoremediation potential of Sasa argenteostriata (Regel) E.G. Camu and the response of rhizobacteria were revealed with different levels of lead-zinc tailing contamination (Pb, Zn, and Cd concentrations of 1197.53, 3243.40, and 185.44 mg/kg for M1 and 2301.71, 6087.95, and 364.00 mg/kg for M2, respectively). The BCF of Sasa argenteostriata increased with increasing soil pollution, and the BCFPb, BCFZn, and BCFCd were 0.19, 0.27, and 0.08, respectively, under the M2 treatment; in contrast, the TF decreased with increasing soil pollution, and the TFPb, TFZn, and TFCd were 0.39, 0.85, and 0.07, respectively, under the M1 treatment. The mobility of Pb in the rhizosphere was higher than that of Zn and Cd, and the percentage of residual (Res) Zn and Cd in the rhizosphere increased, while the acid-soluble (Aci) Pb was significantly higher, leading to obvious uptake of Pb by the roots. Correlation analysis showed that Sasa argenteostriata affected the rhizobacterial community by changing the rhizosphere soil pH, the contents of organic matter and NRFM, and bacteria such as Proteobacteria and MND1, which are highly resistant to heavy metals (HMs), became the dominant species in the community. Further PICRUSt2 analysis showed that reducing metal transport across the membranes and increasing the efficiency of cellular reproduction were the main metabolic mechanisms of bacterial tolerance to HMs. Overall, the roots of Sasa argenteostriata were able to immobilize more heavy metals in PbZn tailing-contaminated soil, reducing the toxicity of HMs in the soil, and then influencing the rhizobacteria to change the community structure and metabolism mechanism to adapt to the HM-contaminated environment, and the soil fertility was increased, which together promoted the health and stability of the soil. This study is the first to illustrate the phytoremediation potential and response of the rhizobacterial community of Sasa argenteostriata under multimetal contamination of PbZn tailings. The results of the study provide some guidance for the practice of lead-zinc tailing-phytoremediation and soil health.


Asunto(s)
Metales Pesados , Sasa , Contaminantes del Suelo , Zinc/análisis , Sasa/metabolismo , Cadmio/metabolismo , Ecosistema , Plomo/análisis , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Biodegradación Ambiental , Plantas/metabolismo , Suelo/química
17.
Genomics ; 115(2): 110583, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36804269

RESUMEN

Plant growth promoting rhizobacteria (PGPR) communicate with plants through roots. The molecular mechanism by which plants and PGPR respond to each other is not very well known. In the current study, we did RNA sequence analysis of Brachypodium distachyon Bd21-3 roots inoculated with PGPR, Bacillus velezensis strain B26. From our list of differentially expressed genes, we concentrated on transcripts that have a high possibility of participating in plant-PGPR interaction. Transcripts associated to the hormone signalling pathway were differentially expressed. We identified the upregulation of various transcripts linked to ion transporters. Reduction in expression of defense signalling genes indicated that B26 suppresses the plant defense mechanisms to begin successful interaction with roots. Transcripts associated with lignin branch of the phenylpropanoid pathway were upregulated as well, leading to more accumulation of lignin in the cell wall which enhances mechanical strength of plants. Overall, this study is an excellent resource for investigating associations between plant-PGPR interactions.


Asunto(s)
Bacillus , Brachypodium , Brachypodium/genética , Lignina/metabolismo , Bacillus/genética , Bacillus/metabolismo , Desarrollo de la Planta , Raíces de Plantas/metabolismo
18.
Int J Phytoremediation ; 26(4): 557-568, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37705142

RESUMEN

This study was designed to investigate the role of Morganella morganii strains in alleviating Cd stress in Arabidopsis seedlings under controlled conditions. Both M. morganii strains ABT3 (ON316873) and ABT9 (ON316874) strains isolated from salt-affected areas showed higher resistance against Cd and possess plant growth-promoting traits such as nitrogen fixation, indole-acetic acid production, ammonia production, phosphate solubilization, and, catalase, gelatinase and protease enzyme production. Plant inoculation assay showed that varying concentration of Cd (1.5 mM and 2.5 mM) significantly reduced Arabidopsis growth, quantum yield (56.70%-66.49%), and chlorophyll content (31.90%-42.70%). Cd toxicity also triggered different associations between lipid peroxidation (43.61%-69.77%) and enzymatic antioxidant mechanisms. However, when both strains were applied to the Arabidopsis seedlings, the shoot and root length and fresh and dry weights were improved in the control and Cd-stressed plants. Moreover, both strains enhanced the resistance against Cd stress by increasing antioxidant enzyme activities [catalase (19.47%-27.39%) and peroxidase (37.50%-48.07%)]that ultimately cause a substantial reduction in lipid peroxidation (27.71%-41.90%). Both strains particularly ABT3 also showed positive results in improving quantum yield (73.84%-98.64%) and chlorophyll content (41.13%-48.63%), thus increasing the growth of Arabidopsis seedlings. The study suggests that PGPR can protect plants from Cd toxicity, and Cd-tolerant rhizobacterial strains can remediate heavy metal polluted sites and improve plant growth.


In order to develop sustainable and effective agricultural techniques in areas polluted with heavy metals, it is important to have a deeper understanding of the characteristics of metal-resistant PGPR. Hence, this study focuses on the efficacy of M. morganii in promoting the growth and increasing the photosynthetic pigments of Arabidopsis seedlings under Cd toxicity.


Asunto(s)
Arabidopsis , Metales Pesados , Cadmio/toxicidad , Catalasa , Antioxidantes , Biodegradación Ambiental , Metales Pesados/toxicidad , Plantones/química , Plantas , Clorofila/análisis , Raíces de Plantas/química
19.
J Basic Microbiol ; 64(3): e2300361, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37800617

RESUMEN

General plant diseases as well as soil-borne pathogens severely reduce agricultural yield. The rhizosphere (the region of the soil that includes and surrounds the roots) is an important niche for microbial diversity in particular phytobeneficial bacteria including plant growth-promoting rhizobacteria (PGPR) which have been used for a very long time to combat plant diseases. Pathogen control and crop productivity can both be improved through the use of PGPR several mechanisms, including iron-based nutrition, antibiotics, volatile substances, enzymes, biofilm, allelochemicals, and so on. Their modes of action and molecular mechanisms have improved our comprehension of how they are used to control crop disease. Therefore, there is a lot of literal information available regarding PGPR, but this review stands out since it starts with the fundamentals: the concept of the rhizosphere and the colonization process of the latter, particularly because it covers the most mechanisms. A broad figure is used to present the study's findings. The advantages of using PGPR as bioinoculants in sustainable agriculture are also mentioned.


Asunto(s)
Rizosfera , Microbiología del Suelo , Agricultura , Desarrollo de la Planta , Bacterias , Suelo/química , Raíces de Plantas/microbiología , Enfermedades de las Plantas/prevención & control
20.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38338742

RESUMEN

Plant-growth-promoting rhizobacteria (PGPR) could potentially enhance photosynthesis and benefit plant growth by improving soil nutrient uptake and affecting plant hormone balance. Several recent studies have unveiled a correlation between alterations in photosynthesis and host plant resistance levels. Photosynthesis provides materials and energy for plant growth and immune defense and affects defense-related signaling pathways. Photosynthetic organelles, which could be strengthened by PGPR inoculation, are key centers for defense signal biosynthesis and transmission. Although endophytic PGPRs metabolize plant photosynthates, they can increase soluble sugar levels and alternate sugar type and distribution. Soluble sugars clearly support plant growth and can act as secondary messengers under stressed conditions. Overall, carbohydrate metabolism modifications induced by PGPR may also play a key role in improving plant resistance. We provide a concise overview of current knowledge regarding PGPR-induced modulation in carbohydrate metabolism under both pathogen-infected and pathogen-free conditions. We highlight PGPR application as a cost-saving strategy amidst unpredictable pathogen pressures.


Asunto(s)
Alphaproteobacteria , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas , Metabolismo de los Hidratos de Carbono , Azúcares , Mecanismos de Defensa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA