Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 434
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 34(21-22): 1439-1451, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33060137

RESUMEN

p53 is a potent tumor suppressor and commonly mutated in human cancers. Recently, we demonstrated that p53 genes act to restrict retrotransposons in germline tissues of flies and fish but whether this activity is conserved in somatic human cells is not known. Here we show that p53 constitutively restrains human LINE1s by cooperatively engaging sites in the 5'UTR and stimulating local deposition of repressive histone marks at these transposons. Consistent with this, the elimination of p53 or the removal of corresponding binding sites in LINE1s, prompted these retroelements to become hyperactive. Concurrently, p53 loss instigated chromosomal rearrangements linked to LINE sequences and also provoked inflammatory programs that were dependent on reverse transcriptase produced from LINE1s. Taken together, our observations establish that p53 continuously operates at the LINE1 promoter to restrict autonomous copies of these mobile elements in human cells. Our results further suggest that constitutive restriction of these retroelements may help to explain tumor suppression encoded by p53, since erupting LINE1s produced acute oncogenic threats when p53 was absent.


Asunto(s)
Regulación de la Expresión Génica/genética , Elementos de Nucleótido Esparcido Largo/genética , Retroelementos/genética , Proteína p53 Supresora de Tumor/metabolismo , Sitios de Unión , Línea Celular , Eliminación de Gen , Reordenamiento Génico/genética , Código de Histonas/genética , Humanos , Inmunidad/genética , Elementos de Nucleótido Esparcido Largo/inmunología , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteína p53 Supresora de Tumor/genética
2.
Trends Biochem Sci ; 47(11): 978-988, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35618579

RESUMEN

The antiviral defense directed by the RNAi pathway employs distinct specificity and effector mechanisms compared with other immune responses. The specificity of antiviral RNAi is programmed by siRNAs processed from virus-derived double-stranded RNA by Dicer endonuclease. Argonaute-containing RNA-induced silencing complex loaded with the viral siRNAs acts as the effector to mediate specific virus clearance by RNAi. Recent studies have provided evidence for the production and antiviral function of virus-derived siRNAs in both undifferentiated and differentiated mammalian cells infected with a range of RNA viruses when the cognate virus-encoded suppressor of RNAi (VSR) is rendered nonfunctional. In this review, we discuss the function, mechanism, and evolutionary origin of the validated mammalian VSRs and cell culture assays for their identification.


Asunto(s)
Proteínas Argonautas , ARN Bicatenario , Animales , Antivirales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Mamíferos/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Viral/genética
3.
Brief Bioinform ; 24(5)2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37551622

RESUMEN

Prediction of driver genes (tumor suppressors and oncogenes) is an essential step in understanding cancer development and discovering potential novel treatments. We recently proposed Moonlight as a bioinformatics framework to predict driver genes and analyze them in a system-biology-oriented manner based on -omics integration. Moonlight uses gene expression as a primary data source and combines it with patterns related to cancer hallmarks and regulatory networks to identify oncogenic mediators. Once the oncogenic mediators are identified, it is important to include extra levels of evidence, called mechanistic indicators, to identify driver genes and to link the observed gene expression changes to the underlying alteration that promotes them. Such a mechanistic indicator could be for example a mutation in the regulatory regions for the candidate gene. Here, we developed new functionalities and released Moonlight2 to provide the user with a mutation-based mechanistic indicator as a second layer of evidence. These functionalities analyze mutations in a cancer cohort to classify them into driver and passenger mutations. Those oncogenic mediators with at least one driver mutation are retained as the final set of driver genes. We applied Moonlight2 to the basal-like breast cancer subtype, lung adenocarcinoma and thyroid carcinoma using data from The Cancer Genome Atlas. For example, in basal-like breast cancer, we found four oncogenes (COPZ2, SF3B4, KRTCAP2 and POLR2J) and nine tumor suppressor genes (KIR2DL4, KIF26B, ARL15, ARHGAP25, EMCN, GMFG, TPK1, NR5A2 and TEK) containing a driver mutation in their promoter region, possibly explaining their deregulation. Moonlight2R is available at https://github.com/ELELAB/Moonlight2R.


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , Neoplasias , Humanos , Femenino , Flujo de Trabajo , Oncogenes , Neoplasias/genética , Mutación , Neoplasias de la Mama/genética , Neoplasias Pulmonares/genética , Redes Reguladoras de Genes , Factores de Empalme de ARN/genética , ARN Polimerasa II/genética
4.
Curr Top Microbiol Immunol ; 444: 185-206, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38231219

RESUMEN

Gastric cancer is a very serious and deadly disease worldwide with about one million new cases every year. Most gastric cancer subtypes are associated with genetic and epigenetic aberrations caused by chromosome instability, microsatellite instability or Epstein-Barr virus infection. Another risk factor is an infection with Helicobacter pylori, which also triggers severe alterations in the host genome. This pathogen expresses an extraordinary repertoire of virulence determinants that take over control of important host cell signaling functions. In fact, H. pylori is a paradigm of persistent infection, chronic inflammation and cellular destruction. In particular, H. pylori profoundly induces chromosomal DNA damage by introducing double-strand breaks (DSBs) followed by genomic instability. DSBs appear in response to oxidative stress and pro-inflammatory transcription during the S-phase of the epithelial cell cycle, which mainly depends on the presence of the bacterial cag pathogenicity island (cagPAI)-encoded type IV secretion system (T4SS). This scenario is closely connected with the T4SS-mediated injection of ADP-glycero-ß-D-manno-heptose (ADP-heptose) and oncoprotein CagA. While ADP-heptose links transcription factor NF-κB-induced innate immune signaling with RNA-loop-mediated DNA replication stress and introduction of DSBs, intracellular CagA targets the tumor suppressor BRCA1. The latter scenario promotes BRCAness, a disease characterized by the deficiency of effective DSB repair. In addition, genetic studies of patients demonstrated the presence of gastric cancer-associated single nucleotide polymorphisms (SNPs) in immune-regulatory and other genes as well as specific pathogenic germline variants in several crucial genes involved in homologous recombination and DNA repair, all of which are connected to H. pylori infection. Here we review the molecular mechanisms leading to chromosomal DNA damage and specific genetic aberrations in the presence or absence of H. pylori infection, and discuss their importance in gastric carcinogenesis.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Helicobacter pylori , Neoplasias Gástricas , Humanos , ADN , Daño del ADN , Helicobacter pylori/genética , Heptosas , Herpesvirus Humano 4 , Neoplasias Gástricas/genética
5.
Arch Insect Biochem Physiol ; 115(1): e22065, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38014596

RESUMEN

Suppressors of cytokine signaling (SOCS) play important roles in the regulation of growth, development, and immunity of eukaryotic organisms. SOCS7 is an important member of the SOCS family, but its physiological and pathological functions remain largely unknown in invertebrates including insects. Here, we first report the cloning of a SOCS7 gene from a domesticated silkworm (Bombyx mori), named BmSOCS7. We have characterized BmSOCS7 expression profiles in silkworm varieties susceptible or resistant to the infection of Bombyx mori nucleopolyhedrovirus (BmNPV) using the real-time fluorescence quantitative PCR. BmSOCS7 expresses highly in embryogenesis and lowly in metamorphosis in resistant silkworms but does in opposite contrast in susceptible silkworms. Its expression is at very low level in the fat body of resistant silkworms but is relatively high in the fat body of susceptible ones. BmNPV inoculation induces a transient downregulation and then a general upregulation of BmSOCS7 expression in BmN cells, while it induces a general downregulation in silkworm midgut, fat body and hemolymph with more pronounced effect in resistant silkworms than susceptible ones and more prominent in the fat body and hemolymph than the midgut. Together, our work reveals that downregulation of BmSOCS7 expression may be an important strategy for silkworm anti-BmNPV immune response, and BmSOCS7 may mainly function in the fat body and hemolymph rather than the midgut to participate in BmNPV infection process.


Asunto(s)
Bombyx , Nucleopoliedrovirus , Animales , Bombyx/metabolismo , Citocinas/metabolismo , Sistema Digestivo , Clonación Molecular
6.
Biochem J ; 480(23): 1951-1968, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-37962491

RESUMEN

The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status activated by increases in AMP or ADP relative to ATP. Once activated, it phosphorylates targets that promote ATP-generating catabolic pathways or inhibit ATP-consuming anabolic pathways, helping to restore cellular energy balance. Analysis of human cancer genome studies reveals that the PRKAA2 gene (encoding the α2 isoform of the catalytic subunit) is often subject to mis-sense mutations in cancer, particularly in melanoma and non-melanoma skin cancers, where up to 70 mis-sense mutations have been documented, often accompanied by loss of the tumour suppressor NF1. Recently it has been reported that knockout of PRKAA2 in NF1-deficient melanoma cells promoted anchorage-independent growth in vitro, as well as growth as xenografts in immunodeficient mice in vivo, suggesting that AMPK-α2 can act as a tumour suppressor in that context. However, very few of the mis-sense mutations in PRKAA2 that occur in human skin cancer and melanoma have been tested to see whether they cause loss-of-function. We have addressed this by making most of the reported mutations and testing their activity when expressed in AMPK knockout cells. Of 55 different mis-sense mutations (representing 75 cases), 9 (12%) appeared to cause a total loss of activity, 18 (24%) a partial loss, 11 (15%) an increase in phenformin-stimulated kinase activity, while just 37 (49%) had no clear effect on kinase activity. This supports the idea that AMPK-α2 acts as a tumour suppressor in the context of human skin cancer.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Animales , Humanos , Ratones , Adenosina Trifosfato/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Dominio Catalítico , Melanoma/genética , Mutación , Neoplasias Cutáneas/genética
7.
Drug Resist Updat ; 71: 101009, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37797431

RESUMEN

Human P-glycoprotein (P-gp) or ABCB1 is overexpressed in many cancers and has been implicated in altering the bioavailability of chemotherapeutic drugs due to their efflux, resulting in the development of chemoresistance. To elucidate the mechanistic aspects and structure-function relationships of P-gp, we previously utilized a tyrosine (Y)-enriched P-gp mutant (15Y) and demonstrated that at least 15 conserved residues in the drug-binding pocket of P-gp are responsible for optimal substrate interaction and transport. To further understand the role of these 15 residues, two new mutants were generated, namely 6Y with the substitution of six residues (F72, F303, I306, F314, F336 and L339) with Y in transmembrane domain (TMD) 1 and 9Y with nine substitutions (F732, F759, F770, F938, F942, M949, L975, F983 and F994) in TMD2. Although both the mutants were expressed at normal levels at the cell surface, the 6Y mutant failed to transport all the tested substrates except Bodipy-verapamil, whereas the 9Y mutant effluxed all tested substrates in a manner very similar to that of the wild-type protein. Further mutational analysis revealed that two second-site mutations, one in intracellular helix (ICH) 4 (F916Y) and one in the Q loop of nucleotide-binding domain (NBD) 1 (F480Y) restored the transport function of 6Y. Additional biochemical data and comparative molecular dynamics simulations of the 6Y and 6Y+F916Y mutant indicate that the Q-loop of NBD1 of P-gp communicates with the substrate-binding sites in the transmembrane region through ICH4. This is the first evidence for the existence of second-site suppressors in human P-gp that allow recovery of the loss of transport function caused by primary mutations. Further study of such mutations could facilitate mapping of the communication pathway between the substrate-binding pocket and the NBDs of P-gp and possibly other ABC drug transporters.


Asunto(s)
Neoplasias , Supresión Genética , Humanos , Mutación , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP , Nucleótidos
8.
Yale J Biol Med ; 97(2): 165-177, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38947108

RESUMEN

Background: Chronic rhinosinusitis (CRS) is an inflammatory condition classified into chronic rhinosinusitis with nasal polyps (CRSwNP) and chronic rhinosinusitis without nasal polyps (CRSsNP). Th cells manage inflammatory cells in CRS. Suppressor of Cytokine Signaling (SOCS) proteins regulate Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway in Th cells by polarizing toward Th1, Th2, and Th17 cells. This study evaluated the levels of SOCS1,3,5 in CRS patients to find associations with Th cells. Methods: In this cross-sectional study, 20 CRSwNP patients, 12 CRSsNP patients, and 12 controls participated. The infiltration of CD4+ T cells was determined using immunohistochemistry. The expression of specific transcription factors and SOCS proteins was assessed using real-time PCR. Cytokine levels were evaluated using ELISA. SOCS protein levels were investigated using western blot analysis. Results: The expression of SOCS3 increased in the CRSwNP group compared to CRSsNP and control groups (p <0.001). SOCS3 protein levels increased in the CRSwNP group compared to CRSsNP (p <0.05) and control (p <0.001) groups. Although there was a significant difference in SOCS5 expression between CRSsNP and control groups, SOCS5 protein levels were significantly different between CRSsNP and control (p <0.001) and CRSwNP (p <0.05) groups. Conclusions: Targeted therapies may be suggested for CRS by modulating SOCS3 and SOCS5 proteins that are responsible for polarization of Th cells toward Th2 or Th1 cells, respectively. JAK-STAT pathway targeting, which encompasses numerous cells, can be limited to SOCS proteins to more effectively orchestrate Th cell differentiation.


Asunto(s)
Rinitis , Sinusitis , Proteína 3 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas , Humanos , Sinusitis/metabolismo , Sinusitis/inmunología , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Enfermedad Crónica , Masculino , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Rinitis/metabolismo , Rinitis/inmunología , Femenino , Adulto , Persona de Mediana Edad , Linfocitos T Colaboradores-Inductores/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Estudios Transversales , Pólipos Nasales/metabolismo , Citocinas/metabolismo , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Proteína 1 Supresora de la Señalización de Citocinas/genética , Transducción de Señal , Rinosinusitis
9.
Microbiology (Reading) ; 169(10)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37818937

RESUMEN

Pseudomonas aeruginosa PAO1 has two aerobic pathways for synthesis of unsaturated fatty acids (UFAs), DesA and DesB plus the oxygen independent FabAB pathway. The DesA desaturase acts on saturated acyl chains of membrane phospholipid bilayers whereas the substrates of the DesB desaturase are thought to be long chain saturated acyl-CoA thioesters derived from exogeneous saturated fatty acids that are required to support DesB-dependent growth. Under suitable aerobic conditions either of these membrane-bound desaturates can support growth of P. aeruginosa ∆fabA strains lacking the oxygen independent FabAB pathway. We previously studied function of the desA desaturase of P. putida in a P. aeruginosa ∆fabA ∆desA strain that required supplementation with a UFA for growth and noted bypass suppression of the P. aeruginosa ∆fabA ∆desA strain that restored UFA synthesis. We report three genes encoding lipid metabolism proteins that give rise to suppressor strains that bypass loss of the DesA and oxygen independent FabAB pathways.


Asunto(s)
Ácidos Grasos , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Oxígeno/metabolismo
10.
Immunol Cell Biol ; 101(4): 333-344, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36702633

RESUMEN

Central nervous system virus infections are a major cause of morbidity and mortality worldwide and a significant global public health concern. As in many tissues, inflammation and immune responses in the brain, despite their protective roles, can also be harmful. Control of brain inflammation is important in many neurological diseases from encephalitis to multiple sclerosis and neurogenerative disease. The suppressors of cytokine signaling (SOCS) proteins are a key mechanism controlling inflammatory and immune responses across all tissues including the brain. Using a mouse model system, we demonstrate that lack of SOCS4 results in changes in the pathogenesis and clinical outcome of a neurotropic virus infection. Relative to wild-type mice, SOCS4-deficient mice showed accelerated clearance of virus from the brain, lower levels of persisting viral RNA in the brain, increased neuroinflammation and more severe neuropathology. We conclude that, in the mouse brain, SOCS4 is a vital regulator of antiviral immunity that mediates the critical balance between immunopathology and virus persistence.


Asunto(s)
Citocinas , Encefalitis , Proteínas Supresoras de la Señalización de Citocinas , Animales , Ratones , Citocinas/inmunología , Encefalitis/inmunología , Encefalitis/virología , Inmunidad , Virus de los Bosques Semliki , Transducción de Señal , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo
11.
BMC Cancer ; 23(1): 1245, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110859

RESUMEN

BACKGROUND: Cardiac Myxoma is a primary tumor of heart. Its origins, rarity of the occurrence of primary cardiac tumors and how it may be related to limited cardiac regenerative potential, are not yet entirely known. This study investigates the key cardiac genes/ transcription factors (TFs) and signaling pathways to understand these important questions. METHODS: Databases including PubMed, MEDLINE, and Google Scholar were searched for published articles without any date restrictions, involving cardiac myxoma, cardiac genes/TFs/signaling pathways and their roles in cardiogenesis, proliferation, differentiation, key interactions and tumorigenesis, with focus on cardiomyocytes. RESULTS: The cardiac genetic landscape is governed by a very tight control between proliferation and differentiation-related genes/TFs/pathways. Cardiac myxoma originates possibly as a consequence of dysregulations in the gene expression of differentiation regulators including Tbx5, GATA4, HAND1/2, MYOCD, HOPX, BMPs. Such dysregulations switch the expression of cardiomyocytes into progenitor-like state in cardiac myxoma development by dysregulating Isl1, Baf60 complex, Wnt, FGF, Notch, Mef2c and others. The Nkx2-5 and MSX2 contribute predominantly to both proliferation and differentiation of Cardiac Progenitor Cells (CPCs), may possibly serve roles based on the microenvironment and the direction of cell circuitry in cardiac tumorigenesis. The Nkx2-5 in cardiac myxoma may serve to limit progression of tumorigenesis as it has massive control over the proliferation of CPCs. The cardiac cell type-specific genetic programming plays governing role in controlling the tumorigenesis and regenerative potential. CONCLUSION: The cardiomyocytes have very limited proliferative and regenerative potential. They survive for long periods of time and tightly maintain the gene expression of differentiation genes such as Tbx5, GATA4 that interact with tumor suppressors (TS) and exert TS like effect. The total effect such gene expression exerts is responsible for the rare occurrence and benign nature of primary cardiac tumors. This prevents the progression of tumorigenesis. But this also limits the regenerative and proliferative potential of cardiomyocytes. Cardiac Myxoma develops as a consequence of dysregulations in these key genes which revert the cells towards progenitor-like state, hallmark of CM. The CM development in carney complex also signifies the role of TS in cardiac cells.


Asunto(s)
Neoplasias Cardíacas , Mixoma , Humanos , Factores de Transcripción/metabolismo , Miocitos Cardíacos/fisiología , Diferenciación Celular/genética , Neoplasias Cardíacas/genética , Neoplasias Cardíacas/patología , Mixoma/genética , Mixoma/metabolismo , Mixoma/patología , Carcinogénesis/genética , Carcinogénesis/metabolismo , Microambiente Tumoral
12.
Hematol Oncol ; 41(3): 293-300, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36433773

RESUMEN

Chronic lymphocytic leukemia can evolve to an aggressive lymphoma-in most of the cases diffuse large B cells lymphoma, rarely Hodgkin lymphoma-and this complication is defined Richter syndrome (RS). Immunogenotypic features that characterize RS include unmutated IgHV status with high prevalence of IgHV4-39/D6-13/J5 sequence; deletion of chromosome 17p or 11q; activation of oncogenes as NOTCH1 and c-MYC; inactivation of onco-suppressors as TP53 and CDKN2A; high expression of CD38 in lymph-nodes. The prognosis of this condition is very poor: patients experience a rapid clinical deterioration with frequent therapeutic failure since the current options include suboptimal strategies as standard chemo-immunotherapy followed by hematopoietic stem cells transplantation or enrollment in clinical trials which investigate the efficacy of target drugs. Understanding the biology of such a heterogeneous condition is crucial to personalize the treatment and improve patient's survival.


Asunto(s)
Enfermedad de Hodgkin , Leucemia Linfocítica Crónica de Células B , Linfoma de Células B Grandes Difuso , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Pronóstico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Enfermedad de Hodgkin/patología , Transformación Celular Neoplásica/genética
13.
Fish Shellfish Immunol ; 134: 108629, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36822381

RESUMEN

The suppressor of cytokine signaling (SOCS) proteins family comprising eight proteins (SOCS1-7 and cytokine-inducible SH2-containing (CIS)) are classical feedback inhibitors of cytokine signaling. Although the biological role of CIS and SOCS1-3 have been extensively studied, the biological functions of SOCS4-7 remain unclear. Here, we elucidated the molecular characteristics, expression profile, immune response, anti-viral potential, and effect on cell proliferation of Phsocs5b, a member of the SOCS protein family from redlip mullet (Planiliza haematocheilus); phsocs5b comprised 1695 nucleotides. It was 564 amino acids long with a molecular weight of 62.3 kDa and a theoretical isoelectric point of 8.95. Like SOCS4-7 proteins, Phsocs5b comprised an SH2 domain, SOCS box domain, and a long N-terminal. SH2 domain is highly identical to its orthologs in other vertebrates. Phsocs5b, highly expressed in the brain tissue, was localized in the cytoplasm. Temporal changes in phsocs5b expression were observed following immune stimulation with polyinosinic: polycytidylic acid, lipopolysaccharide, and Lactococcus garvieae. In FHM cells, Phsocs5b overexpression suppressed the viral hemorrhagic septicemia virus (VHSV) infection and epidermal growth factor receptor (egfr) expression but increased the mRNA levels of pi3k, akt, pro-inflammatory cytokines (il1ß and il8), and anti-viral genes (isg15 and ifn). Overall, our findings suggest that Phsocs5b attenuates VHSV infection, either by hindering the cell entry via degradation of Egfr, enhancing pro-inflammatory cytokines and anti-viral factor production, or both. The results also indicated that Phsocs5b could directly activate Pi3k/Akt pathway by itself, thus enhancing the proliferation and migration of cells. Taken together, Phsocs5b may be considered a potential therapeutic target to enhance immune responses while positively regulating the proliferation and migration of cells.


Asunto(s)
Antivirales , Smegmamorpha , Animales , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/genética , Citocinas/metabolismo , Receptores ErbB , Inmunidad , Proliferación Celular , Smegmamorpha/metabolismo
14.
Proc Natl Acad Sci U S A ; 117(5): 2645-2655, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31964836

RESUMEN

The main risk factor for stomach cancer, the third most common cause of cancer death worldwide, is infection with Helicobacter pylori bacterial strains that inject cytotoxin-associated gene A (CagA). As the first described bacterial oncoprotein, CagA causes gastric epithelial cell transformation by promoting an epithelial-to-mesenchymal transition (EMT)-like phenotype that disrupts junctions and enhances motility and invasiveness of the infected cells. However, the mechanism by which CagA disrupts gastric epithelial cell polarity to achieve its oncogenicity is not fully understood. Here we found that the apoptosis-stimulating protein of p53 2 (ASPP2), a host tumor suppressor and an important CagA target, contributes to the survival of cagA-positive H. pylori in the lumen of infected gastric organoids. Mechanistically, the CagA-ASPP2 interaction is a key event that promotes remodeling of the partitioning-defective (PAR) polarity complex and leads to loss of cell polarity of infected cells. Blockade of cagA-positive H. pylori ASPP2 signaling by inhibitors of the EGFR (epidermal growth factor receptor) signaling pathway-identified by a high-content imaging screen-or by a CagA-binding ASPP2 peptide, prevents the loss of cell polarity and decreases the survival of H. pylori in infected organoids. These findings suggest that maintaining the host cell-polarity barrier would reduce the detrimental consequences of infection by pathogenic bacteria, such as H. pylori, that exploit the epithelial mucosal surface to colonize the host environment.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Bacterianas/metabolismo , Células Epiteliales/citología , Infecciones por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , Organoides/microbiología , Antígenos Bacterianos/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Bacterianas/genética , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/microbiología , Helicobacter pylori/genética , Helicobacter pylori/crecimiento & desarrollo , Interacciones Huésped-Patógeno , Humanos , Organoides/metabolismo , Unión Proteica , Estómago/microbiología
15.
Int J Mol Sci ; 24(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37511127

RESUMEN

Osteosarcoma (OS) is the predominant primary bone tumor in the pediatric and adolescent populations. It has high metastatic potential, with the lungs being the most common site of metastasis. In contrast to many other sarcomas, OS lacks conserved translocations or genetic mutations; instead, it has heterogeneous abnormalities, including somatic DNA copy number alteration, ploidy, chromosomal amplification, and chromosomal loss and gain. Unfortunately, clinical outcomes have not significantly improved in over 30 years. Currently, no effective molecularly targeted therapies are available for this disease. Several genomic studies showed inactivation in the tumor suppressor genes, including p53, RB, and ATRX, and hyperactivation of the tumor promoter genes, including MYC and MDM2, in OS. Alterations in the major signaling pathways, including the PI3K/AKT/mTOR, JAK/STAT, Wnt/ß-catenin, NOTCH, Hedgehog/Gli, TGF-ß, RTKs, RANK/RANKL, and NF-κB signaling pathways, have been identified in OS development and metastasis. Although OS treatment is currently based on surgical excision and systematic multiagent therapies, several potential targeted therapies are in development. This review focuses on the major signaling pathways of OS, and we propose a biological rationale to consider novel and targeted therapies in the future.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Adolescente , Humanos , Niño , Fosfatidilinositol 3-Quinasas , Proteínas Hedgehog , Osteosarcoma/metabolismo , Carcinogénesis/genética , Transformación Celular Neoplásica , Neoplasias Óseas/metabolismo
16.
Int J Mol Sci ; 24(10)2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37240394

RESUMEN

One of the systems of plant defense against viral infection is RNA silencing, or RNA interference (RNAi), in which small RNAs derived from viral genomic RNAs and/or mRNAs serve as guides to target an Argonaute nuclease (AGO) to virus-specific RNAs. Complementary base pairing between the small interfering RNA incorporated into the AGO-based protein complex and viral RNA results in the target cleavage or translational repression. As a counter-defensive strategy, viruses have evolved to acquire viral silencing suppressors (VSRs) to inhibit the host plant RNAi pathway. Plant virus VSR proteins use multiple mechanisms to inhibit silencing. VSRs are often multifunctional proteins that perform additional functions in the virus infection cycle, particularly, cell-to-cell movement, genome encapsidation, or replication. This paper summarizes the available data on the proteins with dual VSR/movement protein activity used by plant viruses of nine orders to override the protective silencing response and reviews the different molecular mechanisms employed by these proteins to suppress RNAi.


Asunto(s)
Virus de Plantas , Virus ARN , Interferencia de ARN , Proteínas de Movimiento Viral en Plantas/genética , ARN Interferente Pequeño/genética , Virus ARN/genética , ARN Viral/genética , Plantas/genética , Virus de Plantas/genética
17.
Plant J ; 105(5): 1374-1389, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33283912

RESUMEN

The molecular mechanism of high-temperature stress (HTS) response, in plants, has so far been investigated using transcriptomics, while the dynamics of HTS-responsive proteome remain unexplored. We examined the adaptive responses of the resilient wheat cultivar 'Unnat Halna' and dissected the HTS-responsive proteome landscape. This led to the identification of 55 HTS-responsive proteins (HRPs), which are predominantly involved in metabolism and defense pathways. Interestingly, HRPs included a 2-cysteine peroxiredoxin (2CP), designated Ta2CP, presumably involved in stress perception and adaptation. Complementation of Ta2CP in yeast and heterologous expression in Arabidopsis demonstrated its role in thermotolerance. Both Ta2CP silencing and overexpression inferred the involvement of Ta2CP in plant growth and chlorophyll biosynthesis. We demonstrated that Ta2CP interacts with protochlorophyllide reductase b, TaPORB. Reduced TaPORB expression was found in Ta2cp-silenced plants, while upregulation was observed in Ta2CP-overexpressed plants. Furthermore, the downregulation of Ta2CP in Taporb-silenced plants and reduction of protochlorophyllide in Ta2cp-silenced plants suggested the key role of Ta2CP in chlorophyll metabolism. Additionally, the transcript levels of AGPase1 and starch were increased in Ta2cp-silenced plants. More significantly, HTS-treated Ta2cp-silenced plants showed adaptive responses despite increased reactive oxygen species and peroxide concentrations, which might help in rapid induction of high-temperature acclimation.


Asunto(s)
Peroxirredoxinas/metabolismo , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Antioxidantes/metabolismo , Citoplasma/metabolismo , Regulación de la Expresión Génica de las Plantas , Calor , Proteínas de Plantas/genética , Triticum/genética
18.
J Gen Virol ; 103(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36399122

RESUMEN

To counteract RNA interference-mediated antiviral defence, virus genomes evolved to express proteins that inhibit this plant defence mechanism. Using six independent biological approaches, we show that orchid fleck dichorhavirus citrus strain (OFV-citrus) movement protein (MP) may act as a viral suppressor of RNA silencing (VSR). By using the alfalfa mosaic virus (AMV) RNA 3 expression vector, it was observed that the MP triggered necrosis response in transgenic tobacco leaves and increased the viral RNA (vRNA) accumulation. The use of the potato virus X (PVX) expression system revealed that the cis expression of MP increased both the severity of the PVX infection and the accumulation of PVX RNAs, further supporting that MP could act as an RNA silencing suppressor (RSS). From the analysis of the RSS-defective turnip crinkle virus (TCV), we do not find local RSS activity for MP, suggesting a link between MP suppressor activity and the prevention of systemic silencing. In the analysis of local suppressive activity using the GFP-based agroinfiltration assay in Nicotiana benthamiana (16 c line), we do not identify local RSS activity for the five OFV RNA1-encoded proteins. However, when evaluating the small interfering RNA (siRNA) accumulation, we find that the expression of MP significantly reduces the accumulation of GFP-derived siRNA. Finally, we examine whether the MP can prevent systemic silencing in 16c plants. Our findings show that MP inhibits the long-distance spread of RNA silencing, but does not affect the short-distance spread. Together, our findings indicate that MP is part of OFV's counter-defence mechanism, acting mainly in the prevention of systemic long-distance silencing. This work presents the first report of a VSR for a member of the genus Dichorhavirus.


Asunto(s)
Enfermedades de las Plantas , Rhabdoviridae , Interferencia de ARN , ARN Interferente Pequeño , ARN Bicatenario
19.
Chembiochem ; 23(11): e202100665, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35333001

RESUMEN

The tumor suppressor protein p53 is a transcription factor that is referred to as the "guardian of the genome" and plays an important role in cancer development. p53 is active as a homotetramer; the S100ß homodimer binds to the intrinsically disordered C-terminus of p53 affecting its transcriptional activity. The p53/S100ß complex is regarded as highly promising therapeutic target in cancer. It has been suggested that S100ß exerts its oncogenic effects by altering the p53 oligomeric state. Our aim was to study the structures and oligomerization behavior of different p53/S100ß complexes by ESI-MS, XL-MS, and SPR. Wild-type p53 and single amino acid variants, representing different oligomeric states of p53 were individually investigated regarding their binding behavior towards S100ß. The stoichiometry of the different p53/S100ß complexes were determined by ESI-MS showing that tetrameric, dimeric, and monomeric p53 variants all bind to an S100ß dimer. In addition, XL-MS revealed the topologies of the p53/S100ß complexes to be independent of p53's oligomeric state. With SPR, the thermodynamic parameters were determined for S100ß binding to tetrameric, dimeric, or monomeric p53 variants. Our data prove that the S100ß homodimer binds to different oligomeric states of p53 with similar binding affinities. This emphasizes the need for alternative explanations to describe the molecular mechanisms underlying p53/S100ß interaction.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Unión Proteica , Subunidad beta de la Proteína de Unión al Calcio S100 , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/química
20.
Mol Carcinog ; 61(12): 1143-1160, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36239557

RESUMEN

In recent years, significant progress has been made to the use-case of small peptides because of their diversified edifice and hence their versatile application scope in cancer therapy. Here we identify the heterochiral dipeptide H-D Phe-L Phe-OH (F1) as a potent inducer of the metastatic suppressor NM23H1. We divulge the effect of F1 on the major EMT/metastasis-associated genes and the implications on the invasion and migration ability of cancer cells. The anti-invasive potential of F1 was directly correlated with NM23H1 expression. Mechanistically, F1 treatment elevated p53 levels as validated by localization and transcriptional studies. In the NM23H1 knockdown condition, F1 failed to induce any p53 expression/nuclear localization, indicating that the upregulation in p53 expression by F1 is NM23H1 dependent. We also demonstrate how the antimetastatic potential of F1 is primarily mediated through NM23H1 irrespective of the p53 status of the cell. However, both NM23H1 and a functional p53 protein in conjunction govern the apoptotic and cytostatic potential of F1. Coimmunoprecipitation studies unraveled the augmentation of the p53 and NM23H1 interaction in p53 wild-type cells. However, in p53 mutated cells, no such enrichment was evidenced. We employed mouse isogenic cell lines (4T-1 and 4T-1 p53) to determine the in vivo efficacy of F1 (spontaneous and experimental models). Decreased tumor volume in the cohort injected with 4T-1 p53 cells demonstrated that while the antimetastatic potential of F1 was reliant on NM23H1, p53 activation was required for ablation of primary tumor burden. Our findings unravel that F1 treatment induces significant abrogation of the migration, invasion and metastatic potential of both p53 wild-type and p53 deficient cancers mediated through NM23H1.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Ratones , Animales , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Dipéptidos/farmacología , Dipéptidos/metabolismo , Fenilalanina/farmacología , Línea Celular , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA