Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36838808

RESUMEN

Water pollution by dyes has been a major environmental problem to be tackled, and magnetic adsorbents appear as promising alternatives to solve it. Herein, magnetic activated carbons were prepared by the single-step method from Sapelli wood sawdust, properly characterized, and applied as adsorbents for brilliant blue dye removal. In particular, two magnetic activated carbons, MAC1105 and MAC111, were prepared using the proportion of biomass KOH of 1:1 and varying the proportion of NiCl2 of 0.5 and 1. The characterization results demonstrated that the different proportions of NiCl2 mainly influenced the textural characteristics of the adsorbents. An increase in the surface area from 260.0 to 331.5 m2 g-1 and in the total pore volume from 0.075 to 0.095 cm3 g-1 was observed with the weight ratio of NiCl2. Both adsorbents exhibit ferromagnetic properties and the presence of nanostructured Ni particles. The different properties of the materials influenced the adsorption kinetics and equilibrium of brilliant blue dye. MAC111 showed faster kinetics, reaching the equilibrium in around 10 min, while for MAC1105, it took 60 min for the equilibrium to be reached. In addition, based on the Sips isotherm, the maximum adsorption capacity was 98.12 mg g-1 for MAC111, while for MAC1105, it was 60.73 mg g-1. Furthermore, MAC111 presented the potential to be reused in more adsorption cycles than MAC1105, and the use of the adsorbents in the treatment of a simulated effluent exhibited high effectiveness, with removal efficiencies of up to 90%.


Asunto(s)
Carbón Orgánico , Contaminantes Químicos del Agua , Adsorción , Colorantes , Fenómenos Magnéticos , Cinética , Azul de Metileno , Concentración de Iones de Hidrógeno
2.
Chemosphere ; 262: 128322, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32962838

RESUMEN

The presence of emerging contaminants such as pharmaceuticals in aquatic means presents as a serious threat, since their real consequences for the environment and human health are not well known. Therefore, this work consisted of preparing and characterize sludge-derived activated carbons (beverage sludge activated carbon - BSAC and acid-treated beverage sludge activated carbon - ABSAC) to investigate their use in the pharmaceuticals adsorption in aqueous media. The morphology study has demonstrated that ABSAC, unlike BSAC, exhibited an abundant porous structure, with smaller particles and bigger roughness. Adsorption results indicated that the ABSAC was more effective that BSAC, since it presented superior surface area (642 m2 g-1) and total pore volume (0.485 cm3 g-1) values. Pseudo-second-order kinetic model was more suitable to predict experimental data. Sips model best described the equilibrium data, with maximum adsorption capacities of 145, 105, and 57 mg g-1 for paracetamol, ibuprofen, and ketoprofen, respectively. Besides, the sludge-derived adsorbent was highly efficient in the treatment of a simulated drug effluent, removing 85.16% of the pharmaceutical compounds. Therefore, the material prepared in this work possesses intrinsic characteristics that make it a remarkable adsorbent to be applied in the treatment of pharmaceutical contaminants contained in industrial wastewater.


Asunto(s)
Acetaminofén/química , Antiinflamatorios no Esteroideos/química , Bebidas , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Adsorción , Carbón Orgánico/química , Humanos , Ibuprofeno/química , Cetoprofeno/química , Cinética , Aguas del Alcantarillado , Aguas Residuales , Agua , Contaminantes Químicos del Agua/análisis
3.
Environ Sci Pollut Res Int ; 28(6): 6771-6783, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33009617

RESUMEN

In this work, for the first time, Cordia trichotoma sawdust, a residue derived from noble wood processing, was applied as an alternative biosorbent for the removal of crystal violet by discontinuous and continuous biosorption processes. The optimum conditions for biosorption of crystal violet were 7.5 pH and a biosorbent dosage of 0.8 g L-1. The biosorption kinetics showed that the equilibrium was reached at 120 min, achieving a maximum biosorption capacity of 107 mg g-1 for initial dye concentration of 200 mg L-1. The Elovich model was the proper model for representing the biosorption kinetics. The isotherm assays showed that the rise of temperature causes an increase in the biosorption capacity of the crystal violet, with a maximum biosorption capacity of 129.77 mg g-1 at 328 K. The Langmuir model was the most proper model for describing the behavior. The sign of ΔG0 indicates that the process was spontaneous and favorable, whereas the ΔH0 indicates an endothermic process. The treatment of the colored simulated effluent composed by dyes and salts resulted in 80% of color removal. The application of biosorbent in the fixed-bed system achieved a breakthrough time of 505 min, resulting in 83.35% of color removal. The Thomas and Yoon-Nelson models were able to describe the fixed-bed biosorption behavior. This collection of experimental evidence shows that the Cordia trichotoma sawdust can be applied for the removal of crystal violet and a mixture of other dyes that contain them.


Asunto(s)
Cordia , Contaminantes Químicos del Agua , Adsorción , Violeta de Genciana , Concentración de Iones de Hidrógeno , Cinética , Termodinámica , Contaminantes Químicos del Agua/análisis , Madera/química
4.
Environ Sci Pollut Res Int ; 27(10): 11184-11194, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31960236

RESUMEN

Dyes are widely used in many industrial sectors, many contain harmful substances to human health, and their release into the environment entails several environmental problems, generating a major worldwide concern as water resources are increasingly limited. The development of cheap and efficient biosorbents that remove these pollutants is of utmost importance. In this study, powdered seeds of the araticum fruit (Annona crassiflora) were used in the biosorption of crystal violet (CV) dye from aqueous solutions and simulated textile effluents. Through the characterization techniques, it can be observed that the material presented an amorphous structure, containing an irregular surface composed mainly by groups containing carbon, hydrogen, and oxygen. CV biosorption was favored at the natural pH of the solution (7.5) for a dosage of 0.7 g L-1 of araticum seed powder. The pseudo-second-order model was the most suitable to represent the biosorption kinetics in the removal of the CV. Biosorption capacity reached equilibrium in the first minutes at the lowest concentrations, and, at the highest, after 120 min. The equilibrium data were well represented by the Langmuir model, with a maximum biosorption capacity of 300.96 mg g-1 at 328 K. Biosorption had a spontaneous and endothermic nature. In the treatment of a simulated effluent, the biosorbent removed 87.8% of the color, proving to be efficient. Therefore, the araticum seeds powder (ASP) can be used as a low-cost material for the treatment of colored effluents containing the crystal violet (CV) dye.


Asunto(s)
Annona , Contaminantes Químicos del Agua/análisis , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Semillas/química , Termodinámica
5.
Environ Sci Pollut Res Int ; 26(28): 28584-28592, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30377973

RESUMEN

This research was conducted to evaluate the methylene blue dye adsorption by piaçava fibers. The effects of adsorbent amount, pH, kinetics, equilibrium, and thermodynamics were analyzed, as well as the adsorbent performance in the treatment of synthetic textile effluents. The adsorbent characterization was also performed. Experimental kinetic data were fitted with pseudo-first-order, pseudo-second-order, and Elovich models. The equilibrium tests were done at 298, 308, and 318 K, and the models of Freundlich, Langmuir, Redlich-Peterson, and Sips were used. The adsorption was favored using 0.025 g of adsorbent, pH 10, and 318 K. The Elovich model provided better fit to kinetic data. The equilibrium experimental points were well represented by the Sips model. The maximum experimental adsorption capacity of methylene blue dye was 427.3 mg g-1. It was verified a spontaneous, favorable, and endothermic adsorption. Piaçava fiber was a promising low-cost material to be used for color removal in effluents containing methylene blue.


Asunto(s)
Colorantes/química , Azul de Metileno/química , Adsorción , Cinética , Textiles , Termodinámica
6.
Environ Sci Pollut Res Int ; 26(19): 19207-19219, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31069651

RESUMEN

Cedar bark (Cedrella fissilis), a waste from wood processing, was evaluated as an adsorbent for the removal of red 97 dye from effluents. The material exhibited an amorphous structure, irregular surface, and was mainly composed of lignin and holocellulose. The adsorption was favored at pH 2.0. The general order model was most suitable for describing the experimental kinetic data, being the equilibrium reached in around 30 min. The isotherm experiments were better described by the Langmuir model. The maximum adsorption capacity was 422.87 mg g-1 at 328 K. The values of standard Gibbs free energy change (ΔG0) were from - 21 to - 26 kJ mol-1, indicating a spontaneous and favorable process. The enthalpy change (ΔH0) was 18.98 kJ mol-1, indicating an endothermic process. From the fixed bed adsorption experiment, an inclined breakthrough curve was found, with a mass transfer zone of 5.36 cm and a breakthrough time of 329 min. Cedar bark was able to treat a simulated effluent attaining color removal of 86.6%. These findings indicated that cedar bark has the potential to be applied as a low-cost adsorbent for the treatment of colored effluents in batch and continuous adsorption systems.


Asunto(s)
Compuestos Azo/análisis , Corteza de la Planta/química , Residuos/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Termodinámica
7.
Environ Sci Pollut Res Int ; 26(31): 31924-31933, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31487011

RESUMEN

The golden trumpet tree bark (GTB), a wood-processing residue, was tested as adsorbent material for decontamination of wastewaters containing methylene blue dye (MB). The powdered material was preponderantly amorphous, containing an irregular surface with the presence of lignin and holocellulose. The adsorption was favorable at basic pH of 10 and adsorbent dosage of 0.5 g L-1. The kinetics has finished in only 30 min and fitted by the general order model (GO). The isotherm behaviors were successfully represented by the Langmuir model. The value found for the maximum adsorption capacity was 232.25 mg g-1, being obtained at 328 K. The standard variation of Gibbs free energy (ΔG0) ranged from - 10.77 to - 8.09 kJ mol-1, indicating a spontaneous and favorable adsorption. A variation of standard enthalpy (ΔH0) of 18.58 kJ mol-1 revealed an endothermic adsorption. A sloped forward curve was found in the continuous operation, with breakthrough time (tb) of 325 min. The stoichiometry capacity of the column (qeq) and the length of mass transfer zone (Zm) were, respectively, 23.57 mg g-1 and 11.28 cm. The GTB was efficient in the treatment of a simulated effluent, obtaining color removal of 96%. These results show that GTB can be applied as adsorbent for decontamination of wastewaters containing methylene blue.


Asunto(s)
Lamiales/química , Azul de Metileno/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Lignina/química , Azul de Metileno/aislamiento & purificación , Corteza de la Planta/química , Termodinámica , Aguas Residuales , Contaminantes Químicos del Agua/aislamiento & purificación
8.
Carbohydr Polym ; 114: 521-529, 2014 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-25263922

RESUMEN

Herein, ß-cyclodextrin (ß-CD) was introduced on the surfaces of Fe3O4 particles via the chemical co-precipitation approach. The as-prepared Fe3O4@CD MNPs can be easily separated from the aqueous phase with a magnet. The removal performance of Fe3O4@CD MNPs toward Co(II) and 1-naphthol were investigated by using the batch technique. The maximum sorption capacities of Fe3O4@CD MNPs toward Co(II) and 1-naphthol are higher than a series of adsorbent materials. The simultaneous removal of Co(II) and 1-naphthol is achieved via the binding of Co(II) on the external surface sites of Fe3O4@CD MNPs and the incorporation of 1-naphthol into the hydrophobic cavity of surface-coated ß-CD. The Fe3O4@CD MNPs exhibit favorable removal performance toward Co(II) and 1-naphthol from the simulated effluent. The experimental results herein suggest that Fe3O4@CD MNPs can be used as cost-effective material for the purification of co-contaminated water systems.


Asunto(s)
Cobalto/química , Ciclodextrinas/química , Nanopartículas de Magnetita/química , Naftoles/química
9.
Sci Total Environ ; 461-462: 39-48, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23712114

RESUMEN

This work investigated the application of a solar driven advanced oxidation process (solar Fenton), for the degradation of the antibiotic ofloxacin (OFX) in various environmental matrices at a pilot-scale. All experiments were carried out in a compound parabolic collector pilot plant in the presence of doses of H2O2 (2.5 mg L(-1)) and at an initial Fe(2+) concentration of 2 mg L(-1). The water matrices used for the solar Fenton experiments were: demineralized water (DW), simulated natural freshwater (SW), simulated effluent from municipal wastewater treatment plant (SWW) and pre-treated real effluent from municipal wastewater treatment plant (RE) to which OFX had been spiked at 10 mg L(-1). Dissolved organic carbon removal was found to be dependent on the chemical composition of the water matrix. OFX mineralization was higher in DW (78.1%) than in SW (58.3%) at 12 mg L(-1) of H2O2 consumption, implying the complexation of iron or the scavenging of hydroxyl radicals by the inorganic ions present in SW. On the other hand, the presence of dissolved organic matter (DOM) in SWW and RE, led to lower mineralization per dose of H2O2 compared to DW and SW. The major transformation products (TPs) formed during the solar Fenton treatment of OFX, were elucidated using liquid chromatography-time of flight-mass spectrometry (LC-ToF-MS). The transformation of OFX proceeded through a defluorination reaction, accompanied by some degree of piperazine and quinolone substituent transformation while a hydroxylation mechanism occurred by attack of the hydroxyl radicals generated during the process leading to the formation of TPs in all the water matrices, seven of which were tentatively identified. The results obtained from the toxicity bioassays indicated that the toxicity originates from the DOM present in RE and its oxidation products formed during the photocatalytic treatment and not from the TPs resulted from the oxidation of OFX.


Asunto(s)
Agua Dulce/química , Sustancias Húmicas/análisis , Luz , Ofloxacino/química , Aguas Residuales/química , Carbono/análisis , Catálisis/efectos de la radiación , Cromatografía Liquida , Sustancias Húmicas/toxicidad , Peróxido de Hidrógeno/química , Hierro/química , Espectrometría de Masas , Ofloxacino/efectos de la radiación , Ofloxacino/toxicidad , Oxidación-Reducción , Proyectos Piloto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA