RESUMEN
In the arms race against bacteria, bacteriophages have evolved diverse anti-CRISPR proteins (Acrs) that block CRISPR-Cas immunity. Acrs play key roles in the molecular coevolution of bacteria with their predators, use a variety of mechanisms of action, and provide tools to regulate Cas-based genome manipulation. Here, we present structural and functional analyses of AcrIIA6, an Acr from virulent phages, exploring its unique anti-CRISPR action. Our cryo-EM structures and functional data of AcrIIA6 binding to Streptococcus thermophilus Cas9 (St1Cas9) show that AcrIIA6 acts as an allosteric inhibitor and induces St1Cas9 dimerization. AcrIIA6 reduces St1Cas9 binding affinity for DNA and prevents DNA binding within cells. The PAM and AcrIIA6 recognition sites are structurally close and allosterically linked. Mechanistically, AcrIIA6 affects the St1Cas9 conformational dynamics associated with PAM binding. Finally, we identify a natural St1Cas9 variant resistant to AcrIIA6 illustrating Acr-driven mutational escape and molecular diversification of Cas9 proteins.
Asunto(s)
Bacteriófagos/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN/metabolismo , Streptococcus thermophilus/enzimología , Proteínas Virales/metabolismo , Regulación Alostérica , Bacteriófagos/genética , Sitios de Unión , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/ultraestructura , ADN/genética , ADN/ultraestructura , Escherichia coli/enzimología , Escherichia coli/genética , Humanos , Células K562 , Cinética , Mutación , Unión Proteica , Conformación Proteica , Streptococcus thermophilus/genética , Relación Estructura-Actividad , Proteínas Virales/genética , Proteínas Virales/ultraestructuraRESUMEN
Endolysins are produced by (bacterio)phages and play a crucial role in degrading the bacterial cell wall and the subsequent release of new phage progeny. These lytic enzymes exhibit a remarkable diversity, often occurring in a multimodular form that combines different catalytic and cell wall-binding domains, even in phages infecting the same species. Yet, our current understanding lacks insight into how environmental factors and ecological niches may have influenced the evolution of these enzymes. In this study, we focused on phages infecting Streptococcus thermophilus, as this bacterial species has a well-defined and narrow ecological niche, namely, dairy fermentation. Among the endolysins found in phages targeting this species, we observed limited diversity, with a singular structural type dominating in most of identified S. thermophilus phages. Within this prevailing endolysin type, we discovered a novel and highly conserved calcium-binding motif. This motif proved to be crucial for the stability and activity of the enzyme at elevated temperatures. Ultimately, we demonstrated its positive selection within the host's environmental conditions, particularly under the temperature profiles encountered in the production of yogurt, mozzarella, and hard cheeses that rely on S. thermophilus.
Asunto(s)
Bacteriófagos , Fagos de Streptococcus , Bacteriófagos/genética , Fermentación , EndopeptidasasRESUMEN
Streptococcus thermophilus holds promise as a chassis for producing and secreting heterologous proteins. Used for thousands of years to ferment milk, this species has generally recognized as safe (GRAS) status in the USA and qualified presumption of safety (QPS) status in Europe. In addition, it can be easily genetically modified thanks to its natural competence, and it secretes very few endogenous proteins, which means less downstream processing is needed to purify target proteins, reducing costs. Extracellular degradation of heterologous proteins can be eliminated by introducing mutations that inactivate the genes encoding the bacterium's three major surface proteases. Here, we constructed an inducible expression system that utilizes a peptide pheromone (SHP1358) and a transcriptional regulator (Rgg1358) involved in quorum-sensing regulation. We explored the functionality of a complete version of the system, in which the inducer is produced by the bacterium itself, by synthesizing a luciferase reporter protein. This complete version was assessed with bacteria grown in a chemically defined medium but also in vivo, in the faeces of germ-free mice. We also tested an incomplete version, in which the inducer had to be added to the culture medium, by synthesizing luciferase and a secreted form of elafin, a human protein with therapeutic properties. Our results show that, in our system, protein production can be modulated by employing different concentrations of the SHP1358 inducer or other SHPs with closed amino acid sequences. We also constructed a genetic background in which all system leakiness was eliminated. In conclusion, with this new inducible expression system, we have added to the set of tools currently used to produce secreted proteins in S. thermophilus, whose myriad applications include the delivery of therapeutic peptides or proteins.
Asunto(s)
Proteínas Bacterianas , Percepción de Quorum , Proteínas Recombinantes , Streptococcus thermophilus , Percepción de Quorum/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Animales , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ratones , Regulación Bacteriana de la Expresión Génica , Transactivadores/genética , Transactivadores/metabolismo , Feromonas/metabolismo , Feromonas/genéticaRESUMEN
Yogurt, a globally consumed fermented dairy product, is recognized for its taste and potential health benefits attributed to probiotic bacteria, particularly Streptococcus thermophilus. In this study, we employed Multilocus Sequence Typing (MLST) to investigate the genetic diversity and phylogenetic relationships of 13 S. thermophilus isolates from traditional Turkish yogurt samples. We also assessed potential correlations between genetic traits and geographic origins. The isolates were identified as S. thermophilus using VITEK® MALDI-TOF MS, ribotyping, and 16S rRNA analysis methods. MLST analysis revealed 13 different sequence types (STs), with seven new STs for Turkey. The most prevalent STs were ST/83 (n = 3), ST/135 (n = 2), and ST/134 (n = 2). eBURST analysis showed that these isolates mainly were singletons (n = 7) defined as sequence types (STs) that cannot be assigned to any group and differ at two or more alleles from every other ST in the sample. This information suggests that the isolates under study were genetically distinct from the other isolates in the dataset, highlighting their unique genetic profiles within the population. Genetic diversity analysis of ten housekeeping genes revealed polymorphism, with some genes showing higher allelic variation than others. Tajima's D values suggested that selection pressures differed among these genes, with some being more conserved, likely due to their vital functions. Phylogenetic analysis revealed distinct genetic diversity between Turkish isolates and European and Asian counterparts. These findings demonstrate the genetic diversity of S. thermophilus isolates in Turkish yogurt and highlight their unique evolutionary patterns. This research contributes to our understanding of local microbial diversity associated with yogurt production in Turkey and holds the potential for identifyic strains with enhanced functional attributes.
Asunto(s)
Streptococcus thermophilus , Yogur , Tipificación de Secuencias Multilocus/métodos , Streptococcus thermophilus/genética , Filogenia , ARN Ribosómico 16S/genética , Turquía , Polimorfismo Genético , Variación GenéticaRESUMEN
Natural whey starters (NWS) are cultures with undefined multiple-strains species commonly used to speed up the fermentation process of cheeses. The aim of this study was to explore the diversity and the viability of Comté cheese NWS microbiota. Culture-dependent methods, i.e. plate counting and genotypic characterization, and culture-independent methods, i.e. qPCR, viability-qPCR, fluorescence microscopy and DNA metabarcoding, were combined to analyze thirty-six NWS collected in six Comté cheese factories at two seasons. Our results highlighted that NWS were dominated by Streptococcus thermophilus (ST) and thermophilic lactobacilli. These species showed a diversity of strains based on Rep-PCR. The dominance of Lactobacillus helveticus (LH) over Lactobacillus delbrueckii (LD) varied depending on the factory and the season. This highlighted two types of NWS: the type-ST/LD (LD > LH) and the type-ST/LH (LD < LH). The microbial composition varied depending on cheese factory. One factory was distinguished by its level of culturable microbial groups (ST, enterococci and yeast) and its fungi diversity. The approaches used to estimate the viability showed that most NWS cells were viable. Further investigations are needed to understand the microbial diversity of these NWS.
Asunto(s)
Queso , Lactobacillus delbrueckii , Lactobacillus helveticus , Suero Lácteo , Queso/microbiología , Microbiología de Alimentos , Proteína de Suero de Leche/análisis , Streptococcus thermophilus/genéticaRESUMEN
This study aimed to investigate the symbiosis between Streptococcus thermophilus CICC 6038 and Lactobacillus delbrueckii ssp. bulgaricus CICC 6047. In addition, the effect of their different inoculum ratios was determined, and comparison experiments of fermentation characteristics and storage stability of milk fermented by their monocultures and cocultures at optimal inoculum ratio were performed. We found the time to obtain pH 4.6 and ΔpH during storage varied among 6 inoculum ratios (1:1, 2:1, 10:1, 19:1, 50:1, 100:1). By the statistical model to evaluate the optimal ratio, the ratio of 19:1 was selected, which exhibited high acidification rate and low postacidification with pH values remaining between 4.2 and 4.4 after a 50-d storage. Among the 3 groups included in our analyses (i.e., the monocultures of S. thermophilus CICC 6038 [St] and Lb. bulgaricus CICC 6047 [Lb] and their cocultures [St+Lb] at 19:1), the coculture group showed higher acidification activity, improved rheological properties, richer typical volatile compounds, more desirable sensor quality after the fermentation process than the other 2 groups. However, the continuous accumulation of acetic acid during storage showed that acetic acid was more highly correlated with postacidification than d-lactic acid for the Lb group and St+Lb group. Our study emphasized the importance of selecting an appropriate bacterial consortium at the optimal inoculum ratio to achieve favorable fermentation performance and enhanced postacidification stability during storage.
Asunto(s)
Lactobacillus delbrueckii , Yogur , Animales , Yogur/microbiología , Streptococcus thermophilus , Fermentación , AcetatosRESUMEN
Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus are symbiotic starters widely used in yogurt fermentation. They exchange metabolites to meet their nutritional demands during fermentation, promoting mutual growth. Although S. thermophilus produces fumaric acid, and the addition of fumaric acid has been shown to promote the growth of L. bulgaricus monoculture, whether fumaric acid produced by S. thermophilus is used by L. bulgaricus during coculture remains unclear. Furthermore, the importance of fumaric acid metabolism in the growth of L. bulgaricus is yet to be elucidated. Therefore, in this study, we investigated the importance of fumaric acid metabolism in L. bulgaricus monocultures and coculture with S. thermophilus. We deleted the fumarate reductase gene (frd), which is responsible for the metabolism of fumaric acid to succinic acid, in L. bulgaricus strains 2038 and NCIMB 701373. Both Δfrd strains exhibited longer fermentation times than their parent strains, and fumaric acid was metabolized to malic acid rather than succinic acid. Coculture of Δfrd strains with S. thermophilus 1131 also resulted in a longer fermentation time, and the accumulation of malic acid was observed. These results indicated that fumaric acid produced by S. thermophilus is used by L. bulgaricus as a symbiotic substance during yogurt fermentation and that the metabolism of fumaric acid to succinic acid by fumarate reductase is a key factor determining the fermentation ability of L. bulgaricus.
Asunto(s)
Fermentación , Fumaratos , Lactobacillus delbrueckii , Yogur , Lactobacillus delbrueckii/metabolismo , Fumaratos/metabolismo , Yogur/microbiología , Succinato Deshidrogenasa/metabolismo , Streptococcus thermophilus/metabolismoRESUMEN
The synergistic fermentation of milk by Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus is one of the key factors that determines the quality of yogurt. In this study, the mechanism whereby yogurt flavor compounds are produced by a mixture of S. thermophilus SIT-20.S and L. delbrueckii ssp. bulgaricus SIT-17.B were investigated by examining the flavor production, growth, and gene transcription of these strains. The results showed that yogurt produced by a 10:1 mixture of the aforementioned strains had the highest abundance of acetoin, whereas yogurt produced by a 1:1 mixture had the highest abundance of diacetyl and acetaldehyde. In addition, the growth of S. thermophilus SIT-20.S was enhanced in the 10:1 mixture. Transcriptomic analysis revealed differentially expressed genes in the flavor-compound-related pathways of S. thermophilus SIT-20.S and L. delbrueckii ssp. bulgaricus SIT-17.B in yogurts produced by 10:1 and 1:1 mixtures compared with those produced by either strain alone. Mixed fermentations regulated the expression of genes related to glycolysis, resulting in an increase of pyruvate, which is an important precursor for diacetyl and acetoin synthesis. The gene encoding the acetoin reductase (SIT-20S_orf01454) was decreased in S. thermophilus SIT-20.S, which ensured the accumulation of acetoin. In addition, the gene encoding the acetaldehyde dehydrogenase (SIT-20S_orf00949) was upregulated in S. thermophilus SIT-20.S, and the expression of alcohol dehydrogenase (SIT-20S_orf01479; SIT-17B_orf00943) was downregulated in both strains, maintaining the abundance of acetaldehyde. In addition, the gene encoding the NADH oxidase (SIT-17B_orf00860) in L. delbrueckii ssp. bulgaricus SIT-17.B were upregulated, which promoted the accumulation of diacetyl and acetoin. Overall, we characterized the mechanism by which S. thermophilus and L. delbrueckii ssp. bulgaricus synergistically generated yogurt flavor compounds during their production of yogurt and highlighted the importance of appropriate proportions of fermentation starters for improving the flavor of yogurts.
Asunto(s)
Fermentación , Yogur , Animales , Aromatizantes , Acetoína/metabolismo , Lactobacillus delbrueckii/genética , Lactobacillus delbrueckii/metabolismo , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Leche/química , Transcriptoma , Gusto , Diacetil/metabolismoRESUMEN
Lactobacillus delbrueckii ssp. bulgaricus M58 (M58) and Streptococcus thermophilus S10 (S10) are 2 dairy starter strains known for their favorable fermentation characteristics. Therefore, this research aimed to study the effects of 1-d low-temperature ripening on the physicochemical properties and metabolomics of fermented milk. Initially, the performance of single (M58 or S10) and dual (M58+S10) strain fermentation was assessed, revealing that the M58+S10 combination resulted in a shortened fermentation time, a stable gel structure, and desirable viscosity, suggesting positive strain interactions. Subsequently, non-targeted metabolomics analyses using LC-MS and GC-MS were performed to comparatively analyze M58+S10 fermented milk samples collected at the end of fermentation and after 1-d low-temperature ripening. The results showed a significant increase in almost all small peptides and dodecanedioic acid in the samples after one day of ripening, while there was a substantial decrease in indole and amino acid metabolites. Moreover, notable increases were observed in high-quality flavor compounds, such as geraniol, delta-nonalactone, 1-hexanol,2-ethyl-, methyl jasmonate, and undecanal. This study provides valuable insights into the fermentation characteristics of the dual bacterial starter consisting of M58 and S10 strains and highlights the specific contribution of the low-temperature ripening step to the overall quality of fermented milk.
RESUMEN
Streptococcus thermophilus is a common starter in yogurt production and plays an important role in the dairy industry. In this study, a galactose-positive (Gal+) mutant strain, IMAU20246Y, was produced using the chemical mutagen N-methyl-N'-nitro-N-nitrosoguanidine (NTG) from wild-type S. thermophilus IMAU20246, which is known to have good fermentation characteristics. The sugar content of milk fermented by either the mutant or the wild type was determined using HPLC; metabolism of lactose and galactose was significantly increased in the mutant strain. In addition, we used response surface methodology to optimize components of the basic M17 medium for survival ratio of the mutant strain. Under these optimal conditions, the viable counts of mutant S. thermophilus IMAU20246Y reached 4.15 × 108 cfu/mL and, following freeze-drying in the medium, retained cell viability of up to 67.42%. These results are conducive to production of a high-vitality starter culture and development of "low sugar, high sweetness" dairy products.
Asunto(s)
Fermentación , Galactosa , Streptococcus thermophilus , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Galactosa/metabolismo , Lactosa/metabolismo , Animales , Leche , Yogur/microbiología , MutaciónRESUMEN
Streptococcus thermophilus FUA329, a urolithin A-producing bacterium, is isolated from human breast milk. The complete genome sequence of FUA329 did not contain any plasmids and at least 20 proteins were related to extreme environment resistance. Phenotypic assay results demonstrated that FUA329 was susceptible to 12 kinds of antibiotics and did not exhibit any hemolytic or nitrate reductase activity. Three free radical scavenging assays revealed that FUA329 have high antioxidant capability. FUA329 exhibited a cell surface hydrophobicity of 52.58 ± 1.17% and an auto-aggregation rate of 18.69 ± 2.48%. Moreover, FUA329 demonstrated a survival rate of over 60% in strong acid and bile salt environments, indicating that FUA329 may be stable colonization in the gastrointestinal tract. Additionally, we firstly found 3 potential proteins and 11 potential genes of transforming ellagic acid to urolithins in FUA329 genome. The above results indicate that FUA329 has credible safety and probiotic properties, as well as the potential to be developed as a new generation of urolithin A-producing probiotics.
Asunto(s)
Leche Humana , Probióticos , Femenino , Humanos , Animales , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Leche/microbiología , Genómica , Probióticos/metabolismoRESUMEN
Gamma-aminobutyric acid (GABA)-producing lactic acid bacteria (LAB) can be used as starters in the development of GABA-enriched functional fermented foods. In this work, four GABA-producing strains each of Lactococcus lactis and Streptococcus thermophilus species were isolated from cow's milk, and their phenotypic, technological, and safety profiles determined. Genome analysis provided genetic support for the majority of the analyzed traits, namely, GABA production, growth in milk, and the absence of genes of concern. The operon harboring the glutamate decarboxylase gene (gadB) was chromosomally encoded in all strains and showed the same gene content and gene order as those reported, respectively, for L. lactis and S. thermophilus. In the latter species, the operon was flanked (as in most strains of this species) by complete or truncated copies of insertion sequences (IS), suggesting recent acquisition through horizontal gene transfer. The genomes of three L. lactis and two S. thermophilus strains showed a gene encoding a caseinolytic proteinase (PrtP in L. lactis and PrtS in S. thermophilus). Of these, all but one grew in milk, forming a coagulum of good appearance and an appealing acidic flavor and taste. They also produced GABA in milk supplemented with monosodium glutamate. Two L. lactis strains were identified as belonging to the biovar. diacetylactis, utilized citrate from milk, and produced significant amounts of acetoin. None of the strains showed any noticeable antibiotic resistance, nor did their genomes harbor transferable antibiotic resistance genes or genes involved in toxicity, virulence, or pathogenicity. Altogether these results suggest that all eight strains may be considered candidates for use as starters or components of mixed LAB cultures for the manufacture of GABA-enriched fermented dairy products.
Asunto(s)
Queso , Lactobacillales , Lactococcus lactis , Animales , Leche/microbiología , Lactococcus lactis/genética , Streptococcus thermophilus/genética , Ácido gamma-Aminobutírico , Genómica , Fermentación , Queso/microbiologíaRESUMEN
The lactic acid bacteria Streptococcus thermophilus and Lactobacillus helveticus are commonly used as starter cultures in dairy product production. This study aimed to investigate the characteristics of fermented milk using different ratios of these strains and analyze the changes in volatile compounds during fermentation and storage. A 10:1 ratio of Streptococcus thermophilus CICC 6063 to Lactobacillus helveticus CICC 6064 showed optimal fermentation time (4.2 h), viable cell count (9.64 log10 colony-forming units/mL), and sensory evaluation score (79.1 points). In total, 56 volatile compounds were identified and quantified by solid-phase microextraction and gas chromatography-mass spectrometry (SPME-GC-MS), including aldehydes, ketones, acids, alcohols, esters, and others. Among these, according to VIP analysis, 2,3-butanedione, acetoin, 2,3-pentanedione, hexanoic acid, acetic acid, acetaldehyde, and butanoic acid were identified as discriminatory volatile metabolites for distinguishing between different time points. Throughout the fermentation and storage process, the levels of 2,3-pentanedione and acetoin exhibited synergistic dynamics. These findings enhance our understanding of the chemical and molecular characteristics of milk fermented with Streptococcus thermophilus and Lactobacillus helveticus, providing a basis for improving the flavor and odor of dairy products during fermentation and storage.
Asunto(s)
Lactobacillus delbrueckii , Lactobacillus helveticus , Pentanonas , Animales , Leche/química , Streptococcus thermophilus/metabolismo , Fermentación , Acetoína/análisis , Lactobacillus delbrueckii/metabolismo , Cetonas/análisisRESUMEN
BACKGROUND: Streptococcus thermophilus is an important strain widely used in dairy fermentation, with distinct urea metabolism characteristics compared to other lactic acid bacteria. The conversion of urea by S. thermophilus has been shown to affect the flavor and acidification characteristics of milk. Additionally, urea metabolism has been found to significantly increase the number of cells and reduce cell damage under acidic pH conditions, resulting in higher activity. However, the physiological role of urea metabolism in S. thermophilus has not been fully evaluated. A deep understanding of this metabolic feature is of great significance for its production and application. Genome-scale metabolic network models (GEMs) are effective tools for investigating the metabolic network of organisms using computational biology methods. Constructing an organism-specific GEM can assist us in comprehending its characteristic metabolism at a systemic level. RESULTS: In the present study, we reconstructed a high-quality GEM of S. thermophilus S-3 (iCH492), which contains 492 genes, 608 metabolites and 642 reactions. Growth phenotyping experiments were employed to validate the model both qualitatively and quantitatively, yielding satisfactory predictive accuracy (95.83%), sensitivity (93.33%) and specificity (100%). Subsequently, a systematic evaluation of urea metabolism in S. thermophilus was performed using iCH492. The results showed that urea metabolism reduces intracellular hydrogen ions and creates membrane potential by producing and transporting ammonium ions. This activation of glycolytic fluxes and ATP synthase produces more ATP for biomass synthesis. The regulation of fluxes of reactions involving NAD(P)H by urea metabolism improves redox balance. CONCLUSION: Model iCH492 represents the most comprehensive knowledge-base of S. thermophilus to date, serving as a potent tool. The evaluation of urea metabolism led to novel insights regarding the role of urease. © 2023 Society of Chemical Industry.
Asunto(s)
Redes y Vías Metabólicas , Streptococcus thermophilus , Animales , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Fermentación , Leche/química , Urea/metabolismo , Adenosina Trifosfato/análisisRESUMEN
Prokaryotes are under constant pressure from phage infection and thus have evolved multiple means of defense or evasion. While CRISPR-Cas constitutes a robust immune system and appears to be the predominant means of survival for Streptococcus thermophilus when facing lytic phage infection, other forms of phage resistance coexist in this species. Here, we show that S. thermophilus strains with deleted CRISPR-Cas loci can still give rise to phage-resistant clones following lytic phage challenge. Notably, non-CRISPR phage-resistant survivors had multiple mutations which would truncate or recode a membrane-anchored host protease, FtsH. Phage adsorption was dramatically reduced in FtsH mutants, implicating this protein in phage attachment. Phages were isolated which could bypass FtsH-based resistance through mutations predicted to alter tape measure protein translation. Together, these results identify key components in phage propagation that are subject to mutation in the molecular arms race between phage and host cell. IMPORTANCE Streptococcus thermophilus is an important organism for production of cultured dairy foods, but it is susceptible to lytic phages which can lead to failed products. Consequently, mechanisms for phage resistance are an active area of research. One such mechanism is CRISPR-Cas, and S. thermophilus is a model organism for the study of this form of adaptive immunity. Here, we expand on known mechanisms with our finding that spontaneous mutations in ftsH, a gene encoding a membrane-anchored protease, protected against phage infection by disrupting phage adsorption. In turn, mutations in phage tail protein genes allowed phages to overcome ftsH-based resistance. Our results identified components in phage propagation that are subject to mutation in the molecular arms race between phage and host.
Asunto(s)
Bacteriófagos , Fagos de Streptococcus , Bacteriófagos/genética , Streptococcus thermophilus/genética , Adsorción , Mutación , Péptido Hidrolasas/genética , Sistemas CRISPR-Cas , Fagos de Streptococcus/genéticaRESUMEN
Bone is a kind of meat processing by-product with high nutritional value but low in calorie, which is a typical food in China and parts of East Asian countries. Microbial fermentation by lactic acid bacteria showed remarkable advantages to increase the absorption of nutrients from bone cement by human body. Streptococcus thermophilus CICC 20372 is proven to be a good starter for bone cement fermentation. No genes encoding virulence traits or virulence factors were found in the genome of S. thermophilus CICC 20372 by a thorough genomic analysis. Its notable absence of antibiotic resistance further solidifies the safety. Furthermore, the genomic analysis identified four types of gene clusters responsible for the synthesis of antimicrobial metabolites. A comparative metabolomic analysis was performed by cultivating the strain in bone cement at 37 °C for 72 h, with the culture in de Man, Rogosa, and Sharpe (MRS) medium as control. Metabolome analysis results highlighted the upregulation of pathways involved in 2-oxocarboxylic acid metabolism, ATP-binding cassette (ABC) transporters, amino acid synthesis, and nucleotide metabolism during bone cement fermentation. S. thermophilus CICC 20372 produces several metabolites with health-promoting function during bone cement fermentation, including indole-3-lactic acid, which is demonstrated ameliorative effects on intestinal inflammation, tumor growth, and gut dysbiosis. In addition, lots of nucleotide and organic acids were accumulated at higher levels, which enriched the fermented bone cement with a variety of nutrients. Collectively, these features endow S. thermophilus CICC 20372 a great potential strain for bone food processing.
Asunto(s)
Cementos para Huesos , Streptococcus thermophilus , Humanos , Fermentación , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Cementos para Huesos/metabolismo , Metaboloma , Nucleótidos/metabolismoRESUMEN
Fermentation is one of the most effective methods of food preservation. Since ancient times, food has been fermented using lactic acid bacteria (LAB). Fermented milk is a very intricate fermentation ecosystem, and the microbial metabolism of fermented milk largely determines its metabolic properties. The two most frequently used dairy starter strains are Streptococcus thermophilus (S. thermophilus) and Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus). To enhance both the culture growth rate and the flavor and quality of the fermented milk, it has long been customary to combine S. thermophilus and L. bulgaricus in milk fermentation due to their mutually beneficial and symbiotic relationship. On the one hand, the symbiotic relationship is reflected by the nutrient co-dependence of the two microbes at the metabolic level. On the other hand, more complex interaction mechanisms, such as quorum sensing between cells, are involved. This review summarizes the application of LAB in fermented dairy products and discusses the symbiotic mechanisms and interactions of milk LAB starter strains from the perspective of nutrient supply and intra- and interspecific quorum sensing. This review provides updated information and knowledge on microbial interactions in a fermented milk ecosystem.
The symbiotic relationship between Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus is reviewed.Their nutrient co-dependence is discussed.The role of quorum sensing in their interaction is discussed for the first time.This review is of interest to colleagues interested in exploiting LAB starter cultures.
RESUMEN
OBJECTIVE: Thermophilin 110, a bacteriocin produced by Streptococcus thermophilus B59671, inhibited planktonic growth and biofilm formation of Cutibacterium acnes, a commensal skin bacterium associated with the inflammatory disease, acne vulgaris, and more invasive deep tissue infections. RESULTS: Thermophilin 110 prevented planktonic growth of C. acnes at a concentration ≥ 160 AU mL-1; while concentrations ≥ 640 AU mL-1 resulted in a > 5 log reduction in viable planktonic cell counts and inhibited biofilm formation. Arabinoxylan (AX) and sodium alginate (SA) hydrogels were shown to encapsulate thermophilin 110, but as currently formulated, the encapsulated bacteriocin was unable to diffuse out of the gel and inhibit the growth of C. acnes. Hydrogels were also used to encapsulate S. thermophilus B59671, and inhibition zones were observed against C. acnes around intact SA gels, or S. thermophilus colonies that were released from AX gels. CONCLUSIONS: Thermophilin 110 has potential as an antimicrobial for preventing C. acnes infections and further optimization of SA and AX gel formulations could allow them to serve as delivery systems for bacteriocins or bacteriocin-producing probiotics.
Asunto(s)
Bacteriocinas , Piel , Alginatos , Bacteriocinas/farmacología , Agregación Celular , HidrogelesRESUMEN
Yogurt represent one of the oldest fermented foods containing viable lactic acid bacteria and many bioactive compounds that could exhibit beneficial effects on human health and train our immune system to better respond to invading pathogens. Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus are commonly used for yogurt preparation under controlled temperature and environmental conditions. In this study, we investigated probiotic features of S. thermophilus BGKMJ1-36 and L. bulgaricus BGVLJ1-21 strains isolated from artisanal sour milk and yogurt by using Caenorhabditis elegans as an in vivo model system. Further, we evaluated content of total fat, saturated fatty acids, proteins, and lactose, as well as vitamins and AA of yogurt prepared from above-mentioned starter cultures during 21 d of storage at 4°C to get insights of final product stability. We showed that S. thermophilus BGKMJ1-36 and L. bulgaricus BGVLJ1-21 strains applied in combination upregulated the expression of autophagy-related genes in C. elegans. Beside autophagy, we observed activation of TIR-1-dependent transcription of lysozyme-like antimicrobial genes involved in the immune defense of C. elegans. Upregulation of these genes strongly correlates with an increase in the longevity of the worms fed with yogurt culture bacteria. Further, we showed that yogurt prepared with S. thermophilus BGKMJ1-36 and L. bulgaricus BGVLJ1-21, as a final product, is rich with vitamin B2 and dominant AA known by their prolongevity properties. Taken together, our study pointed to the beneficial features of the tested starter cultures and yogurt and highlighted their potential to be used as a fermented food with added-value properties.
RESUMEN
Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus are the main species used for yogurt preparation. Glutathione (GSH) can be synthesized by S. thermophilus and plays a crucial role in combating environmental stress. However, the effect of GSH biosynthesis by S. thermophilus on cocultured L. delbrueckii ssp. bulgaricus is still unknown. In this study, a mutant S. thermophilus ΔgshF was constructed by deleting the GSH synthase. The wild strain S. thermophilus ST-1 and ΔgshF mutants were cocultured with L. delbrueckii ssp. bulgaricus ATCC11842 by using Transwell chambers (Guangzhou Shuopu Biotechnology Co., Ltd.), respectively. It was proven that the GSH synthesized by S. thermophilus ST-1 could be absorbed and used by L. delbrueckii ssp. bulgaricus ATCC11842, and promote growth ability and stress tolerance of L. delbrueckii ssp. bulgaricus ATCC11842. The biomass of L. delbrueckii ssp. bulgaricus ATCC11842 cocultured with S. thermophilus ST-1 or ΔgshF (adding exogenous GSH) increased by 1.8 and 1.4 times compared with the biomass of L. delbrueckii ssp. bulgaricus ATCC11842 cocultured with S. thermophilus ΔgshF. Meanwhile, after H2O2 and low-temperature treatments, the bacterial viability of L. delbrueckii ssp. bulgaricus cocultured with S. thermophilus ΔgshF, with or without GSH, was decreased by 41 and 15% compared with that of L. delbrueckii ssp. bulgaricus cocultured with S. thermophilus ST-1. Furthermore, transcriptome analysis showed that the expression levels of genes involved in purine nucleotide and pyrimidine nucleotide metabolism in L. delbrueckii ssp. bulgaricus ATCC11842 were at least 3 times increased when cocultured with S. thermophilus (fold change > 3.0). Moreover, compared with the mutant strain ΔgshF, the wild-type strain ST-1 could shorten the fermented curd time by 5.3 hours during yogurt preparation. These results indicated that the GSH synthesized by S. thermophilus during cocultivation effectively enhanced the activity of L. delbrueckii ssp. bulgaricus and significantly improved the quality of fermented milk.