Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Environ Geochem Health ; 45(10): 7215-7236, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36933105

RESUMEN

The pollution of heavy metals in soil caused by exposed coal gangue and its prevention and control has become a hot issue restricting the green mining of coal in China. Nemerow integrated pollution index (NIPI), potential ecological risk index (RI) and human health risk assessment model were used to evaluate the pollution and risk of heavy metals (Cu, Cr, As, Pb) in the soil around the typical coal gangue hill in Fengfeng mining area of China. The results show that: firstly, the accumulation of coal gangue leads to the enrichment of four heavy metals in the surrounding shallow soil, and NIPI and RI were 1.0-4.4 and 21.63-91.28, respectively. The comprehensive pollution level of heavy metals in soil reached the warning line and above, and the potential ecological risk level reached slightly and above. When the horizontal distance exceeded 300 m, 300 m and 200 m, respectively, the influence of coal gangue hill on the heavy metal content in shallow soil, the comprehensive pollution level of heavy metals and the potential ecological risk level basically disappeared. In addition, based on the potential ecological risk assessment results and main risk factors, the ecological risk configuration of the study area was divided into five categories: "strong ecological risk + As," "intermediate ecological risk + As + Cu," "intermediate ecological risk + As + Cu or Pb," "minor ecological risk + As + Cu" and "minor ecological risk + As + Cu or Pb." The hazard index (HI) and total carcinogenic risk (TCR) of shallow soil polluted by heavy metals in the study area were 0.24-1.07 and 0.41 × 10-4-1.78 × 10-4, respectively, which posed non-carcinogenic and carcinogenic risks to children, but the risks were controllable. This study will help to take strategic measures to accurately control and repair the heavy metal pollution in the soil around the coal gangue hill and provide a scientific basis for solving the safe use of agricultural land and realizing the construction of ecological civilization.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Niño , Humanos , Monitoreo del Ambiente/métodos , Carbón Mineral , Plomo , Contaminantes del Suelo/análisis , Metales Pesados/toxicidad , Metales Pesados/análisis , Medición de Riesgo , Suelo , China
2.
J Environ Manage ; 286: 112227, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33647673

RESUMEN

Mining activity and abandoned mine land are one of the major sources of heavy metal pollution. Thus, ecological rehabilitation of abandoned mine lands is crucial to control heavy metal pollution. This research aims to explore the influencing factors and effects of different vegetation on copper (Cu) accumulation and soil amelioration. In this study, the abandoned land of Tongguanshan Cu mine in Tongling city, Anhui province, China, was chosen as the test area, and nine sampling points were established. Samples of soil and plants were collected from each plot, and the impacts of Cu pollution on soil enzymes and other features were analyzed, as well as the correlation between Cu accumulation of different plants and soil properties. The results showed that Cu content of soil in the Tongguanshan area varied greatly with the depth of the soil profile. Moreover, Cu in the soil can inhibit soil enzyme activities; and the correlation coefficients of total soil Cu with urease and catalase were -0.83 and -0.73, respectively. Clearly, the accumulation of Cu in plants was positively correlated with Cu content in soil. It was found that Pueraria lobata had the best remediation effect on soil Cu pollution in a short period of time. Hence the preliminary tests clearly indicate that phytoremediation in abandoned mine lands can not only reduce heavy metal pollution, but also enhance soil nutrition and enzyme activity, helping to ameliorate degraded land and promote regional socioeconomic sustainable development.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , China , Cobre , Monitoreo del Ambiente , Metales Pesados/análisis , Minería , Suelo , Contaminantes del Suelo/análisis
3.
Front Microbiol ; 15: 1288526, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38404600

RESUMEN

Introduction: Heavy metal pollution is a major worldwide environmental problem. Many remediation techniques have been developed, these techniques have different performance in different environments. Methods: In this study, soil sampling was conducted in multiple cotton fields in Xinjiang, China, and found that cadmium (Cd) was the most abundant soil heavy metal. Then, to find the most suitable technique for the remediation of Cd pollution in cotton fields, a two-year study was conducted to explore the effects of cotton straw-derived biochar (BC, 3%) and Bacillus-based biofertilizer (BF, 1.5%) on cotton Cd uptake and transport and soil microbial community structure under Cd exposure conditions (soil Cd contents: 1, 2, and 4 mg·kg-1). Results: The results showed that the bioaccumulation coefficients (Cd content of cotton organs / soil available Cd content) of cotton roots, stems, leaves, and buds/bolls reduced by 15.93%, 14.41%, 23.53%, and 20.68%, respectively after the application of BC, and reduced by 16.83%, 17.15%, 22.21%, and 26.25%, respectively after the application of BF, compared with the control (no BC and BF). Besides, the application of BC and BF reduced the transport of Cd from soil to root system, and enhanced the diversity of soil bacterial communities (dominant species: Alphaproteobacteria and Actinobacteria) and the metabolic functions related to amino acid synthesis. It was worth noting that the differential species for BF group vs BC group including Alphaproteobacteria, Gemmatimonadetes, Bacilli, and Vicinamibacteria were associated with the enrichment and transport of Cd, especially the transport of Cd from cotton roots to stems. Discussion: Therefore, the application of BC and BF changed the soil bacterial diversity in Cd-polluted cotton field, and then promoted the transport of Cd in cotton, ultimately improving soil quality. This study will provide a reference for the selection of soil heavy metal pollution remediation techniques in Xinjiang, China.

4.
Sci Rep ; 14(1): 21900, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300182

RESUMEN

As the first ladder of China, the Qinghai-Tibet Plateau has always been known as the "roof of the world". Its environmental carrying capacity can be estimated more accurately than other regions because of its harsh natural environment, low population density, limited industrial and agricultural development, and low human activities. However, the current ecological risks of Co and threshold research are limited, and there is a lack of awareness of W's environmental risks. Hence, this study assessed the ecological support potential of the Bardawu region within Dulan County, Qinghai Province, using 7373 soil specimens, determined regional soil baseline measures, and applied the substance equilibrium linear technique along with the ecological aggregate indicator technique to examine the heavy metal content of the soil. A comprehensive evaluation of the environmental capacity and health risks was conducted to provide a reference for pastoral planning. The findings indicated that the cumulative static ecological capacity of the six trace heavy elements in the soil was ranked as follows: Cr > Li > Ni > Cu > W > Co, with W and Co positioned as the final pair. The remaining areas with a high environmental capacity were predominantly found in the study zone. The central sector exhibited diminished environmental capacity in the southwest and northeast and presented a contamination hazard. Land use, soil type, and geological type considerably affected the six elements in the study area at the p < 0.05. The Bardawu region's mean comprehensive index of soil environmental capacity was 0.98, indicating an intermediate level of environmental capacity and a moderate health risk. This study focuses on the geological context and influence of pastoral activities on the soil, augments the distribution of various elements across the Tibetan Plateau, and suggests preliminary soil governance strategies. The findings of this study lay the groundwork for soil environmental conservation and remediation efforts in highland regions.

5.
Huan Jing Ke Xue ; 43(9): 4800-4809, 2022 Sep 08.
Artículo en Zh | MEDLINE | ID: mdl-36096620

RESUMEN

To investigate the soil contamination degree and potential ecological risk level of heavy metals in villages and towns in Tongling City, we collected 67 surface soil samples (including surface dusts and river sediments) from the typical districts, namely Shun'an Town, Zhongming Town, and Yi'an Economic Development Zone, and measured the contents of heavy metals including Cu, Zn, Pb, Cr, Cd, As, and Ni. Then, spatial distribution characteristics of heavy metals were analyzed, and their contamination degree and potential ecological risk were assessed. Finally, source apportionment of soil heavy metals was conducted using factor analysis. The results showed that the soil pH was weakly acidic in the study area, and the average contents of Cu, Zn, Cr, Cd, As, and Ni were 4.94, 2.89, 2.07, 0.94, 7.97, 4.03, and 2.02 times their soil background values in Tongling City, respectively. In general, the contents of soil heavy metals in the western part were higher than those in the eastern part across the studied area. According to the Nemerow pollution index, Cu, Cd, As, and Pb reached pollution levels; Zn, and Ni approached moderate pollution levels; and Cr belonged to the no pollution degree category. The Nemerow comprehensive pollution index of different land types was arranged in the order of river bed>town district>industrial land>vegetable land>agricultural land>mountain forest>village. On the whole, the contamination degree of soil heavy metals in the study area reached severe pollution levels. The order of potential ecological risk coefficients of soil heavy metals was Cd>As>Cu>Pb>Ni>Zn>Cr, in which Cd belonged to the extremely high risk level, Cu and As belonged to the medium risk level, and the others were all low risk levels. The potential ecological risk levels corresponding to different land types were as follows:river bed>town distribution>industrial land>vegetable land>agricultural land>village>mountain forest. The industrial land, vegetable land, and town district generally reached a very high risk level, and the agricultural land reached a high risk, whereas both village and mountain forest land showed a medium risk. Principal component analysis showed that Cu, Zn, Pb, Cd, and As in the study area were derived from local metal mining pollution; Cr was from both the geological background and metal mining pollution; and Ni mainly came from fossil fuel combustion.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Cadmio/análisis , Ciudades , Monitoreo del Ambiente/métodos , Plomo/análisis , Metales Pesados/análisis , Minería , Medición de Riesgo , Suelo/química , Contaminantes del Suelo/análisis
6.
Chemosphere ; 243: 125365, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31759218

RESUMEN

Managers need more practical and promising plants for use in heavy metal phytoremediation. Although previous studies have identified the potential of some weeds and microbial strains in phytoremediation, the potential of dominant weeds and the relationship between weeds and their rhizosphere bacterial strains are still unknown. In our study, we examined dominant weeds in the Dabaoshan mine located in Guangdong province, China to test their abilities as heavy metal accumulators and excluders. Results suggest that Ludwigia prostrata exhibited the highest potential for accumulating Cu, Pb and Zn compared with the other plants. Specifically, L. prostrata accumulated 71.58, 130.76 and 454.72 mg kg-1 of Cu, Pb and Zn, respectively; the species' translocation factor of Zn was 2.04, indicating a high accumulation of Zn. In contrast, the Cd translocation factor (TF) of Digitaria sanguinalis was 0.18, significantly lower than that of other plant species examined. Our results suggest that Ludwigia prostrata hyperaccumulates Zn and may also serve as a potential candidate remediation plant for Cu and Pb due to its high absolute accumulation amount of Cu and Pb, while Digitaria sanguinalis may be a potential candidate as a Cd excluder. We also found that rhizosphere bacterial communities were shaped by individual dominant plant species. Chloroflexi was the most dominant phylum in accumulator plant such as Fimbristylis miliacea, while Cyanobacteria was the most dominant phylum in excluder plant such as Digitaria sanguinalis. Our study provides insights for selecting new weedy forbs and grasses, rhizosphere bacterial species and developing approaches for phytoremediation and phytostabilization.


Asunto(s)
Biodegradación Ambiental , Metales Pesados/análisis , Minería , Malezas/fisiología , Rizosfera , Microbiología del Suelo , Contaminantes del Suelo/análisis , China , Plantas , Poaceae , Suelo
7.
Sci Total Environ ; 643: 451-459, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29945080

RESUMEN

Heavy metal contamination has become a serious and widespread problem in urban environment. Understanding its controlling factors is vital for the identification, prevention, and remediation of pollution sources. This study aimed to identify the factors controlling heavy metal accumulation in urban topsoil using the geodetector method and multiple data sources. Environmental factors including geology, relief (elevation, slope, and aspect), and organism (land-use and vegetation) were extracted from a geological thematic map, digital elevation model, and time-series of Landsat images, respectively. Then, the power of determinant (q) was calculated using geodetector to measure the affinity between the environmental factors and arsenic (As) and lead (Pb). Geology was the dominant factor for As distribution in the this study area; it explained 38% of the spatial variation in As, and nonlinear enhancements were observed for the interactions between geology and elevation (q = 0.50) and slope (q = 0.49). Land-use and vegetation bi-enhanced each other and explained 39% of the spatial variation in Pb. These results indicated that geology and relief were the factors controlling the spatial distribution of As, and organism factors, especially anthropogenic activities, were the factors controlling the spatial distribution of Pb in the study area. As was derived from weathering transportation, and deposition processes of original bedrock and subsequent pedogenesis, and anthropogenic activity was the most likely source of Pb contamination in urban topsoil in Shenzhen. Moreover, geodetector provided evidence to explore the factors controlling spatial patterns of heavy metals in soils.

8.
Environ Pollut ; 243(Pt B): 1912-1922, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30408880

RESUMEN

Heavy metals in urban soils may impose a threat to public health and may negatively affect urban tree viability. Vegetation spectroscopy techniques applied to bio-indicators bring new opportunities to characterize heavy metal contamination, without being constrained by laborious soil sampling and lab-based sample processing. Here we used Tilia tomentosa trees, sampled across three European cities, as bio-indicators i) to investigate the impacts of elevated concentrations of cadmium (Cd) and lead (Pb) on leaf mass per area (LMA), total chlorophyll content (Chl), chlorophyll a to b ratio (Chla:Chlb) and the maximal PSII photochemical efficiency (Fv/Fm); and ii) to evaluate the feasibility of detecting Cd and Pb contamination using leaf reflectance spectra. For the latter, we used a partial-least-squares discriminant analysis (PLS-DA) to train spectral-based models for the classification of Cd and/or Pb contamination. We show that elevated soil Pb concentrations induced a significant decrease in the LMA and Chla:Chlb, with no decrease in Chl. We did not observe pronounced reductions of Fv/Fm due to Cd and Pb contamination. Elevated Cd and Pb concentrations induced contrasting spectral changes in the red-edge (690-740 nm) region, which might be associated with the proportional changes in leaf pigments. PLS-DA models allowed for the classifications of Cd and Pb contamination, with a classification accuracy of 86% (Kappa = 0.48) and 83% (Kappa = 0.66), respectively. PLS-DA models also allowed for the detection of a collective elevation of soil Cd and Pb, with an accuracy of 66% (Kappa = 0.49). This study demonstrates the potential of using reflectance spectroscopy for biomonitoring of heavy metal contamination in urban soils.


Asunto(s)
Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Suelo/química , Análisis Espectral , Ciudades , Análisis de los Mínimos Cuadrados , Metales Pesados/química , Contaminantes del Suelo/química
9.
Huan Jing Ke Xue ; 37(9): 3532-3539, 2016 Sep 08.
Artículo en Zh | MEDLINE | ID: mdl-29964790

RESUMEN

With the transferring of the industry from the east coastal regions of China to the mid and west regions, those places once called "Clean Earth" in the arid north-west region are facing the contamination risks by industrial emission. In order to study the impacts of the industrial zone on the accumulation of heavy metals Zn, Cr, Ni, Mn, Co, Cu, Cd, Pb in agricultural soils, we collected the agricultural soil samples in a county in Ningxia province using GIS technology. Samples were collected in a belt way along the yellow river and expanding from the industrial zone as the center according to the main local wind direction. It was suggested that the accumulation of heavy metals in studied agricultural soils was slight. High accumulation of Zn and Cd only occurred in several sites. However, the accumulation of heavy metals in industrial zone was more apparent. Except for Ni, the rest 7 elements had obvious accumulation. One third of the sites had Cd concentration at contamination level. The spatial analysis revealed that the distributions of Cd, Zn, Cu, Mn, and Pb were closely related to the location of industrial zone. Industrial zone had not caused the contamination of heavy metals in agricultural soils yet. Due to the high pH value (average pH value of 8.54), no soil contamination issue was found at present. However, the impacts of industrial zone on the accumulation of heavy metals in agricultural soils were apparent. The input pathway of heavy metals into agricultural soils was mainly dust deposition. The industrial zone also increased the heavy metal concentrations in irrigation water to some extent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA