RESUMEN
The emergence of hypervirulent clade 2 Clostridioides difficile is associated with severe symptoms and accounts for >20% of global infections. TcdB is a dominant virulence factor of C. difficile, and clade 2 strains exclusively express two TcdB variants (TcdB2 and TcdB4) that use unknown receptors distinct from the classic TcdB. Here, we performed CRISPR/Cas9 screens for TcdB4 and identified tissue factor pathway inhibitor (TFPI) as its receptor. Using cryo-EM, we determined a complex structure of the full-length TcdB4 with TFPI, defining a common receptor-binding region for TcdB. Residue variations within this region divide major TcdB variants into 2 classes: one recognizes Frizzled (FZD), and the other recognizes TFPI. TFPI is highly expressed in the intestinal glands, and recombinant TFPI protects the colonic epithelium from TcdB2/4. These findings establish TFPI as a colonic crypt receptor for TcdB from clade 2 C. difficile and reveal new mechanisms for CDI pathogenesis.
Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Proteínas Bacterianas/química , Toxinas Bacterianas/química , Clostridioides difficile/genética , Lipoproteínas/genéticaRESUMEN
Clostridioides difficile infection (CDI) is a predominant cause of intestinal infections. The intrinsic enteric nervous system (ENS) occupies the intestinal tissue in large numbers and intricately regulates various aspects of intestinal function. Nonetheless, the specific effects of CDI on the intrinsic ENS remain underexplored. Herein, we employed the TcdB variant (TcdB2) derived from hypervirulent C. difficile to elucidate the impact of CDI on neurons located in colonic wall. We found that TcdB2 directly induced dose-dependent cytopathic effects on enteric neurons both in vitro and in adult mice colons. Notably, an increased expression of choline acetyltransferase (ChAT) and neural nitric oxide synthase (nNOS) in colonic neurons prior to the onset of cytopathic changes following treatment with TcdB2 were observed, both in vivo and in vitro. These findings suggest that during CDI, TcdB not only causes neuronal loss but also alters the composition of neurotransmitters in the ENS.
RESUMEN
Sequence differences among the subtypes of Clostridioides difficile toxin TcdB (2,366 amino acids) are broadly distributed across the entire protein, with the notable exception of 76 residues at the protein's carboxy terminus. This sequence invariable region (SIR) is identical at the DNA and protein level among the TcdB variants, suggesting this string of amino acids has undergone selective pressure to prevent alterations. The functional role of the SIR domain in TcdB has not been determined. Analysis of a recombinantly constructed TcdB mutant lacking the SIR domain did not identify changes in TcdB's enzymatic or cytopathic activities. To further assess the SIR region, we constructed a C. difficile strain with the final 228 bp deleted from the tcdB gene, resulting in the production of a truncated form of TcdB lacking the SIR (TcdB2∆2291-2366). Using a combination of approaches, we found in the absence of the SIR sequence TcdB2∆2291-2366 retained cytotoxic activity but was not secreted from C. difficile. TcdB2∆2291-2366 was not released from the cell under autolytic conditions, indicating the SIR is involved in a more discrete step in toxin escape from the bacterium. Fractionation experiments combined with antibody detection found that TcdB2∆2291-2366 accumulates at the cell membrane but is unable to complete steps in secretion beyond this point. These data suggest conservation of the SIR domain across variants of TcdB could be influenced by the sequence's role in efficient escape of the toxin from C. difficile. IMPORTANCE: Clostridioides difficile is a leading cause of antibiotic associated disease in the United States. The primary virulence factors produced by C. difficile are two large glucosylating toxins TcdA and TcdB. To date, several sequence variants of TcdB have been identified that differ in various functional properties. Here, we identified a highly conserved region among TcdB subtypes that is required for release of the toxin from C. difficile. This study reveals a putative role for the longest stretch of invariable sequence among TcdB subtypes and provides new details regarding toxin release into the extracellular environment. Improving our understanding of the functional roles of the conserved regions of TcdB variants aids in the development of new, broadly applicable strategies to treat CDI.
Asunto(s)
Proteínas Bacterianas , Toxinas Bacterianas , Clostridioides difficile , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Humanos , Regulación Bacteriana de la Expresión Génica , Secuencia de Aminoácidos , AnimalesRESUMEN
In this report we present seven lines of bioinformatic evidence supporting the conclusion that the Pentameric Ligand-gated Ion Channel (pLIC) Family is a member of the Voltage-gated Ion Channel (VIC) Superfamily. In our approach, we used the Transporter Classification Database (TCDB) as a reference and applied a series of bioinformatic methods to search for similarities between the pLIC family and members of the VIC superfamily. These include: (1) sequence similarity, (2) compatibility of topology and hydropathy profiles, (3) shared domains, (4) conserved motifs, (5) similarity of Hidden Markov Model profiles between families, (6) common 3D structural folds, and (7) clustering analysis of all families. Furthermore, sequence and structural comparisons as well as the identification of a 3-TMS repeat unit in the VIC superfamily suggests that the sixth transmembrane segment evolved into a re-entrant loop. This evidence suggests that the voltage-sensor domain and the channel domain have a common origin. The classification of the pLIC family within the VIC superfamily sheds light onto the topological origins of this family and its evolution, which will facilitate experimental verification and further research into this superfamily by the scientific community.
Asunto(s)
Canales Iónicos Activados por Ligandos , Canales Iónicos Activados por Ligandos/metabolismo , Canales Iónicos Activados por Ligandos/química , Canales Iónicos Activados por Ligandos/genética , Humanos , Secuencia de Aminoácidos , Biología Computacional/métodos , Modelos Moleculares , Familia de Multigenes , Animales , Dominios Proteicos , Filogenia , Cadenas de MarkovRESUMEN
Clostridioides difficile infection (CDI) causes nosocomial/antibiotic-associated gastrointestinal diseases with dramatically increasing global incidence and mortality rates. The main C. difficile virulence factors, toxins A and B (TcdA/TcdB), cause cytopathic/cytotoxic effects and inflammation. We demonstrated that TcdB induces caspase-dependent, mitochondria-independent enteric glial cell (EGC) apoptosis that is enhanced by the pro-inflammatory cytokines TNF-α and IFN-γ (CKs) by increasing caspase-3/7/9 and PARP activation. Because this cytotoxic synergism is important for CDI pathogenesis, we investigated the apoptotic pathways involved in TcdB- and TcdB + CK-induced apoptosis indepth. EGCs were pre-treated with the inhibitors BAF or Q-VD-OPh (pan-caspase), Z-DEVD-fmk (caspase-3/7), Z-IETD-fmk (caspase-8), PD150606 (calpains), and CA-074Me (cathepsin B) 1 h before TcdB exposure, while CKs were given 1.5 h after TcdB exposure, and assays were performed at 24 h. TcdB and TcdB + CKs induced apoptosis through three signalling pathways activated by calpains, caspases and cathepsins, which all are involved both in induction and execution apoptotic signalling under both conditions but to different degrees in TcdB and TcdB + CKs especially as regards to signal transduction mediated by these proteases towards downstream effects (apoptosis). Calpain activation by Ca2+ influx is the first pro-apoptotic event in TcdB- and TcdB + CK-induced EGC apoptosis and causes caspase-3, caspase-7 and PARP activation. PARP is also directly activated by calpains which are responsible of about 75% of apoptosis in TcdB and 62% in TcdB + CK which is both effector caspase-dependent and -independent. Initiator caspase-8 activation mediated by TcdB contributes to caspase-3/caspase-7 and PARP activation and is responsible of about 28% of apoptosis in both conditions. Caspase-3/caspase-7 activation is weakly responsible of apoptosis, indeed we found that it mediates 27% of apoptosis only in TcdB. Cathepsin B contributes to triggering pro-apoptotic signal and is responsible in both conditions of about 35% of apoptosis by a caspase-independent manner, and seems to regulate the caspase-3 and caspase-7 cleaved fragment levels, highlighting the complex interaction between these cysteine protease families activated during TcdB-induced apoptosis. Further a relevant difference between TcdB- and TcdB + CK-induced apoptosis is that TcdB-induced apoptosis increased slowly reaching at 72 h the value of 18.7%, while TcdB + CK-induced apoptosis increased strongly reaching at 72 h the value of 60.6%. Apoptotic signalling activation by TcdB + CKs is enriched by TNF-α-induced NF-κB signalling, inhibition of JNK activation and activation of AKT. In conclusion, the ability of C. difficile to activate three apoptotic pathways represents an important strategy to overcome resistance against its cytotoxic activity.
Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Infecciones por Clostridium , Apoptosis/fisiología , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidad , Calpaína/metabolismo , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Caspasa 7/farmacología , Caspasas/metabolismo , Catepsina B/metabolismo , Citocinas/metabolismo , Humanos , Neuroglía/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacologíaRESUMEN
Group 3 innate lymphocytes (ILC3s) are rare immune cells localized in mucosal tissues, especially the gastrointestinal (GI) tract. Despite their rarity, they are a major source of the cytokine interleukin-22 (IL-22), which protects the GI epithelium during inflammation and infection. Although ILC3s have been demonstrated to be important for defense against Clostridioides difficile infection, the exact mechanisms through which they sense productive infection and become activated to produce IL-22 remain poorly understood. In this study, we identified a novel mechanism of ILC3 activation after exposure to C. difficile. Toxin B (TcdB) from C. difficile directly induced production of IL-22 in ILC3s, and this induction was dependent on the glucosyltransferase activity of the toxin, which inhibits small GTPases. Pharmacological inhibition of the small GTPase Cdc42 also enhanced IL-22 production in ILC3s, indicating that Cdc42 is a negative regulator of ILC3 activation. Further gene expression analysis revealed that treatment with TcdB modulated the expression of several inflammation-related genes in ILC3s. These findings demonstrate that C. difficile toxin-mediated inhibition of Cdc42 leads to the activation of ILC3s, providing evidence for how these cells are recruited into the immune response against the pathobiont.
Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Infecciones por Clostridium , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Humanos , Inmunidad Innata , Inflamación/metabolismo , LinfocitosRESUMEN
OBJECTIVE: The main objective of this study was to evaluate the glucosyltransferase activity of C. difficile TcdB on the activity of human PMNs. METHODS: To better understand the interaction between PMNs and TcdB, PMNs were treated with sub-lethal concentrations of TcdB. We evaluated: (i) the glucosylation of GTPases, (ii) the phagocytic and bactericidal activity, and (iii) PMNs activation (through quantification of TNF-α, IL-8, and expression of CD11b cell surface activation marker). RESULTS: We found that TcdB did not glucosylate RhoA and Rac1 GTPases and did not affect the phagocytic or bactericidal capacity of PMNs. Moreover, TcdB did not increase the production of TNF-α, IL-8, or the expression of activation marker CD11b. The only significant effect of TcdB on PMNs was the partial inhibition of TNF-α and IL-8 production and the diminished expression of CD11b induced by E. coli-LPS. CONCLUSION: Our results show that human PMNs are resistant to TcdB GTPase glucosyltransferase activity against RhoA and Rac1.
Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Escherichia coli/metabolismo , Glucosiltransferasas/metabolismo , Humanos , Interleucina-8 , Neutrófilos/metabolismo , Factor de Necrosis Tumoral alfaRESUMEN
The aims of this study were to isolate and identify Clostridioides difficile from cattle feces and carcasses, and slaughterhouse samples, and to determine the molecular characteristics and antibacterial susceptibility of the recovered isolates. A total of 220 samples, including 100 cattle fecal samples, 100 cattle carcass surface samples, and 20 slaughterhouse samples were used as the study material. In total, 12 (5.45%) samples, including 11 (11%) cattle fecal samples and 1 (5%) slaughterhouse sample, were found to be positive for C. difficile. On the other hand, all of the carcass samples were negative for C. difficile. A total of 11 (91.66%) isolates, including 10 fecal isolates and 1 slaughterhouse wastewater isolate, were found to be positive for the presence of the toxin genes tcdA and tcdB, whilst 1 fecal isolate was found to be negative for both genes. In addition, 3 different ERIC-PCR profiles were identified in the 11 fecal isolates. The ERIC-PCR profile of the slaughterhouse wastewater isolate was found to be similar to one of the ERIC-PCR profiles obtained from the fecal isolates. All of the isolates were resistant to ciprofloxacin and levofloxacin. Considering that the agent is a spore-forming bacterium shed in feces, the detection of C. difficile isolates of different genotypes, some carrying toxin genes, suggests that feces and slaughterhouse wastewater carrying this bacterium may pose a risk for the contamination of carcasses. The current study revealed that hygiene conditions should be performed to the maximum extent in slaughterhouses.
Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Mataderos , Animales , Antibacterianos/farmacología , Toxinas Bacterianas/análisis , Toxinas Bacterianas/genética , Bovinos , Clostridioides , Clostridioides difficile/genética , Heces/microbiología , Aguas ResidualesRESUMEN
A Clostridioides difficile infection (CDI) is the most common nosocomial infection worldwide. The main virulence factors of pathogenic C. difficile are TcdA and TcdB, which inhibit small Rho-GTPases. The inhibition of small Rho-GTPases leads to the so-called cytopathic effect, a reorganization of the actin cytoskeleton, an impairment of the colon epithelium barrier function and inflammation. Additionally, TcdB induces a necrotic cell death termed pyknosis in vitro independently from its glucosyltransferases, which are characterized by chromatin condensation and ROS production. To understand the underlying mechanism of this pyknotic effect, we conducted a large-scale phosphoproteomic study. We included the analysis of alterations in the phosphoproteome after treatment with TcdA, which was investigated for the first time. TcdA exhibited no glucosyltransferase-independent necrotic effect and was, thus, a good control to elucidate the underlying mechanism of the glucosyltransferase-independent effect of TcdB. We found RAS to be a central upstream regulator of the glucosyltransferase-independent effect of TcdB. The inhibition of RAS led to a 68% reduction in necrosis. Further analysis revealed apolipoprotein C-III (APOC3) as a possible crucial factor of CDI-induced inflammation in vivo.
Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Infecciones por Clostridium , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides , Enterotoxinas/metabolismo , Células Epiteliales/metabolismo , GTP Fosfohidrolasas , Glucosiltransferasas/metabolismo , Humanos , Inflamación , NecrosisRESUMEN
C. novyi type A produces the alpha-toxin (TcnA) that belongs to the large clostridial glucosylating toxins (LCGTs) and is able to modify small GTPases by N-acetylglucosamination on conserved threonine residues. In contrast, other LCGTs including Clostridioides difficile toxin A and toxin B (TcdA; TcdB) modify small GTPases by mono-o-glucosylation. Both modifications inactivate the GTPases and cause strong effects on GTPase-dependent signal transduction pathways and the consequent reorganization of the actin cytoskeleton leading to cell rounding and finally cell death. However, the effect of TcnA on target cells is largely unexplored. Therefore, we performed a comprehensive screening approach of TcnA treated HEp-2 cells and analyzed their proteome and their phosphoproteome using LC-MS-based methods. With this data-dependent acquisition (DDA) approach, 5086 proteins and 9427 phosphosites could be identified and quantified. Of these, 35 proteins were found to be significantly altered after toxin treatment, and 1832 phosphosites were responsive to TcnA treatment. By analyzing the TcnA-induced proteomic effects of HEp-2 cells, 23 common signaling pathways were identified to be altered, including Actin Cytoskeleton Signaling, Epithelial Adherens Junction Signaling, and Signaling by Rho Family GTPases. All these pathways are also regulated after application of TcdA or TcdB of C. difficile. After TcnA treatment the regulation on phosphorylation level was much stronger compared to the proteome level, in terms of both strength of regulation and the number of regulated phosphosites. Interestingly, various signaling pathways such as Signaling by Rho Family GTPases or Integrin Signaling were activated on proteome level while being inhibited on phosphorylation level or vice versa as observed for the Role of BRCA1 in DNA Damage Response. ZIP kinase, as well as Calmodulin-dependent protein kinases IV & II, were observed as activated while Aurora-A kinase and CDK kinases tended to be inhibited in cells treated with TcnA based on their substrate regulation pattern.
Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Proteínas de Unión al GTP Monoméricas , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Enterotoxinas/química , Glicosilación , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Fosfolipasas de Tipo C/metabolismo , Proteínas de Unión al GTP rho/metabolismoRESUMEN
Rising incidences and mortalities have drawn attention to Clostridioides difficile infections (CDIs) in recent years. The main virulence factors of this bacterium are the exotoxins TcdA and TcdB, which glucosylate Rho-GTPases and thereby inhibit Rho/actin-mediated processes in cells. This results in cell rounding, gut barrier disruption and characteristic clinical symptoms. So far, treatment of CDIs is limited and mainly restricted to some antibiotics, often leading to a vicious circle of antibiotic-induced disease recurrence. Here, we demonstrate the protective effect of the human antimicrobial peptide α-defensin-6 against TcdA, TcdB and the combination of both toxins in vitro and in vivo and unravel the underlying molecular mechanism. The defensin prevented toxin-mediated glucosylation of Rho-GTPases in cells and protected human cells, model epithelial barriers as well as zebrafish embryos from toxic effects. In vitro analyses revealed direct binding to TcdB in an SPR approach and the rapid formation of TcdB/α-defensin-6 complexes, as analyzed with fluorescent TcdB by time-lapse microscopy. In conclusion, the results imply that α-defensin-6 rapidly sequesters the toxin into complexes, which prevents its cytotoxic activity. These findings extend the understanding of how human peptides neutralize bacterial protein toxins and might be a starting point for the development of novel therapeutic options against CDIs.
Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Infecciones por Clostridium , alfa-Defensinas , Animales , Antibacterianos/farmacología , Anticuerpos Antibacterianos , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Infecciones por Clostridium/microbiología , Enterotoxinas/química , Humanos , Pez Cebra/metabolismo , alfa-Defensinas/farmacología , Proteínas de Unión al GTP rho/metabolismoRESUMEN
The major toxins of Clostridioides difficile (TcdA, TcdB, CDT) are chromosomally encoded in nearly all known strains. Following up on previous findings, we identified 5 examples of a family of putative conjugative plasmids with tcdB and cdtAB in clinical C. difficile isolates from multilocus sequence typing clades C-I, 2, and 4.
Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Clostridioides , Clostridioides difficile/genética , Enterotoxinas , Plásmidos/genéticaRESUMEN
PURPOSE: Clostridioides difficile toxin B (TcdB) plays a critical role in C. difficile infection (CDI), a common and costly healthcare-associated disease. The aim of the current study was to explore the intracellular and potent systemic effects of TcdB on human colon epithelial cells utilizing Gene Expression Omnibus and bioinformatic methods. METHODS: Two datasets (GSE63880 and GSE29008) were collected to extract data components of mRNA of TcdB-treated human colon epithelial cells; "limma" package of "R" software was used to screen the differential genes, and "pheatmap" package was applied to construct heat maps for the differential genes; Metascape website was utilized for protein-protein interaction network and Molecular Complex Detection analysis, and Genome Ontology (GO) was used to analyze the selected differential genes. Quantitative real-time PCR (qRT-PCR) and Western blot were performed to validate the expression of hub genes. RESULTS: GO terms involved in DNA replication and cell cycle were identified significantly enriched in TcdB-treated human colon epithelial cells. Moreover, the decreased expression of DNA replication-related genes, MCM complex, and CDC45 in C. difficile (TcdA-/TcdB+)-infected Caco-2 cells were validated via qRT-PCR and Western blot assays. CONCLUSIONS: In conclusion, the integrated analysis of different gene expression datasets allowed us to identify a set of genes and GO terms underlying the mechanisms of CDI induced by TcdB. It would aid in understanding of the molecular mechanisms underlying TcdB-exposed colon epithelial cells and provide the basis for developing diagnosis biomarkers, treatment, and prevention strategies.
Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/patogenicidad , Biología Computacional/métodos , Enterocolitis Seudomembranosa/patología , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Células CACO-2 , Línea Celular Tumoral , Clostridioides difficile/genética , Enterocolitis Seudomembranosa/microbiología , Células Epiteliales/patología , Expresión Génica/genética , Humanos , Mucosa Intestinal/patología , Análisis por Matrices de Proteínas , Mapas de Interacción de ProteínasRESUMEN
Clostridium difficile can cause antibiotic-associated diarrhoea or pseudo-membranous colitis in humans and animals. Currently, the various methods such as microbiological culture, cytotoxic assay, ELISA and polymerase chain reaction have been used to detect Clostridium difficile infection (CDI). These conventional methods, however, require long detection time and professional staff. The paper is to describe a simple strategy which employs immunomagnetic separation and aptamer-mediated colorimetric assay for the detection of toxin B of C. difficile (TcdB) in the stool samples. HRP-labelled aptamer against TcdB selected by SELEX was firstly captured on the surface of magnetic beads (MB) by DNA hybridization with a complementary strand. In the presence of TcdB, aptamer specifically recognized and bound TcdB, disturbing the DNA hybridization and causing the release of HRP-aptamer from MB. This reduced the catalytic capacity of HRP and consequently the absorption intensity. As there was a relationship between the decrease in the absorption intensity and target concentration, a quantitative analysis of TcdB can be accomplished by the measurement of the absorption intensity. Under the optimal conditions, the assay system is able to detect TcdB at a concentration down to 5 ng ml-1 . Moreover the method had specificity of 97% and sensitivity of 66% and the system remained excellent stability within 4 weeks. The proposed method is a valuable screening procedure for CDI and can be extended readily to detection of other clinically important pathogens.
Asunto(s)
Proteínas Bacterianas/análisis , Toxinas Bacterianas/análisis , Clostridioides difficile/metabolismo , Colorimetría/métodos , Separación Inmunomagnética/métodos , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Bioensayo , Clostridioides difficile/química , Clostridioides difficile/genética , Infecciones por Clostridium/microbiología , Diarrea/microbiología , Heces/microbiología , Humanos , Separación Inmunomagnética/instrumentación , Reacción en Cadena de la PolimerasaRESUMEN
The most potent toxins secreted by pathogenic bacteria contain enzymatic moieties that must reach the cytosol of target cells to exert their full toxicity. Toxins such as anthrax, diphtheria, and botulinum toxin all use three well-defined functional domains to intoxicate cells: a receptor-binding moiety that triggers endocytosis into acidified vesicles by binding to a specific host-cell receptor, a translocation domain that forms pores across the endosomal membrane in response to acidic pH, and an enzyme that translocates through these pores to catalytically inactivate an essential host cytosolic substrate. The homologous toxins A (TcdA) and Toxin B (TcdB) secreted by Clostridium difficile are large enzyme-containing toxins that for many years have eluded characterization. The cell-surface receptors for these toxins, the non-classical nature of the pores that they form in membranes, and mechanism of translocation have remained undefined, exacerbated, in part, by the lack of any structural information for the central â¼1000 amino acid translocation domain. Recent advances in the identification of receptors for TcdB, high-resolution structural information for the translocation domain, and a model for the pore have begun to shed light on the mode-of-action of these toxins. Here, we will review TcdA/TcdB uptake and entry into mammalian cells, with focus on receptor binding, endocytosis, pore formation, and translocation. We will highlight how these toxins diverge from classical models of translocating toxins, and offer our perspective on key unanswered questions for TcdA/TcdB binding and entry into mammalian cells.
Asunto(s)
Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Anticuerpos Neutralizantes/inmunología , Toxinas Bacterianas/química , Toxinas Bacterianas/inmunología , Transporte Biológico , Endocitosis , Membrana Dobles de LípidosRESUMEN
Clostridioides difficile toxin B (TcdB) is an intracellular toxin responsible for many of the pathologies of C. difficile infection. The two variant forms of TcdB (TcdB1 and TcdB2) share 92% sequence identity but have reported differences in rates of cell entry, autoprocessing, and overall toxicity. This 2,366-amino-acid, multidomain bacterial toxin glucosylates and inactivates small GTPases in the cytosol of target cells, ultimately leading to cell death. Successful cell entry and intoxication by TcdB are known to involve various conformational changes in the protein, including a proteolytic autoprocessing event. Previous studies found that amino acids 1753 to 1852 influence the conformational states of the proximal carboxy-terminal domain of TcdB and could contribute to differences between TcdB1 and TcdB2. In the current study, a combination of approaches was used to identify sequences within the region from amino acids 1753 to 1852 that influence the conformational integrity and cytotoxicity of TcdB2. Four deletion mutants with reduced cytotoxicity were identified, while one mutant, TcdB2Δ1769-1787, exhibited no detectable cytotoxicity. TcdB2Δ1769-1787 underwent spontaneous autoprocessing and was unable to interact with CHO-K1 or HeLa cells, suggesting a potential change in the conformation of the mutant protein. Despite the putative alteration in structural stability, vaccination with TcdB2Δ1769-1787 induced a TcdB2-neutralizing antibody response and protected against C. difficile disease in a mouse model. These findings indicate that the 19-amino-acid region spanning residues 1769 to 1787 in TcdB2 is crucial to cytotoxicity and the structural regulation of autoprocessing and that TcdB2Δ1769-1787 is a promising candidate for vaccination.
Asunto(s)
Proteínas Bacterianas/inmunología , Vacunas Bacterianas/inmunología , Clostridioides difficile/inmunología , Proteínas Represoras/inmunología , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/fisiología , Células CHO , Cricetulus , Glicosilación , Células HeLa , Humanos , Ratones , Conformación Proteica , Dominios Proteicos , Proteínas Represoras/química , Proteínas Represoras/fisiología , Eliminación de Secuencia , VacunaciónRESUMEN
Clostridium difficile infection (CDI) is one of the most important nosocomial illnesses and a major cause of morbidity and mortality. While initial treatment of CDI is usually successful, unprovoked relapses remain an important and frustrating problem. This review examines the literature describing the natural immune response to CDI, and to what extent it can explain the propensity for relapses. In particular, we discuss studies on antibody and, to a lesser extent, B cell and T cell responses in CDI. Despite years of study, there remains incomplete understanding of the natural antibody response to the major pathogenic toxins, TcdA and TcdB, and other bacterial antigens, in CDI. Recent literature suggests that a specific subset of neutralizing antibodies that target the putative carbohydrate-binding domains of TcdB and possibly TcdA have the greatest protective ability. This is further supported by recent successful clinical trials of a humanized monoclonal antibody to the major toxin TcdB. A better understanding of how and why the most protective adaptive immune response develops may lead to improved vaccine and therapeutic targets for recurrent CDI.
Asunto(s)
Inmunidad Adaptativa , Infecciones por Clostridium/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Anticuerpos Neutralizantes/inmunología , Linfocitos B/inmunología , Proteínas Bacterianas/inmunología , Toxinas Bacterianas/inmunología , Portador Sano/inmunología , Infecciones por Clostridium/terapia , Modelos Animales de Enfermedad , Enterotoxinas/inmunología , Humanos , Memoria Inmunológica , Inmunoterapia , Ratones , Recurrencia , Prevención Secundaria , Linfocitos T/inmunología , VacunaciónRESUMEN
BACKGROUND: Clinical practice guidelines define Clostridium difficile infections (CDI) as diarrhea (≥3 unformed stools in 24 h) with either a positive C difficile stool test or detection of pseudomembranous colitis. Diagnostic modalities such as toxigenic culture and nucleic acid amplification testing can identify the presence of toxigenic C difficile in stools. But these tests are confounded by the presence of asymptomatic colonization of toxigenic C difficile and lead to overdiagnosis of CDI. The presence of two large toxins, toxin A and B (TcdA and TcdB) is necessary for pathogenicity. Detection of toxins using toxin enzyme immunoassay is difficult as it has low sensitivity and moderate specificity. Raman spectroscopy (RS) is a novel technology that is used to detect bacteria and their toxins. RS does not require any reagents for detection such as antibodies, enzymes, primers, or stains. We hypothesize that RS is a sensitive method to detect C difficile toxins in stool and will solve the problem of overdiagnosis of CDI. MATERIALS AND METHODS: CDI negative stool samples were spiked with concentrations (1 ng/mL, 100 pg/mL, 1 pg/mL, and 0.1 pg/mL) of TcdA and TcdB. RS was performed on air-dried smeared samples of stool supernatant on a mirror-polished stainless-steel slide. As RS of feces is difficult because of confounding background material and autofluorescence, samples were photo-bleached before spectral acquisition to reduce autofluorescence. Raman spectra were obtained, background corrected, and vector normalized. The data were split into training (70%) and test (30%) datasets. The machine learning methods used on the training data set were Support Vector Machine with Linear and Radial Kernels, Random Forest, Stochastic Gradient Boosting Machine, and Principle Component Analysis-Linear Discriminant Analysis. Results were validated using a test data set. The best model was chosen, and its accuracy, sensitivity, and specificity were determined. RESULTS: In our preliminary results, at all concentrations (1 ng/mL, 100 pg/mL, 1 pg/mL, and 0.1 pg/mL), TcdA or TcdB spiked stool was distinguished from unspiked stool by all models with accuracies ranging from 64% to 77%. Gradient Boosting Machine, Principle Component Analysis-Linear Discriminant Analysis, and Support Vector Machine Linear Kernel performed best with sensitivities ranging from 69% to 90% and specificities ranging from 43% to 78%. CONCLUSIONS: Using RS, we successfully detected TcdA and TcdB in stool samples albeit with moderate-to-high sensitivity and low-to-moderate specificity. Sensitivity and specificity could be further increased with the implementation of deep learning methods, which require large sample sizes. In terms of sensitivity, RS performs better than toxin enzyme immunoassay and has the potential to rapidly detect C difficile toxins in stool at clinically relevant concentrations and thereby help mitigate overdiagnosis of CDI.
Asunto(s)
Proteínas Bacterianas/aislamiento & purificación , Toxinas Bacterianas/aislamiento & purificación , Clostridioides difficile/aislamiento & purificación , Enterocolitis Seudomembranosa/diagnóstico , Enterotoxinas/aislamiento & purificación , Heces/química , Espectrometría Raman , Enterocolitis Seudomembranosa/microbiología , Estudios de Factibilidad , Heces/microbiología , Humanos , Técnicas para Inmunoenzimas , Sensibilidad y Especificidad , Factores de TiempoRESUMEN
BACKGROUND: Clostridium difficile (C. difficile) is a main cause of antibiotic-associated diarrhoea in humans. Several studies have been performed to reveal the prevalence rate of C. difficile in cats and dogs. However, little is known about the epidemiology of C. difficile in healthy pets in China. This study aimed to assess the burden of C. difficile shedding by healthy dogs and cats in China. Furthermore, the genetic diversity and antimicrobial susceptibility patterns of the recovered isolates were determined. METHODS: A total of 175 faecal samples were collected from 146 healthy dogs and 29 cats. C. difficile strains were isolated and identified from the feces of these pets. The characterized C. difficile strains were typed by multilocus sequence typing (MLST), and the MICs of the isolates were determined against ampicillin, clindamycin, tetracycline, moxifloxacin, chloramphenicol, cefoxitin, metronidazole and vancomycin by the agar dilution method. RESULTS: Overall, 3 faecal samples (1.7%) were C. difficile culture positive. One sample (0.7%) from a dog was C. difficile culture positive, while two cats (7.0%) yielded positive cultures. The prevalence rate differed significantly between cats and dogs. These isolates were typed into 3 MLST genotypes and were susceptible to chloramphenicol, tetracycline, metronidazole and moxifloxacin and resistant to ampicillin, clindamycin and cefoxitin. Notably, one strain, D141-1, which was resistant to three kinds of antibiotics and carried toxin genes, was recovered in the faeces of a healthy dog. CONCLUSION: Our results suggest that common pets may be a source of pathogenic C. difficile, indicating that household transmission of C. difficile from pets to humans can not be excluded.
Asunto(s)
Clostridioides difficile/efectos de los fármacos , Clostridioides difficile/genética , Mascotas/microbiología , Animales , Antibacterianos/farmacología , Técnicas de Tipificación Bacteriana , Gatos , China , Clostridioides difficile/clasificación , Infecciones por Clostridium/epidemiología , Infecciones por Clostridium/transmisión , Infecciones por Clostridium/veterinaria , Perros , Farmacorresistencia Bacteriana/genética , Genotipo , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , PrevalenciaRESUMEN
Synthesis and structure-activity relationships (SAR) of a novel series of benzodiazepinedione-based inhibitors of Clostridium difficile toxin B (TcdB) are described. Compounds demonstrating low nanomolar affinity for TcdB, and which possess improved stability in mouse plasma vs. earlier compounds from this series, have been identified. Optimized compound 11d demonstrates a good pharmacokinetic (PK) profile in mouse and hamster and is efficacious in a hamster survival model of Clostridium difficile infection.