Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Brain Struct Funct ; 228(3-4): 921-945, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37002478

RESUMEN

Satb1 and Satb2 belong to a family of homeodomain proteins with highly conserved functional and regulatory mechanisms and posttranslational modifications in evolution. However, although their distribution in the mouse brain has been analyzed, few data exist in other non-mammalian vertebrates. In the present study, we have analyzed in detail the sequence of SATB1 and SATB2 proteins and the immunolocalization of both, in combination with additional neuronal markers of highly conserved populations, in the brain of adult specimens of different bony fish models at key evolutionary points of vertebrate diversification, in particular including representative species of sarcopterygian and actinopterygian fishes. We observed a striking absence of both proteins in the pallial region of actinopterygians, only detected in lungfish, the only sarcopterygian fish. In the subpallium, including the amygdaloid complex, or comparable structures, we identified that the detected expressions of SATB1 and SATB2 have similar topologies in the studied models. In the caudal telencephalon, all models showed significant expression of SATB1 and SATB2 in the preoptic area, including the acroterminal domain of this region, where the cells were also dopaminergic. In the alar hypothalamus, all models showed SATB2 but not SATB1 in the subparaventricular area, whereas in the basal hypothalamus the cladistian species and the lungfish presented a SATB1 immunoreactive population in the tuberal hypothalamus, also labeled with SATB2 in the latter and colocalizing with the gen Orthopedia. In the diencephalon, all models, except the teleost fish, showed SATB1 in the prethalamus, thalamus and pretectum, whereas only lungfish showed also SATB2 in prethalamus and thalamus. At the midbrain level of actinopterygian fish, the optic tectum, the torus semicircularis and the tegmentum harbored populations of SATB1 cells, whereas lungfish housed SATB2 only in the torus and tegmentum. Similarly, the SATB1 expression in the rhombencephalic central gray and reticular formation was a common feature. The presence of SATB1 in the solitary tract nucleus is a peculiar feature only observed in non-teleost actinopterygian fishes. At these levels, none of the detected populations were catecholaminergic or serotonergic. In conclusion, the protein sequence analysis revealed a high degree of conservation of both proteins, especially in the functional domains, whereas the neuroanatomical pattern of SATB1 and SATB2 revealed significant differences between sarcopterygians and actinopterygians, and these divergences may be related to the different functional involvement of both in the acquisition of various neural phenotypes.


Asunto(s)
Encéfalo , Peces , Animales , Ratones , Encéfalo/metabolismo , Peces/metabolismo , Dopamina/metabolismo , Neuronas/metabolismo , Tálamo
2.
Anat Rec (Hoboken) ; 304(3): 541-558, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32445538

RESUMEN

The ontogeny of the paired appendages has been extensively studied in lungfishes and tetrapods, but remains poorly known in coelacanths. Recent work has shed light on the anatomy and development of the pectoral fin in Latimeria chalumnae. Yet, information on the development of the pelvic fin and girdle is still lacking. Here, we described the development of the pelvic fin and girdle in Latimeria chalumnae based on 3D reconstructions generated from conventional and X-ray synchrotron microtomography, as well as MRI acquisitions. As in other jawed vertebrates, the development of the pelvic fin occurs later than that of the pectoral fin in Latimeria. Many elements of the endoskeleton are not yet formed at the earliest stage sampled. The four mesomeres are already formed in the fetus, but only the most proximal radial elements (preaxial radial 0-1) are formed and individualized at this stage. We suggest that all the preaxial radial elements in the pelvic and pectoral fin of Latimeria are formed through the fragmentation of the mesomeres. We document the progressive ossification of the pelvic girdle, and the presence of a trabecular system in the adult. This trabecular system likely reinforces the cartilaginous girdle to resist the muscle forces exerted during locomotion. Finally, the presence of a preaxial element in contact with the pelvic girdle from the earliest stage of development onward questions the mono-basal condition of the pelvic fin in Latimeria. However, the particular shape of the mesomeres may explain the presence of this element in contact with the girdle.


Asunto(s)
Aletas de Animales/crecimiento & desarrollo , Evolución Biológica , Peces/crecimiento & desarrollo , Pelvis/crecimiento & desarrollo , Aletas de Animales/diagnóstico por imagen , Animales , Fósiles , Imagen por Resonancia Magnética , Pelvis/diagnóstico por imagen , Filogenia
3.
Sci Adv ; 2(6): e1600154, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27386576

RESUMEN

Crown or modern sarcopterygians (coelacanths, lungfishes, and tetrapods) differ substantially from stem sarcopterygians, such as Guiyu and Psarolepis, and a lack of transitional fossil taxa limits our understanding of the origin of the crown group. The Onychodontiformes, an enigmatic Devonian predatory fish group, seems to have characteristics of both stem and crown sarcopterygians but is difficult to place because of insufficient anatomical information. We describe the new skull material of Qingmenodus, a Pragian (~409-million-year-old) onychodont from China, using high-resolution computed tomography to image internal structures of the braincase. In addition to its remarkable similarities with stem sarcopterygians in the ethmosphenoid portion, Qingmenodus exhibits coelacanth-like neurocranial features in the otic region. A phylogenetic analysis based on a revised data set unambiguously assigns onychodonts to crown sarcopterygians as stem coelacanths. Qingmenodus thus bridges the morphological gap between stem sarcopterygians and coelacanths and helps to illuminate the early evolution and diversification of crown sarcopterygians.


Asunto(s)
Evolución Biológica , Peces , Fósiles , Conducta Predatoria , Animales , Paleontología
4.
Zoological Lett ; 2: 6, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27006783

RESUMEN

BACKGROUND: Pharyngeal segmentation is a defining feature of vertebrate embryos and is apparent as a series of bulges found on the lateral surface of the embryonic head, the pharyngeal arches. The ancestral condition for gnathostomes is to have seven pharyngeal segments: jaw, hyoid, and five posterior branchial arches. However, within the sarcopterygians, the pharyngeal region has undergone extensive remodelling that resulted in a reduction in the number of pharyngeal segments, such that amniotes have only five pharyngeal arches. The aim of this study is to probe the developmental basis of this loss of pharyngeal segments. RESULTS: We have therefore compared the development of the pharyngeal arches in an amniote, the chick, which has five segments, with those of a chondrichthyan, the catshark, which has seven segments. We have analysed the early phase of pharyngeal segmentation and we find that in both the most anterior segments form first with the posterior segments being added sequentially. We also documented the patterns of innervation of the pharynx in several vertebrates and note that the three most anterior segments receive distinct innervation: the first arch being innervated by the Vth nerve, the second by the VIIth and the third by the IXth. Finally, we have analysed Hox gene expression, and show that the anterior limit of Hoxa2 aligns with the second pouch and arch in both chick and catshark, while Hoxa3 is transiently associated with the third arch and pouch. Surprisingly, we have found that Hoxb1 expression is spatially and temporally dynamic and that it is always associated with the last most recently formed pouch and that this domains moves caudally as additional pouches are generated. CONCLUSION: We propose that the first three pharyngeal segments are homologous, as is the posterior limit of the pharynx, and that the loss of segments occurred between these two points. We suggest that this loss results from a curtailment of the posterior expansion of the pharyngeal endoderm in amniotes at relatively earlier time point, and thus the generation of fewer segments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA