Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39066049

RESUMEN

In practical conditions, near-field acoustic holography (NAH) requires the measurement environment to be a free sound field. If vibrating objects are located above the reflective ground, the sound field becomes non-free in the presence of a reflecting surface, and conventional NAH may not identify the sound source. In this work, two types of half-space NAH techniques based on the Helmholtz equation least-squares (HELS) method are developed to reconstruct the sound field above a reflecting plane. The techniques are devised by introducing the concept of equivalent source in HELS-method-based NAH. Two equivalent sources are tested. In one technique, spherical waves are used as the equivalent source, and the sound reflected from the reflecting surface is regarded as a linear superposition of orthogonal spherical wave functions of different orders located below the reflecting surface. In the other technique, some monopoles are considered equivalent sources, and the reflected sound is considered a series of sounds generated by simple sources distributed under the reflecting surface. The sound field is reconstructed by matching the pressure measured on the holographic surface with the orthogonal spherical wave source in the vibrating object and replacing the reflected sound with an equivalent source. Therefore, neither technique is related to the surface impedance of the reflected plane. Compared with the HELS method, both methods show higher reconstruction accuracy for a half-space sound field and are expected to broaden the application range of HELS-method-based NAH techniques.

2.
Sensors (Basel) ; 22(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35684710

RESUMEN

Stretchable materials are widely used for the realization of various sensors, but their radio frequency behavior has not been fully characterized so far. Here, an innovative method is proposed for deriving the surface impedance of this kind of materials. The material characterization represents a fundamental step for exploiting the material as a sensing element within a radio frequency device. Indeed, the proposed method is capable of retrieving the surface impedance of the material while it is being stretched, thus deriving a correspondent calibration curve. The characterization approach is based on a contactless measurement of the scattering parameters using waveguides. By exploiting the measured scattering parameters, the variation in the surface impedance as a function of both frequency and strain is recovered through an analytical inversion procedure. Numerical simulations were initially performed trough a numerical electromagnetic simulator, and subsequently, experimental validation was carried out using a dedicated test bench designed to ensure a contactless measurement of the stretchable material.

3.
Materials (Basel) ; 16(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36614544

RESUMEN

We present the multifrequency measurements of the surface resistance of spark-plasma-sintered MgB2 performed through a dielectric loaded resonator operating at 16.5 and 26.7 GHz. By normally applying magnetic fields ≤1.2 T to the sample surface, we drove it in the mixed state. By means of data-rooted analysis, we found that the sample vortex dynamics could be fully described within a single-component approach. Pinning phenomena were present and characterized by a depinning frequency smaller than the measurement ones. The multiband nature of the superconductor emerged in the flux-flow resistivity, whose field dependence could be interpreted well within theoretical models. By exploiting them, the upper critical field was extracted in the low-temperature range, which exhibited a consistent temperature trend with the values obtained at the onset of the resistive transition near Tc, and was well in line with literature data on other polycrystalline samples.

4.
Nanoscale Res Lett ; 14(1): 194, 2019 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-31165266

RESUMEN

Understanding and manipulation of surface impedance in graphene hybrid structure is a significant issue for applications of graphene-based optoelectronics devices. In order to achieve this purpose in the terahertz region, analytical expressions for the impedances of metasurface were derived, which allows us to easily understand the relationship between physical dimensions and impedance. Simulation results show an excellent agreement with the analytical predictions. In addition, we focus on the synthetic impedance when square patch and graphene sheet joined together, discuss the influence of the size of metasurface as well as chemical potentiality as for graphene on the synthetic impedance. Based on these results, a number of absorbers as well as optical devices can be designed that utilize impedance metasurfaces.

5.
Bioelectrochemistry ; 130: 107337, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31400566

RESUMEN

We analyzed the electrode geometry to obtain the potential (E) and current density (J) distributions at the surface of a skin phantom (SP), in this case a planar surface. Two electrode geometries were tested: a circular electrode (CiE) and a rectangular electrode (ReE). First, by a finite element simulation, we calculated the E and J distributions at the surface of the SP. Second, we determined the resistivity properties as a function of the electrochemical impedance. Three- and four-electrode configurations were used to measure the E versus distance between the reference electrodes (d). For the ReE, the electrolyte resistance (Re) measurements show a linear behavior with respect to "d" if the zone of the linear distribution of E and the homogeneous current density (JH) is considered. In contrast, the CiE shows nonlinear behavior due to the absence of that zone of the linear distribution of E and JH in the entire range. For ReE, we deduced that the behavior of Re versus "d" is related to the material resistivity. Consequently, the ReE geometry improves the Re measurements on the surface and shows us a way to control the behavior of this element in planar samples such as skin.


Asunto(s)
Electrólitos/análisis , Piel/química , Simulación por Computador , Impedancia Eléctrica , Electrodos , Análisis de Elementos Finitos , Humanos , Modelos Biológicos
6.
Proc Math Phys Eng Sci ; 475(2231): 20190371, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31824217

RESUMEN

The paper is concerned with the interfacial acoustic waves localized at the internal boundary of two different perfectly bonded semi-infinite one-dimensional phononic crystals represented by periodically layered or functionally graded elastic structures. The unit cell is assumed symmetric relative to its midplane, whereas the constituent materials may be of arbitrary anisotropy. The issue of the maximum possible number of interfacial waves per full stop band of a phononic bicrystal is investigated. It is proved that, given a fixed tangential wavenumber, the lowest stop band admits at most one interfacial wave, while an upper stop band admits up to three interfacial waves. The results obtained for the case of generally anisotropic bicrystals are specialized for the case of a symmetric sagittal plane.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA