RESUMEN
Positioning test sequences between fused reporters permits monitoring of both translation levels and framing, before and after the test sequence. Many studies, including those on recoding such as productive ribosomal frameshifting and stop codon readthrough, use distinguishable luciferases or fluorescent proteins as reporters. Occasional distortions, due to test sequence product interference with the individual reporter activities or stabilities, are here shown to be avoidable by the introduction of tandem StopGo sequences (2A) flanking the test sequence. Using this new vector system (pSGDluc), we provide evidence for the use of a 3' stem-loop stimulator for ACP2 readthrough, but failed to detect the reported VEGFA readthrough.
Asunto(s)
Codón de Terminación/genética , Sistema de Lectura Ribosómico , Genes Reporteros , Luciferasas/metabolismo , Proteínas Luminiscentes/análisis , Fosfatasa Ácida/genética , Fosfatasa Ácida/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Vectores Genéticos , Células HEK293 , Humanos , Luciferasas/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismoRESUMEN
Foot-and-mouth disease virus (FMDV) has a positive-sense single-stranded RNA (ssRNA) genome that includes a single, large open reading frame encoding a polyprotein. The cotranslational "cleavage" of this polyprotein at the 2A/2B junction is mediated by the 2A peptide (18 residues in length) using a nonproteolytic mechanism termed "ribosome skipping" or "StopGo." Multiple variants of the 2A polypeptide with this property among the picornaviruses share a conserved C-terminal motif [D(V/I)E(S/T)NPG↓P]. The impact of 2A modifications within this motif on FMDV protein synthesis, polyprotein processing, and virus viability were investigated. Amino acid substitutions are tolerated at residues E14, S15, and N16 within the 2A sequences of infectious FMDVs despite their reported "cleavage" efficiencies at the 2A/2B junction of only ca. 30 to 50% compared to that of the wild type (wt). In contrast, no viruses containing substitutions at residue P17, G18, or P19, which displayed little or no "cleavage" activity in vitro, were rescued, but wt revertants were obtained. The 2A substitutions impaired the replication of an FMDV replicon. Using transient-expression assays, it was shown that certain amino acid substitutions at residues E14, S15, N16, and P19 resulted in partial "cleavage" of a protease-free polyprotein, indicating that these specific residues are not essential for cotranslational "cleavage." Immunofluorescence studies, using full-length FMDV RNA transcripts encoding mutant 2A peptides, indicated that the 2A peptide remained attached to adjacent proteins, presumably 2B. These results show that efficient "cleavage" at the 2A/2B junction is required for optimal virus replication. However, maximal StopGo activity does not appear to be essential for the viability of FMDV.IMPORTANCE Foot-and-mouth disease virus (FMDV) causes one of the most economically important diseases of farm animals. Cotranslational "cleavage" of the FMDV polyprotein precursor at the 2A/2B junction, termed StopGo, is mediated by the short 2A peptide through a nonproteolytic mechanism which leads to release of the nascent protein and continued translation of the downstream sequence. Improved understanding of this process will not only give a better insight into how this peptide influences the FMDV replication cycle but may also assist the application of this sequence in biotechnology for the production of multiple proteins from a single mRNA. Our data show that single amino acid substitutions in the 2A peptide can have a major influence on viral protein synthesis, virus viability, and polyprotein processing. They also indicate that efficient "cleavage" at the 2A/2B junction is required for optimal virus replication. However, maximal StopGo activity is not essential for the viability of FMDV.
Asunto(s)
Virus de la Fiebre Aftosa/fisiología , Poliproteínas/metabolismo , Biosíntesis de Proteínas , Proteínas Virales/metabolismo , Replicación Viral/fisiología , Animales , Línea Celular , Cricetinae , Mutación , Poliproteínas/genética , Procesamiento Proteico-Postraduccional , Proteínas Virales/genéticaRESUMEN
The foot-and-mouth disease virus (FMDV) afflicts livestock in more than 80 countries, limiting food production and global trade. Production of foot-and-mouth disease (FMD) vaccines requires cytosolic expression of the FMDV 3C protease to cleave the P1 polyprotein into mature capsid proteins, but the FMDV 3C protease is toxic to host cells. To identify less-toxic isoforms of the FMDV 3C protease, we screened 3C mutants for increased transgene output in comparison to wild-type 3C using a Gaussia luciferase reporter system. The novel point mutation 3C(L127P) increased yields of recombinant FMDV subunit proteins in mammalian and bacterial cells expressing P1-3C transgenes and retained the ability to process P1 polyproteins from multiple FMDV serotypes. The 3C(L127P) mutant produced crystalline arrays of FMDV-like particles in mammalian and bacterial cells, potentially providing a practical method of rapid, inexpensive FMD vaccine production in bacteria.IMPORTANCE The mutant FMDV 3C protease L127P significantly increased yields of recombinant FMDV subunit antigens and produced virus-like particles in mammalian and bacterial cells. The L127P mutation represents a novel advancement for economical FMD vaccine production.
Asunto(s)
Sustitución de Aminoácidos , Cisteína Endopeptidasas/inmunología , Virus de la Fiebre Aftosa/inmunología , Mutación Missense , Proteínas Virales/inmunología , Vacunas Virales/inmunología , Proteasas Virales 3C , Animales , Cisteína Endopeptidasas/genética , Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Virus de la Fiebre Aftosa/genética , Células HEK293 , Humanos , Proteínas Virales/genética , Vacunas Virales/genéticaRESUMEN
Lateral-flow immunosensing devices continue to be the most successful commercial realization of analytical microdevices. They owe their success to their simplicity, which significantly depends on the capillary-driven flow and versatile technological platform that lends itself to fast and low-cost product development. To compete with such a convenient product, microsystems can benefit from simple-to-operate fluid manipulation. We show that the capillary-driven flow in microchannels can be manipulated with electrochemically activated valves with no moving parts. These valves consist of screen-printed electrode pairs that are transversal to the flow. One of the electrodes is solvent-etched to produce a superhydrophobic surface that provides passive stopping and facilitates low-voltage (~1 V) actuation of the flow via electrowetting. The operation of such valves in the stop-go mode, with a response time between 2 and 45 sec depending on the type and concentration of salt, is demonstrated. Mechanistic investigations indicated that the response depends on at least three phenomena that contribute to electrocapillarity: the electrochemical double-layer capacitance, specific counterion adsorption, and possible electrohydrodynamic effects.
Asunto(s)
Equipo para Diagnóstico , Técnicas Electroquímicas , Técnicas Analíticas Microfluídicas , Técnicas Electroquímicas/instrumentación , Electrodos , Técnicas Analíticas Microfluídicas/instrumentación , Tamaño de la Partícula , Sistemas de Atención de Punto , Propiedades de SuperficieRESUMEN
Many viruses, especially RNA viruses, utilize programmed ribosomal frameshifting and/or stop codon readthrough in their expression, and in the decoding of a few a UGA is dynamically redefined to specify selenocysteine. This recoding can effectively increase viral coding capacity and generate a set ratio of products with the same N-terminal domain(s) but different C-terminal domains. Recoding can also be regulatory or generate a product with the non-universal 21st directly encoded amino acid. Selection for translation speed in the expression of many viruses at the expense of fidelity creates host immune defensive opportunities. In contrast to host opportunism, certain viruses, including some persistent viruses, utilize recoding or adventitious frameshifting as part of their strategy to evade an immune response or specific drugs. Several instances of recoding in small intensively studied viruses escaped detection for many years and their identification resolved dilemmas. The fundamental importance of ribosome ratcheting is consistent with the initial strong view of invariant triplet decoding which however did not foresee the possibility of transitory anticodon:codon dissociation. Deep level dynamics and structural understanding of recoding is underway, and a high level structure relevant to the frameshifting required for expression of the SARS CoV-2 genome has just been determined.
Asunto(s)
Virus ADN/genética , Virus ADN/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Evasión Inmune , Virus ARN/genética , Antivirales/farmacología , Codón de Terminación , Virus ADN/efectos de los fármacos , Sistema de Lectura Ribosómico , Antígenos de Histocompatibilidad Clase I/genética , Conformación de Ácido Nucleico , Péptidos/inmunología , Biosíntesis de Proteínas , Virus ARN/efectos de los fármacos , Virus ARN/inmunologíaRESUMEN
The objective of this study is to empirically analyze and model the stop-go decision behavior of drivers at rural high-speed intersections in China, where a flashing green signal of 3s followed by a yellow signal of 3s is commonly applied to end a green phase. 1, 186 high-resolution vehicle trajectories were collected at four typical high-speed intersection approaches in Shanghai and used for the identification of actual stop-go decision zones and the modeling of stop-go decision behavior. Results indicate that the presence of flashing green significantly changed the theoretical decision zones based on the conventional Dilemma Zone theory. The actual stop-go decision zones at the study intersections were thus formulated and identified based on the empirical data. Binary Logistic model and Fuzzy Logic model were then developed to further explore the impacts of flashing green on the stop-go behavior of drivers. It was found that the Fuzzy Logic model could produce comparably good estimation results as compared to the traditional Binary Logistic models. The findings of this study could contribute the development of effective dilemma zone protection strategies, the improvement of stop-go decision model embedded in the microscopic traffic simulation software and the proper design of signal change and clearance intervals at high-speed intersections in China.