Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 604
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 54(10): 2245-2255.e4, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34464595

RESUMEN

BCL6 is required for development of follicular T helper (Tfh) cells to support germinal center (GC) formation. However, it is not clear what unique functions programmed by BCL6 can explain its absolute essentiality in T cells for GC formation. We found that ablation of one Bcl6 allele did not appreciably alter early T cell activation and follicular localization but inhibited GC formation and Tfh cell maintenance. BCL6 impinged on Tfh calcium signaling and also controlled Tfh entanglement with and CD40L delivery to B cells. Amounts of BCL6 protein and nominal frequencies of Tfh cells markedly changed within hours after strengths of T-B cell interactions were altered in vivo, while CD40L overexpression rectified both defective GC formation and Tfh cell maintenance because of the BCL6 haploinsufficiency. Our results reveal BCL6 functions in Tfh cells that are essential for GC formation and suggest that BCL6 helps maintain Tfh cell phenotypes in a T cell non-autonomous manner.


Asunto(s)
Linfocitos B/inmunología , Centro Germinal/inmunología , Activación de Linfocitos/inmunología , Proteínas Proto-Oncogénicas c-bcl-6/inmunología , Células T Auxiliares Foliculares/inmunología , Animales , Ratones
2.
Trends Biochem Sci ; 48(12): 1083-1097, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37696713

RESUMEN

In T cells, stromal interaction molecule (STIM) and Orai are dispensable for conventional T cell development, but critical for activation and differentiation. This review focuses on novel STIM-dependent mechanisms for control of Ca2+ signals during T cell activation and its impact on mitochondrial function and transcriptional activation for control of T cell differentiation and function. We highlight areas that require further work including the roles of plasma membrane Ca2+ ATPase (PMCA) and partner of STIM1 (POST) in controlling Orai function. A major knowledge gap also exists regarding the independence of T cell development from STIM and Orai, despite compelling evidence that it requires Ca2+ signals. Resolving these and other outstanding questions ensures that the field will remain active for many years to come.


Asunto(s)
Señalización del Calcio , Calcio , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Membrana Celular/metabolismo , Diferenciación Celular , Calcio/metabolismo , Señalización del Calcio/fisiología
3.
EMBO J ; 41(19): e110046, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36039850

RESUMEN

The role of store-operated Ca2+ entry (SOCE) in melanoma metastasis is highly controversial. To address this, we here examined UV-dependent metastasis, revealing a critical role for SOCE suppression in melanoma progression. UV-induced cholesterol biosynthesis was critical for UV-induced SOCE suppression and subsequent metastasis, although SOCE suppression alone was both necessary and sufficient for metastasis to occur. Further, SOCE suppression was responsible for UV-dependent differences in gene expression associated with both increased invasion and reduced glucose metabolism. Functional analyses further established that increased glucose uptake leads to a metabolic shift towards biosynthetic pathways critical for melanoma metastasis. Finally, examination of fresh surgically isolated human melanoma explants revealed cholesterol biosynthesis-dependent reduced SOCE. Invasiveness could be reversed with either cholesterol biosynthesis inhibitors or pharmacological SOCE potentiation. Collectively, we provide evidence that, contrary to current thinking, Ca2+ signals can block invasive behavior, and suppression of these signals promotes invasion and metastasis.


Asunto(s)
Señalización del Calcio , Melanoma , Calcio/metabolismo , Canales de Calcio/metabolismo , Colesterol , Glucosa , Humanos , Melanoma/genética , Melanoma/metabolismo , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/metabolismo
4.
Immunity ; 47(4): 664-679.e6, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-29030115

RESUMEN

Store-operated Ca2+ entry (SOCE) is the main Ca2+ influx pathway in lymphocytes and is essential for T cell function and adaptive immunity. SOCE is mediated by Ca2+ release-activated Ca2+ (CRAC) channels that are activated by stromal interaction molecule (STIM) 1 and STIM2. SOCE regulates many Ca2+-dependent signaling molecules, including calcineurin, and inhibition of SOCE or calcineurin impairs antigen-dependent T cell proliferation. We here report that SOCE and calcineurin regulate cell cycle entry of quiescent T cells by controlling glycolysis and oxidative phosphorylation. SOCE directs the metabolic reprogramming of naive T cells by regulating the expression of glucose transporters, glycolytic enzymes, and metabolic regulators through the activation of nuclear factor of activated T cells (NFAT) and the PI3K-AKT kinase-mTOR nutrient-sensing pathway. We propose that SOCE controls a critical "metabolic checkpoint" at which T cells assess adequate nutrient supply to support clonal expansion and adaptive immune responses.


Asunto(s)
Canales de Calcio/inmunología , Señalización del Calcio/inmunología , Calcio/inmunología , Linfocitos T/inmunología , Animales , Calcineurina/inmunología , Calcineurina/metabolismo , Calcio/metabolismo , Canales de Calcio/metabolismo , División Celular/inmunología , Células Cultivadas , Femenino , Glucólisis/inmunología , Células HEK293 , Humanos , Immunoblotting , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Confocal , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/inmunología , Factores de Transcripción NFATC/metabolismo , Fosfatidilinositol 3-Quinasas/inmunología , Fosfatidilinositol 3-Quinasas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/inmunología , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/inmunología , Molécula de Interacción Estromal 1/metabolismo , Molécula de Interacción Estromal 2/genética , Molécula de Interacción Estromal 2/inmunología , Molécula de Interacción Estromal 2/metabolismo , Linfocitos T/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(35): e2301410120, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37607230

RESUMEN

The membrane contact site ER/PM junctions are hubs for signaling pathways, including Ca2+ signaling. Phosphatidylserine (PtdSer) mediates various physiological functions; however, junctional PtdSer composition and the role of PtdSer in Ca2+ signaling and Ca2+-dependent gene regulation are not understood. Here, we show that STIM1-formed junctions are required for PI(4)P/PtdSer exchange by ORP5 and ORP8, which have reciprocal lipid exchange modes and function as a rheostat that sets the junctional PtdSer/PI(4)P ratio. Targeting the ORP5 and ORP8 and their lipid transfer ORD domains to PM subdomains revealed that ORP5 sets low and ORP8 high junctional PI(4)P/PtdSer ratio that controls STIM1-STIM1 and STIM1-Orai1 interaction and the activity of the SERCA pump to determine the pattern of receptor-evoked Ca2+ oscillations, and consequently translocation of NFAT to the nucleus. Significantly, targeting the ORP5 and ORP8 ORDs to the STIM1 ER subdomain reversed their function. Notably, changing PI(4)P/PtdSer ratio by hydrolysis of PM or ER PtdSer with targeted PtdSer-specific PLA1a1 reproduced the ORPs function. The function of the ORPs is determined both by their differential lipid exchange modes and by privileged localization at the ER/PM subdomains. These findings reveal a role of PtdSer as a signaling lipid that controls the available PM PI(4)P, the unappreciated role of ER PtdSer in cell function, and the diversity of the ER/PM junctions. The effect of PtdSer on the junctional PI(4)P level should have multiple implications in cellular signaling and functions.


Asunto(s)
Fosfatidilserinas , Transducción de Señal , Núcleo Celular , Hidrólisis , Membranas Mitocondriales
6.
Immunity ; 44(6): 1350-64, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27261277

RESUMEN

T follicular helper (Tfh) cells promote affinity maturation of B cells in germinal centers (GCs), whereas T follicular regulatory (Tfr) cells limit the GC reaction. Store-operated Ca(2+) entry (SOCE) through Ca(2+) release-activated Ca(2+) (CRAC) channels mediated by STIM and ORAI proteins is a fundamental signaling pathway in T lymphocytes. Conditional deletion of Stim1 and Stim2 genes in T cells abolished SOCE and strongly reduced antibody-mediated immune responses following viral infection caused by impaired differentiation and function of Tfh cells. Conversely, aging Stim1Stim2-deficient mice developed humoral autoimmunity with spontaneous autoantibody production due to abolished Tfr cell differentiation in the presence of residual Tfh cells. Mechanistically, SOCE controlled Tfr and Tfh cell differentiation through NFAT-mediated IRF4, BATF, and Bcl-6 transcription-factor expression. SOCE had a dual role in controlling the GC reaction by regulating both Tfh and Tfr cell differentiation, thus enabling protective B cell responses and preventing humoral autoimmunity.


Asunto(s)
Autoinmunidad , Linfocitos B/inmunología , Centro Germinal/inmunología , Inmunidad Humoral , Molécula de Interacción Estromal 1/metabolismo , Molécula de Interacción Estromal 2/metabolismo , Linfocitos T/inmunología , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Señalización del Calcio , Células Cultivadas , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Transcripción NFATC/metabolismo , Proteína ORAI1/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 2/genética
7.
Mol Cell ; 66(6): 780-788, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28622523

RESUMEN

Ca2+ is a ubiquitous intracellular messenger that controls diverse cellular functions but can become toxic and cause cell death. Selective control of specific targets depends on spatiotemporal patterning of the calcium signal and decoding it by multiple, tunable, and often strategically positioned Ca2+-sensing elements. Ca2+ is detected by specialized motifs on proteins that have been biochemically characterized decades ago. However, the field of Ca2+ sensing has been reenergized by recent progress in fluorescent technology, genetics, and cryo-EM. These approaches exposed local Ca2+-sensing mechanisms inside organelles and at the organellar interfaces, revealed how Ca2+ binding might work to open some channels, and identified human mutations and disorders linked to a variety of Ca2+-sensing proteins. Here we attempt to place these new developments in the context of intracellular calcium homeostasis and signaling.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Proteínas Sensoras del Calcio Intracelular/metabolismo , Secuencias de Aminoácidos , Animales , Canales de Calcio/metabolismo , Microscopía por Crioelectrón , Predisposición Genética a la Enfermedad , Homeostasis , Humanos , Proteínas Sensoras del Calcio Intracelular/genética , Proteínas Sensoras del Calcio Intracelular/ultraestructura , Activación del Canal Iónico , Mutación , Fenotipo , Dominios Proteicos , Relación Estructura-Actividad
8.
Mol Cell ; 65(5): 885-899.e6, 2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28238652

RESUMEN

Loss of ER Ca2+ homeostasis triggers endoplasmic reticulum (ER) stress and drives ER-PM contact sites formation in order to refill ER-luminal Ca2+. Recent studies suggest that the ER stress sensor and mediator of the unfolded protein response (UPR) PERK regulates intracellular Ca2+ fluxes, but the mechanisms remain elusive. Here, using proximity-dependent biotin identification (BioID), we identified the actin-binding protein Filamin A (FLNA) as a key PERK interactor. Cells lacking PERK accumulate F-actin at the cell edges and display reduced ER-PM contacts. Following ER-Ca2+ store depletion, the PERK-FLNA interaction drives the expansion of ER-PM juxtapositions by regulating F-actin-assisted relocation of the ER-associated tethering proteins Stromal Interaction Molecule 1 (STIM1) and Extended Synaptotagmin-1 (E-Syt1) to the PM. Cytosolic Ca2+ elevation elicits rapid and UPR-independent PERK dimerization, which enforces PERK-FLNA-mediated ER-PM juxtapositions. Collectively, our data unravel an unprecedented role of PERK in the regulation of ER-PM appositions through the modulation of the actin cytoskeleton.


Asunto(s)
Citoesqueleto de Actina/enzimología , Actinas/metabolismo , Membrana Celular/enzimología , Estrés del Retículo Endoplásmico , Retículo Endoplásmico/enzimología , Filaminas/metabolismo , eIF-2 Quinasa/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio , Filaminas/genética , Células HEK293 , Células HeLa , Humanos , Ratones , Proteínas de Neoplasias/metabolismo , Multimerización de Proteína , Transporte de Proteínas , Interferencia de ARN , Transducción de Señal , Molécula de Interacción Estromal 1/metabolismo , Sinaptotagmina I/metabolismo , Factores de Tiempo , Transfección , Respuesta de Proteína Desplegada , eIF-2 Quinasa/genética
9.
J Physiol ; 602(8): 1475-1507, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36651592

RESUMEN

The family of stromal interaction molecules (STIM) includes two widely expressed single-pass endoplasmic reticulum (ER) transmembrane proteins and additional splice variants that act as precise ER-luminal Ca2+ sensors. STIM proteins mainly function as one of the two essential components of the so-called Ca2+ release-activated Ca2+ (CRAC) channel. The second CRAC channel component is constituted by pore-forming Orai proteins in the plasma membrane. STIM and Orai physically interact with each other to enable CRAC channel opening, which is a critical prerequisite for various downstream signalling pathways such as gene transcription or proliferation. Their activation commonly requires the emptying of the intracellular ER Ca2+ store. Using their Ca2+ sensing capabilities, STIM proteins confer this Ca2+ content-dependent signal to Orai, thereby linking Ca2+ store depletion to CRAC channel opening. Here we review the conformational dynamics occurring along the entire STIM protein upon store depletion, involving the transition from the quiescent, compactly folded structure into an active, extended state, modulation by a variety of accessory components in the cell as well as the impairment of individual steps of the STIM activation cascade associated with disease.

10.
J Biol Chem ; 299(11): 105310, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37778728

RESUMEN

T-cell receptor stimulation triggers cytosolic Ca2+ signaling by inositol-1,4,5-trisphosphate (IP3)-mediated Ca2+ release from the endoplasmic reticulum (ER) and Ca2+ entry through Ca2+ release-activated Ca2+ (CRAC) channels gated by ER-located stromal-interacting molecules (STIM1/2). Physiologically, cytosolic Ca2+ signaling manifests as regenerative Ca2+ oscillations, which are critical for nuclear factor of activated T-cells-mediated transcription. In most cells, Ca2+ oscillations are thought to originate from IP3 receptor-mediated Ca2+ release, with CRAC channels indirectly sustaining them through ER refilling. Here, experimental and computational evidence support a multiple-oscillator mechanism in Jurkat T-cells whereby both IP3 receptor and CRAC channel activities oscillate and directly fuel antigen-evoked Ca2+ oscillations, with the CRAC channel being the major contributor. KO of either STIM1 or STIM2 significantly reduces CRAC channel activity. As such, STIM1 and STIM2 synergize for optimal Ca2+ oscillations and activation of nuclear factor of activated T-cells 1 and are essential for ER refilling. The loss of both STIM proteins abrogates CRAC channel activity, drastically reduces ER Ca2+ content, severely hampers cell proliferation and enhances cell death. These results clarify the mechanism and the contribution of STIM proteins to Ca2+ oscillations in T-cells.


Asunto(s)
Canales de Calcio Activados por la Liberación de Calcio , Señalización del Calcio , Humanos , Calcio/metabolismo , Canales de Calcio Activados por la Liberación de Calcio/genética , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Señalización del Calcio/genética , Células Jurkat , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo , Molécula de Interacción Estromal 2/genética , Molécula de Interacción Estromal 2/metabolismo , Técnicas de Inactivación de Genes , Modelos Biológicos , Isoformas de Proteínas , Transporte de Proteínas/genética , Proliferación Celular/genética , Supervivencia Celular/genética
11.
J Biol Chem ; 299(8): 104970, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37380078

RESUMEN

Intracellular calcium signaling is essential for many cellular processes, including store-operated Ca2+ entry (SOCE), which is initiated by stromal interaction molecule 1 (STIM1) detecting endoplasmic reticulum (ER) Ca2+ depletion. STIM1 is also activated by temperature independent of ER Ca2+ depletion. Here we provide evidence, from advanced molecular dynamics simulations, that EF-SAM may act as a true temperature sensor for STIM1, with the prompt and extended unfolding of the hidden EF-hand subdomain (hEF) even at slightly elevated temperatures, exposing a highly conserved hydrophobic Phe108. Our study also suggests an interplay between Ca2+ and temperature sensing, as both, the canonical EF-hand subdomain (cEF) and the hidden EF-hand subdomain (hEF), exhibit much higher thermal stability in the Ca2+-loaded form compared to the Ca2+-free form. The SAM domain, surprisingly, displays high thermal stability compared to the EF-hands and may act as a stabilizer for the latter. We propose a modular architecture for the EF-hand-SAM domain of STIM1 composed of a thermal sensor (hEF), a Ca2+ sensor (cEF), and a stabilizing domain (SAM). Our findings provide important insights into the mechanism of temperature-dependent regulation of STIM1, which has broad implications for understanding the role of temperature in cellular physiology.


Asunto(s)
Retículo Endoplásmico , Simulación de Dinámica Molecular , Calcio/metabolismo , Señalización del Calcio , Retículo Endoplásmico/metabolismo , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Temperatura , Humanos
12.
Clin Immunol ; 265: 110306, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38977117

RESUMEN

Store-operated calcium entry (SOCE) plays a crucial role in maintaining cellular calcium homeostasis. This mechanism involves proteins, such as stromal interaction molecule 1 (STIM1) and ORAI1. Mutations in the genes encoding these proteins, especially STIM1, can lead to various diseases, including CRAC channelopathies associated with severe combined immunodeficiency. Herein, we describe a novel homozygous mutation, NM_003156 c.792-3C > G, in STIM1 in a patient with a clinical profile of CRAC channelopathy, including immune system deficiencies and muscle weakness. Functional analyses revealed three distinct spliced forms in the patient cells: wild-type, exon 7 skipping, and intronic retention. Calcium influx analysis revealed impaired SOCE in the patient cells, indicating a loss of STIM1 function. We developed an antisense oligonucleotide treatment that improves STIM1 splicing and highlighted its potential as a therapeutic approach. Our findings provide insights into the complex effects of STIM1 mutations and shed light on the multifaceted clinical presentation of the patient.

13.
Br J Haematol ; 204(3): 755-756, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38073055

RESUMEN

Platelets from neonates have been shown to exhibit a reduced response to physiological agonists, such as thrombin; however, the mechanism behind these findings is poorly understood. Berna-Erro et al. now provide differences in SARAF and pannexin-1 expression and function between neonatal and maternal platelets that might shed some light on the underlying mechanism. Commentary on: Berna-Erro. SARAF overexpression impairs thrombin-induced Ca2+ homeostasis in neonatal platelets. Br J Haematol 2024;204:988-1004.


Asunto(s)
Proteínas de la Membrana , Trombina , Humanos , Recién Nacido , Plaquetas/metabolismo , Calcio/metabolismo , Homeostasis , Proteínas de la Membrana/metabolismo
14.
J Virol ; 97(4): e0018823, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37039642

RESUMEN

Stimulator of interferon (IFN) genes (STING) was recently pinpointed as an antiviral innate immune factor during the infection of RNA viruses. Porcine reproductive and respiratory syndrome virus (PRRSV), the swine arterivirus, is an enveloped RNA virus which has evolved many strategies to evade innate immunity. To date, the interactive network between PRRSV and STING remains to be fully established. Herein, we report that STING suppresses PRRSV replication through type I interferon signaling. However, PRRSV impedes STING trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus, leading to the decreased phosphorylation of TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3). Furthermore, PRRSV nonstructural protein 2 (Nsp2) colocalizes with STING, blocks STING translocation, and disrupts the STING-TBK1-IRF3 complex. Mechanistically, PRRSV Nsp2 retains STING at the ER by increasing the level of Ca2+ sensor stromal interaction molecule 1 (STIM1) protein. Functional analysis reveals that PRRSV Nsp2 deubiquitinates STIM1 by virtue of its papain-like protease 2 (PLP2) deubiquitinating (DUB) activity. Finally, we demonstrate that loss of STIM1 is associated with an elevated IFN response and restricts PRRSV replication. This work delineates the relationship between PRRSV infection and STING signaling and the importance of papain-like proteases (PLPs) in interfering in this axis. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV), a member of the family Arteriviridae, is responsible for reproductive disorders in pregnant sows and respiratory problems in piglets, resulting in huge losses in the swine industry worldwide. Of note, PRRSV infection causes immunosuppression, of which the mechanism is not completely understood. Here, we demonstrate for the first time that STING, a protein typically associated with the antiviral response in DNA viruses, plays a critical role in controlling PRRSV infection. However, PRRSV utilizes its encoded protein Nsp2 to inhibit STING activity by blocking its translocation from the ER to the Golgi apparatus. In particular, Nsp2 retains STING at the ER by interacting with and further deubiquitinating STIM1. For this process, the activity of the viral PLP2 DUB enzyme is indispensable. The study describes a novel mechanism by which PLP2 plays a critical role in suppressing the innate immune response against arteriviruses and potentially other viruses that encode similar proteases.


Asunto(s)
Proteínas de la Membrana , Péptido Hidrolasas , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Molécula de Interacción Estromal 1 , Animales , Femenino , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Papaína/metabolismo , Péptido Hidrolasas/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Porcinos , Proteínas no Estructurales Virales/metabolismo , Proteínas de la Membrana/metabolismo , Inmunidad Innata/inmunología , Ubiquitinación/fisiología
15.
Biochem Soc Trans ; 52(2): 747-760, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38526208

RESUMEN

An important calcium (Ca2+) entry pathway into the cell is the Ca2+ release-activated Ca2+ (CRAC) channel, which controls a series of downstream signaling events such as gene transcription, secretion and proliferation. It is composed of a Ca2+ sensor in the endoplasmic reticulum (ER), the stromal interaction molecule (STIM), and the Ca2+ ion channel Orai in the plasma membrane (PM). Their activation is initiated by receptor-ligand binding at the PM, which triggers a signaling cascade within the cell that ultimately causes store depletion. The decrease in ER-luminal Ca2+ is sensed by STIM1, which undergoes structural rearrangements that lead to coupling with Orai1 and its activation. In this review, we highlight the current understanding of the Orai1 pore opening mechanism. In this context, we also point out the questions that remain unanswered and how these can be addressed by the currently emerging genetic code expansion (GCE) technology. GCE enables the incorporation of non-canonical amino acids with novel properties, such as light-sensitivity, and has the potential to provide novel insights into the structure/function relationship of CRAC channels at a single amino acid level in the living cell.


Asunto(s)
Canales de Calcio Activados por la Liberación de Calcio , Calcio , Retículo Endoplásmico , Proteína ORAI1 , Molécula de Interacción Estromal 1 , Animales , Humanos , Calcio/metabolismo , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Señalización del Calcio , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/metabolismo
16.
Cerebellum ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472628

RESUMEN

Responding to burst stimulation of parallel fibers (PFs), cerebellar Purkinje neurons (PNs) generate a convolved synaptic response displaying a fast excitatory postsynaptic current (EPSCFast) followed by a slow EPSC (EPSCSlow). The latter is companied with a rise of intracellular Ca2+ and critical for motor coordination. The genesis of EPSCSlow in PNs results from activation of metabotropic type 1 glutamate receptor (mGluR1), oligomerization of stromal interaction molecule 1 (STIM1) on the membrane of endoplasmic reticulum (ER) and opening of transient receptor potential canonical 3 (TRPC3) channels on the plasma membrane. Neuronal nitric oxide synthase (nNOS) is abundantly expressed in PFs and granule neurons (GNs), catalyzing the production of nitric oxide (NO) hence regulating PF-PN synaptic function. We recently found that nNOS/NO regulates the morphological development of PNs through mGluR1-regulated Ca2+-dependent mechanism. This study investigated the role of nNOS/NO in regulating EPSCSlow. Electrophysiological analyses showed that EPSCSlow in cerebellar slices of nNOS knockout (nNOS-/-) mice was significantly larger than that in wildtype (WT) mice. Activation of mGluR1 in cultured PNs from nNOS-/- mice evoked larger TRPC3-channel mediated currents and intracellular Ca2+ rise than that in PNs from WT mice. In addition, nNOS inhibitor and NO-donor increased and decreased, respectively, the TRPC3-current and Ca2+ rise in PNs. Moreover, the NO-donor effectively decreased TRPC3 currents in HEK293 cells expressing WT STIM1, but not cells expressing a STIM1 with cysteine mutants. These novel findings indicate that nNOS/NO inhibits TRPC3-containig channel mediated cation influx during EPSCSlow, at least in part, by S-nitrosylation of STIM1.

17.
World J Surg Oncol ; 22(1): 84, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532463

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) and ampullary carcinoma (AAC) are lethal malignancies with modest benefits from surgery. SOX2 and STIM1 have been linked to anticancer activity in several human malignancies. This study included 94 tumor cases: 48 primary PDAC, 25 metastatic PDAC, and 21 primary AAC with corresponding non-tumor tissue. All cases were immunohistochemically stained for STIM1 and SOX2 and results were correlated with clinicopathologic data, patient survival, and BCL2 immunostaining results. Results revealed that STIM1 and SOX2 epithelial/stromal expressions were significantly higher in PDAC and AAC in comparison to the control groups. STIM1 and SOX2 expressions were positively correlated in the primary and metastatic PDAC (P = 0.016 and, P = 0.001, respectively). However, their expressions were not significantly associated with BCL2 expression. SOX2 epithelial/stromal expressions were positively correlated with the large tumor size in the primary AAC group (P = 0.052, P = 0.044, respectively). STIM1 stromal and SOX2 epithelial over-expressions had a bad prognostic impact on the overall survival of AAC (P = 0.002 and P = 0.001, respectively). Therefore, STIM1 and SOX2 co-expression in tumor cells and intra-tumoral stroma could contribute to the development of PDAC and AAC. STIM1/SOX2 expression is linked to a bad prognosis in AAC.


Asunto(s)
Adenocarcinoma , Ampolla Hepatopancreática , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Ampolla Hepatopancreática/patología , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Pronóstico , Adenocarcinoma/patología , Células del Estroma/patología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Proteínas de Neoplasias/metabolismo , Factores de Transcripción SOXB1/metabolismo
18.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38474242

RESUMEN

Ceramides regulate phagocytosis; however, their exact function remains poorly understood. Here, we sought (1) to develop genetically encoded fluorescent tools for imaging ceramides, and (2) to use them to examine ceramide dynamics during phagocytosis. Fourteen enhanced green fluorescent protein (EGFP) fusion constructs based on four known ceramide-binding domains were generated and screened. While most constructs localized to the nucleus or cytosol, three based on the CA3 ceramide-binding domain of kinase suppressor of ras 1 (KSR1) localized to the plasma membrane or autolysosomes. C-terminally tagged CA3 with a vector-based (C-KSR) or glycine-serine linker (C-KSR-GS) responded sensitively and similarly to ceramide depletion and accumulation using a panel of ceramide modifying drugs, whereas N-terminally tagged CA3 (N-KSR) responded differently to a subset of treatments. Lipidomic and liposome microarray analysis suggested that, instead, N-KSR may preferentially bind glucosyl-ceramide. Additionally, the three probes showed distinct dynamics during phagocytosis. Despite partial autolysosomal degradation, C-KSR and C-KSR-GS accumulated at the plasma membrane during phagocytosis, whereas N-KSR did not. Moreover, the weak recruitment of C-KSR-GS to the endoplasmic reticulum and phagosomes was enhanced through overexpression of the endoplasmic reticulum proteins stromal interaction molecule 1 (STIM1) and Sec22b, and was more salient in dendritic cells. The data suggest these novel probes can be used to analyze sphingolipid dynamics and function in living cells.


Asunto(s)
Ceramidas , Colorantes Fluorescentes , Proteínas Quinasas , Ceramidas/metabolismo , Transducción de Señal/fisiología , Fagocitosis
19.
Saudi Pharm J ; 32(7): 102109, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38817821

RESUMEN

KDM2B, a histone lysine demethylase, is expressed in a plethora of cancers. Earlier studies from our group, have showcased that overexpression of KDM2B in the human prostate cancer cell line DU-145 is associated with cell adhesion, actin reorganization, and improved cancer cell migration. In addition, we have previously examined changes of cytosolic Ca2+, regulated by the pore-forming proteins ORAI and the Ca2+ sensing stromal interaction molecules (STIM), via store-operated Ca2+ entry (SOCE) in wild-type DU-145. This study sought to evaluate the impact of KDM2B overexpression on the expression of key molecules (SGK1, Nhe1, Orai1, Stim1) and SOCE. Furthermore, this is the first study to evaluate KDM2B expression in circulating tumor cells (CTCs) from patients with prostate cancer. mRNA levels for SGK1, Nhe1, Orai1, and Stim1 were quantified by RT-PCR. Calcium signals were measured in KDM2B-overexpressing DU-145 cells, loaded with Fura-2. Blood samples from 22 prostate cancer cases were scrutinized for KDM2B expression using immunofluorescence staining and the VyCAP system. KDM2B overexpression in DU-145 cells increased Orai1, Stim1, and Nhe1 mRNA levels and significantly decreased Ca2+ release. KDM2B expression was examined in 22 prostate cancer patients. CTCs were identified in 45 % of these patients. 80 % of the cytokeratin (CK)-positive patients and 63 % of the total examined CTCs exhibited the (CK + KDM2B + CD45-) phenotype. To conclude, this study is the first to report increased expression of KDM2B in CTCs from patients with prostate cancer, bridging in vitro and preclinical assessments on the potentially crucial role of KDM2B on migration, invasiveness, and ultimately metastasis in prostate cancer.

20.
Am J Physiol Cell Physiol ; 325(5): C1228-C1243, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37721000

RESUMEN

Extracellular adenosine triphosphate (ATP) is one of the most abundant biochemical constitutes within the stem cell microenvironment and is postulated to play critical roles in cell migration. However, it is unclear whether ATP regulates the cell migration of CD34+ vascular wall-resident stem/progenitor cells (VW-SCs) and participates in angiogenesis. Therefore, the biological mechanisms of cell migration mediated by ATP was determined by in vivo subcutaneous matrigel plug assay, ex vivo aortic ring assay, in vitro transwell migration assay, and other molecular methods. In the present study, ATP dose-dependently promoted CD34+ VW-SCs migration, which was more obviously attenuated by inhibiting or knocking down P2Y2 than P2Y6. Furthermore, it was confirmed that ATP potently promoted the migration of resident CD34+ cells from cultured aortic artery rings and differentiation into endothelial cells in matrigel plugs by using inducible lineage tracing Cd34-CreERT2; R26-tdTomato mice, whereas P2Y2 and P2Y6 blocker greatly inhibited the effect of ATP. In addition, ATP enhanced the protein expression of stromal interaction molecule 1 (STIM1) on cell membrane, blocking the calcium release-activated calcium (CRAC) channel with shSTIM1 or BTP2 apparently inhibited ATP-evoked intracellular Ca2+ elevation and channel opening, thereby suppressing ATP-driven cell migration. Moreover, extracellular signal-regulated protein kinase (ERK) inhibitor PD98059 and p38 inhibitor SB203580 remarkably inhibited ERK and p38 phosphorylation, cytoskeleton rearrangement, and subsequent cell migration. Unexpectedly, it was found that knocking down STIM1 greatly inhibited ATP-triggered ERK/p38 activation. Taken together, it was suggested that P2Y2 signaled through the CRAC channel mediated Ca2+ influx and ERK/p38 pathway to reorganize the cytoskeleton and promoted the migration of CD34+ VW-SCs.NEW & NOTEWORTHY In this study, we observed that the purinergic receptor P2Y2 is critical in the regulation of vascular wall-resident CD34+ cells' migration. ATP could activate STIM1-mediated extracellular Ca2+ entry by triggering STIM1 translocation to the plasma membrane, and knockdown of STIM1 prevented ERK/p38 activation-mediated cytoskeleton rearrangement and cell migration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA