Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Exp Biol ; 217(Pt 5): 743-50, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24574388

RESUMEN

Gregarious settlement, an essential behavior for many barnacle species that can only reproduce by mating with a nearby barnacle, has long been thought to rely on larval ability to recognize chemical signals from conspecifics during settlement. However, the cyprid, the settlement stage larva in barnacles, has one pair of compound eyes that appear only at the late nauplius VI and cyprid stages, but the function(s) of these eyes remains unknown. Here we show that cyprids of the intertidal barnacle Balanus (=Amphibalanus) amphitrite can locate adult barnacles even in the absence of chemical cues, and prefer to settle around them probably via larval sense of vision. We also show that the cyprids can discriminate color and preferred to settle on red surfaces. Moreover, we found that shells of adult B. amphitrite emit red auto-fluorescence and the adult extracts with the fluorescence as a visual signal attracted cyprid larvae to settle around it. We propose that the perception of specific visual signals can be involved in behavior of zooplankton including marine invertebrate larvae, and that barnacle auto-fluorescence may be a specific signal involved in gregarious larval settlement.


Asunto(s)
Comunicación Animal , Ojo Compuesto de los Artrópodos/fisiología , Thoracica/fisiología , Animales , Fluorescencia , Larva/fisiología , Thoracica/crecimiento & desarrollo , Percepción Visual
2.
Sci Rep ; 14(1): 12580, 2024 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822088

RESUMEN

Settlement is a critical period in the life cycle of marine invertebrates with a planktonic larval stage. For reef-building invertebrates such as oysters and corals, settlement rates are predictive for long-term reef survival. Increasing evidence suggests that marine invertebrates use information from ocean soundscapes to inform settlement decisions. Sessile marine invertebrates with a planktonic stage are particularly reliant on environmental cues to direct them to ideal habitats. As gregarious settlers, oysters prefer to settle amongst members of the same species. It has been hypothesized that oyster larvae from species Crassostrea virginica and Ostrea angasi use distinct conspecific oyster reef sounds to navigate to ideal habitats. In controlled laboratory experiments we exposed Pacific Oyster Magallana gigas larvae to anthropogenic sounds from conspecific oyster reefs, vessels, combined reef-vessel sounds as well as off-reef and no speaker controls. Our findings show that sounds recorded at conspecific reefs induced higher percentages of settlement by about 1.44 and 1.64 times compared to off-reef and no speaker controls, respectively. In contrast, the settlement increase compared to the no speaker control was non-significant for vessel sounds (1.21 fold), combined reef-vessel sounds (1.30 fold), and off-reef sounds (1.18 fold). This study serves as a foundational stepping stone for exploring larval sound feature preferences within this species.


Asunto(s)
Arrecifes de Coral , Larva , Sonido , Animales , Larva/fisiología , Ecosistema , Ostreidae/fisiología , Ostreidae/crecimiento & desarrollo , Crassostrea/fisiología , Crassostrea/crecimiento & desarrollo
3.
Ecol Evol ; 11(22): 16296-16313, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34824828

RESUMEN

Animals are expected to select a breeding habitat using cues that should reflect, directly or not, the fitness outcome of the different habitat options. However, human-induced environmental changes can alter the relationships between habitat characteristics and their fitness consequences, leading to maladaptive habitat choices. The most severe case of such nonideal habitat selection is the ecological trap, which occurs when individuals prefer to settle in poor-quality habitats while better ones are available. Here, we studied the adaptiveness of nest box selection in a tree swallow (Tachycineta bicolor) population breeding over a 10-year period in a network of 400 nest boxes distributed along a gradient of agricultural intensification in southern Québec, Canada. We first examined the effects of multiple environmental and social habitat characteristics on nest box preference to identify potential settlement cues. We then assessed the links between those cues and habitat quality as defined by the reproductive performance of individuals that settled early or late in nest boxes. We found that tree swallows preferred nesting in open habitats with high cover of perennial forage crops, high spring insect biomass, and high density of house sparrows (Passer domesticus), their main competitors for nest sites. They also preferred nesting where the density of breeders and their mean number of fledglings during the previous year were high. However, we detected mismatches between preference and habitat quality for several environmental variables. The density of competitors and conspecific social information showed severe mismatches, as their relationships to preference and breeding success went in opposite direction under certain circumstances. Spring food availability and agricultural landscape context, while related to preferences, were not related to breeding success. Overall, our study emphasizes the complexity of habitat selection behavior and provides evidence that multiple mechanisms may potentially lead to an ecological trap in farmlands.

4.
PeerJ ; 3: e999, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26056624

RESUMEN

Marine seafloor ecosystems, and efforts to restore them, depend critically on the influx and settlement of larvae following their pelagic dispersal period. Larval dispersal and settlement patterns are driven by a combination of physical oceanography and behavioral responses of larvae to a suite of sensory cues both in the water column and at settlement sites. There is growing evidence that the biological and physical sounds associated with adult habitats (i.e., the "soundscape") influence larval settlement and habitat selection; however, the significance of acoustic cues is rarely tested. Here we show in a field experiment that the free-swimming larvae of an estuarine invertebrate, the eastern oyster, respond to the addition of replayed habitat-related sounds. Oyster larval recruitment was significantly higher on larval collectors exposed to oyster reef sounds compared to no-sound controls. These results provide the first field evidence that soundscape cues may attract the larval settlers of a reef-building estuarine invertebrate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA