Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.112
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(26): 5910-5924.e17, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38070509

RESUMEN

The evolution and development of the head have long captivated researchers due to the crucial role of the head as the gateway for sensory stimuli and the intricate structural complexity of the head. Although significant progress has been made in understanding head development in various vertebrate species, our knowledge of early human head ontogeny remains limited. Here, we used advanced whole-mount immunostaining and 3D imaging techniques to generate a comprehensive 3D cellular atlas of human head embryogenesis. We present detailed developmental series of diverse head tissues and cell types, including muscles, vasculature, cartilage, peripheral nerves, and exocrine glands. These datasets, accessible through a dedicated web interface, provide insights into human embryogenesis. We offer perspectives on the branching morphogenesis of human exocrine glands and unknown features of the development of neurovascular and skeletomuscular structures. These insights into human embryology have important implications for understanding craniofacial defects and neurological disorders and advancing diagnostic and therapeutic strategies.


Asunto(s)
Embrión de Mamíferos , Cabeza , Humanos , Morfogénesis , Cabeza/crecimiento & desarrollo
2.
Cell ; 186(17): 3706-3725.e29, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37562402

RESUMEN

The bone marrow in the skull is important for shaping immune responses in the brain and meninges, but its molecular makeup among bones and relevance in human diseases remain unclear. Here, we show that the mouse skull has the most distinct transcriptomic profile compared with other bones in states of health and injury, characterized by a late-stage neutrophil phenotype. In humans, proteome analysis reveals that the skull marrow is the most distinct, with differentially expressed neutrophil-related pathways and a unique synaptic protein signature. 3D imaging demonstrates the structural and cellular details of human skull-meninges connections (SMCs) compared with veins. Last, using translocator protein positron emission tomography (TSPO-PET) imaging, we show that the skull bone marrow reflects inflammatory brain responses with a disease-specific spatial distribution in patients with various neurological disorders. The unique molecular profile and anatomical and functional connections of the skull show its potential as a site for diagnosing, monitoring, and treating brain diseases.


Asunto(s)
Médula Ósea , Enfermedades del Sistema Nervioso , Cráneo , Animales , Humanos , Ratones , Médula Ósea/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Proteínas Portadoras/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , Tomografía de Emisión de Positrones/métodos , Receptores de GABA/metabolismo , Cráneo/citología , Cráneo/diagnóstico por imagen
3.
Annu Rev Cell Dev Biol ; 30: 535-60, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25062362

RESUMEN

Although most modern dog breeds are less than 200 years old, the symbiosis between man and dog is ancient. Since prehistoric times, repeated selection events have transformed the wolf into man's guardians, laborers, athletes, and companions. The rapid transformation from pack predator to loyal companion is a feat that is arguably unique among domesticated animals. How this transformation came to pass remained a biological mystery until recently: Within the past decade, the deployment of genomic approaches to study population structure, detect signatures of selection, and identify genetic variants that underlie canine phenotypes is ushering into focus novel biological mechanisms that make dogs remarkable. Ironically, the very practices responsible for breed formation also spurned morbidity; today, many diseases are correlated with breed identity. In this review, we discuss man's best friend in the context of a genetic model to understand paradigms of heritable phenotypes, both desirable and disadvantageous.


Asunto(s)
Perros/genética , Genoma , Animales , Tamaño Corporal/genética , Neoplasias Óseas/genética , Neoplasias Óseas/veterinaria , Cruzamiento , Mapeo Cromosómico , Modelos Animales de Enfermedad , Enfermedades de los Perros/genética , Perros/anatomía & histología , Perros/clasificación , Extremidades/anatomía & histología , Estudio de Asociación del Genoma Completo , Glicoproteínas/genética , Glicoproteínas/fisiología , Proteína HMGA2/genética , Proteína HMGA2/fisiología , Cabello/anatomía & histología , Cardiopatías/genética , Cardiopatías/veterinaria , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/fisiología , Síndromes Neoplásicos Hereditarios/genética , Síndromes Neoplásicos Hereditarios/veterinaria , Osteosarcoma/genética , Osteosarcoma/veterinaria , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Selección Genética , Piel/anatomía & histología , Cráneo/anatomía & histología , Proteína Smad2/genética , Proteína Smad2/fisiología , Especificidad de la Especie , Cola (estructura animal)/anatomía & histología
4.
Proc Natl Acad Sci U S A ; 121(19): e2321179121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38683988

RESUMEN

Certain fox species plunge-dive into snow to catch prey (e.g., rodents), a hunting mechanism called mousing. Red and arctic foxes can dive into snow at speeds ranging between 2 and 4 m/s. Such mousing behavior is facilitated by a slim, narrow facial structure. Here, we investigate how foxes dive into snow efficiently by studying the role of skull morphology on impact forces it experiences. In this study, we reproduce the mousing behavior in the lab using three-dimensional (3D) printed fox skulls dropped into fresh snow to quantify the dynamic force of impact. Impact force into snow is modeled using hydrodynamic added mass during the initial impact phase. This approach is based on two key facts: the added mass effect in granular media at high Reynolds numbers and the characteristics of snow as a granular medium. Our results show that the curvature of the snout plays a critical role in determining the impact force, with an inverse relationship. A sharper skull leads to a lower average impact force, which allows foxes to dive head-first into the snow with minimal tissue damage.


Asunto(s)
Zorros , Cráneo , Nieve , Animales , Zorros/anatomía & histología , Zorros/fisiología , Cráneo/anatomía & histología , Buceo/fisiología , Conducta Predatoria/fisiología
5.
Immunol Rev ; 311(1): 26-38, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35880587

RESUMEN

The diploë region of skull has recently been discovered to act as a myeloid cell reservoir to the underlying meninges. The presence of ossified vascular channels traversing the inner skull of cortex provides a passageway for the cells to traffic from the niche, and CNS-derived antigens traveling through cerebrospinal fluid in a perivascular manner reaches the niche to signal myeloid cell egress. This review will highlight the recent findings establishing this burgeoning field along with the known role this niche plays in CNS aging and disease. It will further highlight the anatomical routes and physiological properties of the vascular structures these cells use for trafficking, spanning from skull to brain parenchyma.


Asunto(s)
Encéfalo , Células Mieloides , Envejecimiento , Encéfalo/irrigación sanguínea , Humanos
6.
Dev Biol ; 501: 81-91, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37355029

RESUMEN

The skull is a fundamental bone that protects the development of brain and consists of several bony elements, such as the frontal and parietal bones. Frontal bone exhibited superior in osteogenic potential and regeneration of cranial defects compared to parietal bone. However, how this regional difference is regulated remains largely unknown. In this study, we identified an Ap-2ß transcriptional factor with a higher expression in frontal bone, but its molecular function in osteoblasts needs to be elucidated. We found that Ap-2ß knockdown in preosteoblasts leads to reduced proliferation, increased cell death and impaired differentiation. Through RNA-seq analysis, we found that Ap-2ß influences multiple signaling pathways including the Wnt pathway, and overexpression of Ap-2ß showed increased nuclear ß-catenin and its target genes expressions in osteoblasts. Pharmacological activation of Wnt/ß-catenin signaling using LiCl treatment cannot rescue the reduced luciferase activities of the ß-catenin/TCF/LEF reporter in Ap-2ß knockdown preosteoblasts. Besides, transient expression of Ap-2ß via the lentivirus system could sufficiently rescue the inferior osteogenic potential in parietal osteoblasts, while Ap-2ß knockdown in frontal osteoblasts resulted in reduced osteoblast activity, reduced active ß-catenin and target genes expressions. Taken together, our data demonstrated that Ap-2ß modulates osteoblast proliferation and differentiation through the regulation of Wnt/ß-catenin signaling pathway and plays an important role in regulating regional osteogenic potential in frontal and parietal bone.


Asunto(s)
Vía de Señalización Wnt , beta Catenina , beta Catenina/metabolismo , Factores de Transcripción/metabolismo , Diferenciación Celular , Cráneo/metabolismo , Osteogénesis/fisiología , Osteoblastos , Células Cultivadas
7.
Neuroimage ; 298: 120769, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39122056

RESUMEN

Skull stripping is a crucial preprocessing step in magnetic resonance imaging (MRI), where experts manually create brain masks. This labor-intensive process heavily relies on the annotator's expertise, as automation faces challenges such as low tissue contrast, significant variations in image resolution, and blurred boundaries between the brain and surrounding tissues, particularly in rodents. In this study, we have developed a lightweight framework based on Swin-UNETR to automate the skull stripping process in MRI scans of mice and rats. The primary objective of this framework is to eliminate the need for preprocessing, reduce the workload, and provide an out-of-the-box solution capable of adapting to various MRI image resolutions. By employing a lightweight neural network, we aim to lower the performance requirements of the framework. To validate the effectiveness of our approach, we trained and evaluated the network using publicly available multi-center data, encompassing 1,037 rodents and 1,142 images from 89 centers, resulting in a preliminary mean Dice coefficient of 0.9914. The framework, data, and pre-trained models can be found on the following link: https://github.com/VitoLin21/Rodent-Skull-Stripping.

8.
Emerg Infect Dis ; 30(8): 1735-1737, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39043418

RESUMEN

We assessed the distribution of SARS-CoV-2 at autopsy in 22 deceased persons with confirmed COVID-19. SARS-CoV-2 was found by PCR (2/22, 9.1%) and by culture (1/22, 4.5%) in skull sawdust, suggesting that live virus is present in tissues postmortem, including bone. Occupational exposure risk is low with appropriate personal protective equipment.


Asunto(s)
Autopsia , COVID-19 , SARS-CoV-2 , Cráneo , Humanos , COVID-19/epidemiología , COVID-19/virología , COVID-19/patología , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Finlandia/epidemiología , Cráneo/patología , Cráneo/virología , Masculino , Femenino , Exposición Profesional , Persona de Mediana Edad , Anciano , Adulto , Equipo de Protección Personal , Anciano de 80 o más Años
9.
Biochem Biophys Res Commun ; 724: 150174, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38852507

RESUMEN

The primary cilium is a hair-like projection that controls cell development and tissue homeostasis. Although accumulated studies identify the molecular link between cilia and cilia-related diseases, the underlying etiology of ciliopathies has not been fully understood. In this paper, we determine the function of Rab34, a small GTPase, as a key regulator for controlling ciliogenesis and type I collagen trafficking in craniofacial development. Mechanistically, Rab34 is required to form cilia that control osteogenic proliferation, survival, and differentiation via cilia-mediated Hedgehog signaling. In addition, Rab34 is indispensable for regulating type I collagen trafficking from the ER to the Golgi. These results demonstrate that Rab34 has both ciliary and non-ciliary functions to regulate osteogenesis. Our study highlights the critical function of Rab34, which may contribute to understanding the novel etiology of ciliopathies that are associated with the dysfunction of RAB34 in humans.


Asunto(s)
Cilios , Osteogénesis , Proteínas de Unión al GTP rab , Cilios/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Animales , Ratones , Humanos , Cráneo/metabolismo , Proteínas Hedgehog/metabolismo , Diferenciación Celular , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Transducción de Señal , Desarrollo Óseo , Huesos Faciales/metabolismo , Huesos Faciales/crecimiento & desarrollo , Huesos Faciales/embriología , Proliferación Celular , Transporte de Proteínas , Aparato de Golgi/metabolismo
10.
Development ; 148(13)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34128978

RESUMEN

Intramembranous ossification, which consists of direct conversion of mesenchymal cells to osteoblasts, is a characteristic process in skull development. One crucial role of these osteoblasts is to secrete collagen-containing bone matrix. However, it remains unclear how the dynamics of collagen trafficking is regulated during skull development. Here, we reveal the regulatory mechanisms of ciliary and golgin proteins required for intramembranous ossification. During normal skull formation, osteoblasts residing on the osteogenic front actively secreted collagen. Mass spectrometry and proteomic analysis determined endogenous binding between ciliary protein IFT20 and golgin protein GMAP210 in these osteoblasts. As seen in Ift20 mutant mice, disruption of neural crest-specific GMAP210 in mice caused osteopenia-like phenotypes due to dysfunctional collagen trafficking. Mice lacking both IFT20 and GMAP210 displayed more severe skull defects compared with either IFT20 or GMAP210 mutants. These results demonstrate that the molecular complex of IFT20 and GMAP210 is essential for the intramembranous ossification during skull development.


Asunto(s)
Proteínas de la Matriz de Golgi/metabolismo , Cráneo/crecimiento & desarrollo , Cráneo/metabolismo , Animales , Calcificación Fisiológica , Proteínas Portadoras/metabolismo , Diferenciación Celular , Proliferación Celular , Colágeno/metabolismo , Proteínas del Citoesqueleto/metabolismo , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi/genética , Ratones , Ratones Noqueados , Cresta Neural/metabolismo , Osteoblastos , Osteogénesis , Proteómica
11.
Magn Reson Med ; 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39219299

RESUMEN

PURPOSE: Ultrashort echo time (UTE) MRI can be a radiation-free alternative to CT for craniofacial imaging of pediatric patients. However, unlike CT, bone-specific MR imaging is limited by long scan times, relatively low spatial resolution, and a time-consuming bone segmentation workflow. METHODS: A rapid, high-resolution UTE technique for brain and skull imaging in conjunction with an automatic segmentation pipeline was developed. A dual-RF, dual-echo UTE sequence was optimized for rapid scan time (3 min) and smaller voxel size (0.65 mm3). A weighted least-squares conjugate gradient method for computing the bone-selective image improves bone specificity while retaining bone sensitivity. Additionally, a deep-learning U-Net model was trained to automatically segment the skull from the bone-selective images. Ten healthy adult volunteers (six male, age 31.5 ± 10 years) and three pediatric patients (two male, ages 12 to 15 years) were scanned at 3 T. Clinical CT for the three patients were obtained for validation. Similarities in 3D skull reconstructions relative to clinical standard CT were evaluated based on the Dice similarity coefficient and Hausdorff distance. Craniometric measurements were used to assess geometric accuracy of the 3D skull renderings. RESULTS: The weighted least-squares method produces images with enhanced bone specificity, suppression of soft tissue, and separation from air at the sinuses when validated against CT in pediatric patients. Dice similarity coefficient overlap was 0.86 ± 0.05, and the 95th percentile Hausdorff distance was 1.77 ± 0.49 mm between the full-skull binary masks of the optimized UTE and CT in the testing dataset. CONCLUSION: An optimized MRI acquisition, reconstruction, and segmentation workflow for craniofacial imaging was developed.

12.
J Anat ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783688

RESUMEN

The craniocervical junction (CCJ) forms the bridge between the skull and the spine, a highly mobile group of joints that allows the mobility of the head in every direction. The CCJ plays a major role in protecting the inferior brainstem (bulb) and spinal cord, therefore also requiring some stability. Children are subjected to multiple constitutive or acquired diseases involving the CCJ: primary bone diseases such as in FGFR-related craniosynostoses or acquired conditions such as congenital torticollis, cervical spine luxation, and neurological disorders. To design efficient treatment plans, it is crucial to understand the relationship between abnormalities of the craniofacial region and abnormalities of the CCJ. This can be approached by the study of control and abnormal growth patterns. Here we report a model of normal skull base growth by compiling a collection of geometric models in control children. Focused analyses highlighted specific developmental patterns for each CCJ bone, emphasizing rapid growth during infancy, followed by varying rates of growth and maturation during childhood and adolescence until reaching stability by 18 years of age. The focus was on the closure patterns of synchondroses and sutures in the occipital bone, revealing distinct closure trajectories for the anterior intra-occipital synchondroses and the occipitomastoid suture. The findings, although based on a limited dataset, showcased specific age-related changes in width and closure percentages, providing valuable insights into growth dynamics within the first 2 years of life. Integration analyses revealed intricate relationships between skull and neck structures, emphasizing coordinated growth at different stages. Specific bone covariation patterns, as found between the first and second cervical vertebrae (C1 and C2), indicated synchronized morphological changes. Our results provide initial data for designing inclusive CCJ geometric models to predict normal and abnormal growth dynamics.

13.
J Anat ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38562033

RESUMEN

Yucatan miniature pigs, often used as large animal models in clinical research, are distinguished by a breed-specific midfacial hypoplasia with anterior crossbite. Although this deformity can be corrected by distraction osteogenesis, a less invasive method is desirable. We chose a mechanical cyclic stimulation protocol that has been successful in enhancing sutural growth in small animals and in a pilot study on standard pigs. Yucatan minipigs (n = 14) were obtained in pairs, with one of each pair randomly assigned to sham or loaded groups. All animals had loading implants installed on the right nasal and frontal bones and received labels for cell proliferation and mineral apposition. After a week of healing and under anesthesia, experimental animals received cyclic tensile loads (2.5 Hz, 30 min) delivered to the right nasofrontal suture daily for 5 days. Sutural strains were recorded at the final session for experimental animals. Sham animals received the same treatment except without loading or strain gauge placement. In contrast to pilot results on standard pigs, the treatment did not produce the expected sutural widening and increased growth. Although sutures were not fused and strains were in the normal range, the targeted right nasofrontal suture was narrowed rather than widened, with no statistically significant changes in sutural cell proliferation, mineral apposition, or vascularity. In general, Yucatan minipig sutures were more vascular than those of standard pigs and also tended to have more proliferating cells. In conclusion, either because the sutures themselves are abnormal or because of growth restrictions elsewhere in the skull, this cyclic loading protocol was unable to produce the desired response of sutural widening and growth. This treatment, effective in normal animals, did not improve naturally occurring midfacial hypoplasia in Yucatan minipigs.

14.
J Anat ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760955

RESUMEN

X-ray Computed Tomography (CT) images are widely used in various fields of natural, physical, and biological sciences. 3D reconstruction of the images involves segmentation of the structures of interest. Manual segmentation has been widely used in the field of biological sciences for complex structures composed of several sub-parts and can be a time-consuming process. Many tools have been developed to automate the segmentation process, all with various limitations and advantages, however, multipart segmentation remains a largely manual process. The aim of this study was to develop an open-access and user-friendly tool for the automatic segmentation of calcified tissues, specifically focusing on craniofacial bones. Here we describe BounTI, a novel segmentation algorithm which preserves boundaries between separate segments through iterative thresholding. This study outlines the working principles behind this algorithm, investigates the effect of several input parameters on its outcome, and then tests its versatility on CT images of the craniofacial system from different species (e.g. a snake, a lizard, an amphibian, a mouse and a human skull) with various scan qualities. The case studies demonstrate that this algorithm can be effectively used to segment the craniofacial system of a range of species automatically. High-resolution microCT images resulted in more accurate boundary-preserved segmentation, nonetheless significantly lower-quality clinical images could still be segmented using the proposed algorithm. Methods for manual intervention are included in this tool when the scan quality is insufficient to achieve the desired segmentation results. While the focus here was on the craniofacial system, BounTI can be used to automatically segment any hard tissue. The tool presented here is available as an Avizo/Amira add-on, a stand-alone Windows executable, and a Python library. We believe this accessible and user-friendly segmentation tool can benefit the wider anatomical community.

15.
Strahlenther Onkol ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207463

RESUMEN

BACKGROUND: Chordomas and chondrosarcomas of the skull base are rare, slowly growing malignant bone neoplasms. Despite their radioresistant properties, proton therapy has been successfully used as an adjunct to resection or as a definitive treatment. Herewith, we present our experience with robustly optimized intensity-modulated proton therapy (IMPT) and related toxicities in skull base chordoma and chondrosarcoma patients treated at HollandPTC, Delft, the Netherlands. METHODS: Clinical data, treatment plans, and acute toxicities of patients treated between July 2019 and August 2021 were reviewed. CT and 3.0T MRI scans for treatment planning were performed in supine position in a thermoplastic mold. In total, 21 dose optimization and 28 dose evaluation scenarios were simulated. Acute toxicity was scored weekly before and during the treatment according to the CTCAE v4.0. Median follow-up was 35 months (range 12-36 months). RESULTS: Overall, 9 chordoma and 3 chondrosarcoma patients with 1-3 resections prior to IMPT were included; 4 patients had titanium implants. Brainstem core and surface and spinal cord core and surface were used for nominal plan robust optimization in 11, 10, 8, and 7 patients, respectively. Middle ear inflammation, dry mouth, radiation dermatitis, taste disorder, and/or alopecia of grades 1-3 were noted at the end of treatment among 6 patients without similar complaints at inclusion; symptoms disappeared 3 months following the treatment. CONCLUSION: Robustly optimized IMPT is clinically feasible as a postoperative treatment for skull base chordoma and chondrosarcoma patients. We observed acceptable early toxicities (grade 1-3) that disappeared within the first 3 months after irradiation.

16.
Biol Lett ; 20(3): 20240045, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38531413

RESUMEN

In assessments of skeletal variation, allometry (disproportionate change of shape with size) is often corrected to examine size-independent variation for hypotheses relating to function. However, size-related trade-offs in functional demands may themselves be an underestimated driver of mammalian cranial diversity. Here, we use geometric morphometrics alongside dental measurements to assess craniodental allometry in the rock-wallaby genus Petrogale (all 17 species, 370 individuals). We identified functional aspects of evolutionary allometry that can be both extensions of, and correlated negatively with, static or ontogenetic allometric patterns. Regarding constraints, larger species tended to have relatively smaller braincases and more posterior orbits, the former of which might represent a constraint on jaw muscle anatomy. However, they also tended to have more anterior dentition and smaller posterior zygomatic arches, both of which support the hypothesis of relaxed bite force demands and accommodation of different selective pressures that favour facial elongation. By contrast, two dwarf species had stouter crania with divergent dental adaptations that together suggest increased relative bite force capacity. This likely allows them to feed on forage that is mechanically similar to that consumed by larger relatives. Our results highlight a need for nuanced considerations of allometric patterns in future research of mammalian cranial diversity.


Asunto(s)
Macropodidae , Cráneo , Animales , Evolución Biológica , Fuerza de la Mordida , Cráneo/anatomía & histología
17.
Int J Legal Med ; 138(2): 519-535, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37804332

RESUMEN

This year (2023) marks 140 years since the first publication of a facial soft tissue thickness (FSTT) study. Since 1883, a total of 139 studies have been published, collectively tallying > 220,000 tissue thickness measurements of > 19,500 adults. In just the last 5-years, 33 FSTT studies have been conducted. Herein, we add these data (plus an additional 20 studies) to the 2018 T-Table to provide an update of > 81,000 new datapoints to the global tallied facial soft tissue depths table. In contrast to the original 2008 T-Table, some notable changes are as follows: increased FSTTs by 3 mm at infra second molar (ecm2-iM2'), 2.5 mm at gonion (go-go'), 2 mm at mid-ramus (mr-mr'), and 1.5 mm at zygion (zy-zy'). Rolling grand means indicate that stable values have been attained for all nine median FSTT landmarks, while six out of nine bilateral landmarks continue to show ongoing fluctuations, indicating further data collection at these landmarks holds value. When used as point estimators for individuals with known values across 24 landmarks (i.e., C-Table data), the updated grand means produce slightly less estimation error than the 2018 T-Table means (3.5 mm versus 3.6 mm, respectively). Future efforts to produce less noisy datasets (i.e., reduce measurement and sampling errors as much as possible between studies) would be useful.


Asunto(s)
Puntos Anatómicos de Referencia , Cara , Adulto , Humanos , Cara/anatomía & histología , Recolección de Datos , Diente Molar , Antropología Forense
18.
Int J Legal Med ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39210043

RESUMEN

In this study, we assessed the sexual dimorphism of the contemporary Japanese skull and established sex discriminant function equations based on cranial measurements using three-dimensional (3D) computed tomography (CT) images. The CT images of 263 corpses (142 males, 121 females) that underwent postmortem CT scanning and subsequent forensic autopsy were evaluated. Twenty-one cranial measurements were obtained from 3D CT reconstructed images, which extracted only bone data. We performed descriptive statistics and discriminant function analyses for the measurements. Nineteen measurements were significantly larger in males, suggesting sexual dimorphism of the Japanese skulls. Univariate discriminant function analyses using these measurements showed a sex classification accuracy of 57.8-88.2%, and bizygomatic breadth provided the highest correct prediction rate. Multivariate discriminant function analyses offered the most accurate model using seven variables with an estimation rate of 93.9%. Our results suggest that cranial measurements based on 3D CT images may help in the sex estimation of unidentified bodies in a contemporary Japanese population.

19.
Int J Legal Med ; 138(4): 1447-1458, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38386034

RESUMEN

Post-mortem computed tomography (PMCT) enables the creation of subject-specific 3D head models suitable for quantitative analysis such as finite element analysis (FEA). FEA of proposed traumatic events is an objective and repeatable numerical method for assessing whether an event could cause a skull fracture such as seen at autopsy. FEA of blunt force skull fracture in adults with subject-specific 3D models in forensic pathology remains uninvestigated. This study aimed to assess the feasibility of FEA for skull fracture analysis in routine forensic pathology. Five cases with blunt force skull fracture and sufficient information on the kinematics of the traumatic event to enable numerical reconstruction were chosen. Subject-specific finite element (FE) head models were constructed by mesh morphing based on PMCT 3D models and A Detailed and Personalizable Head Model with Axons for Injury Prediction (ADAPT) FE model. Morphing was successful in maintaining subject-specific 3D geometry and quality of the FE mesh in all cases. In three cases, the simulated fracture patterns were comparable in location and pattern to the fractures seen at autopsy/PMCT. In one case, the simulated fracture was in the parietal bone whereas the fracture seen at autopsy/PMCT was in the occipital bone. In another case, the simulated fracture was a spider-web fracture in the frontal bone, whereas a much smaller fracture was seen at autopsy/PMCT; however, the fracture in the early time steps of the simulation was comparable to autopsy/PMCT. FEA might be feasible in forensic pathology in cases with a single blunt force impact and well-described event circumstances.


Asunto(s)
Análisis de Elementos Finitos , Patologia Forense , Imagenología Tridimensional , Fracturas Craneales , Tomografía Computarizada por Rayos X , Humanos , Fracturas Craneales/diagnóstico por imagen , Fracturas Craneales/patología , Masculino , Patologia Forense/métodos , Adulto , Femenino , Persona de Mediana Edad , Autopsia/métodos , Anciano
20.
Int J Legal Med ; 138(3): 1165-1171, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38112757

RESUMEN

Head trauma is frequently related to the misuse of drinking vessels as weapons. Forensic reports usually evaluate these blunt injuries as having occurred in scenarios where the alcohol intake is high. Fatal consequences are seen in blows with glass bottles aiming at the head. To prove the outcome that a glass bottle thrown to the head could cause, three intact human cadaver heads were impacted with 1-liter glass bottles at 9.5 m/s using a drop-tower. The impact location covered the left temporal bone, sphenoid bone, and zygomatic arch. The contact between the head and the bottle was produced at an angle of 90° with (1) the valve of the bottle, (2) the bottom of the bottle, and (3) with the head rotated 20° in the frontal plane touching again with the bottom of the bottle. The three bottles remained intact after the impact, and the injury outcomes were determined by computed tomography (CT). The alterations were highly dependent on the impact orientation. The outcome varied from no injury to severe bone fractures. In the most injurious case (#3), fractures were identified in the cranial base, sphenoid bone, and zygomatic bone. These testing conditions were selected to replicate one specific legal case, as required by the plaintiff. Physical disputes with bar glassware can lead to complex combinations of blunt and sharp-force injuries. Controlled biomechanical studies can benefit forensic analyses of violence involving glassware by providing a better understanding of the underlying injury mechanisms.


Asunto(s)
Fracturas Craneales , Heridas no Penetrantes , Humanos , Hueso Temporal , Violencia , Cadáver
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA