Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell ; 174(6): 1436-1449.e20, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30146163

RESUMEN

Synaptic vesicle and active zone proteins are required for synaptogenesis. The molecular mechanisms for coordinated synthesis of these proteins are not understood. Using forward genetic screens, we identified the conserved THO nuclear export complex (THOC) as an important regulator of presynapse development in C. elegans dopaminergic neurons. In THOC mutants, synaptic messenger RNAs are retained in the nucleus, resulting in dramatic decrease of synaptic protein expression, near complete loss of synapses, and compromised dopamine function. CRE binding protein (CREB) interacts with THOC to mark synaptic transcripts for efficient nuclear export. Deletion of Thoc5, a THOC subunit, in mouse dopaminergic neurons causes severe defects in synapse maintenance and subsequent neuronal death in the substantia nigra compacta. These cellular defects lead to abrogated dopamine release, ataxia, and animal death. Together, our results argue that nuclear export mechanisms can select specific mRNAs and be a rate-limiting step for neuronal differentiation and survival.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Neuronas Dopaminérgicas/metabolismo , Proteínas Nucleares/genética , Sinapsis/metabolismo , Transporte Activo de Núcleo Celular , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Señalización del Calcio , Núcleo Celular/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutagénesis , Mutación Missense , Proteínas Nucleares/deficiencia , Proteínas Nucleares/metabolismo , Subunidades de Proteína/deficiencia , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
2.
RNA ; 30(1): 89-98, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37914399

RESUMEN

The eukaryotic THO complex coordinates the assembly of so-called messenger RNA-ribonucleoprotein particles (mRNPs), a process that involves cotranscriptional coating of nascent mRNAs with proteins. Once formed, mRNPs undergo a quality control step that marks them either for active transport to the cytoplasm, or Rrp6/RNA exosome-mediated degradation in the nucleus. However, the mechanism behind the quality control of nascent mRNPs is still unclear. We investigated the cotranscriptional quality control of mRNPs in budding yeast by expressing the bacterial Rho helicase, which globally perturbs yeast mRNP formation. We examined the genome-wide binding profiles of the THO complex subunits Tho2, Thp2, Hpr1, and Mft1 upon perturbation of the mRNP biogenesis, and found that Tho2 plays two roles. In addition to its function as a subunit of the THO complex, upon perturbation of mRNP biogenesis Tho2 targets Rrp6 to chromatin via its carboxy-terminal domain. Interestingly, other THO subunits are not enriched on chromatin upon perturbation of mRNP biogenesis and are not necessary for localizing Rrp6 at its target loci. Our study highlights the potential role of Tho2 in cotranscriptional mRNP quality control, which is independent of other THO subunits. Considering that both the THO complex and the RNA exosome are evolutionarily highly conserved, our findings are likely relevant for mRNP surveillance in mammals.


Asunto(s)
Cromatina , Proteínas de Saccharomyces cerevisiae , Cromatina/genética , Cromatina/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Genes Cells ; 25(5): 334-342, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32065701

RESUMEN

The evolutionarily conserved multiprotein complex THO/TREX is required for pre-mRNA processing, mRNA export and the maintenance of genome stability. In this study, we analyzed the genome-wide distribution of human THOC7, a component of human THO, by chromatin immunoprecipitation sequencing. The analysis revealed that human THOC7 occupies repetitive sequences, which include microsatellite repeats in genic and intergenic regions and telomeric repeats. The majority of the THOC7 ChIP peaks overlapped with those of the elongating form of RNA polymerase II and R-loops, indicating that THOC7 accumulates in transcriptionally active repeat regions. Knocking down THOC5, an RNA-binding component of human THO, by siRNA induced the accumulation of γH2AX in the repeat regions. We also observed an aberration in the telomeres in the THOC5-depleted condition. These results suggest that human THO restrains the transcription-associated instability of repeat regions in the human genome.


Asunto(s)
ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , ADN/genética , Células HeLa , Humanos , Termodinámica , Células Tumorales Cultivadas
4.
Gynecol Endocrinol ; 36(3): 243-246, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31402763

RESUMEN

The transcription/export complex (TREX) is formed by a core called THO. These are necessary for the transcription and packaging of messenger RNA and its subsequent nuclear exportation. Studies have correlated THO-specific polymorphisms with abnormalities of HDL-C metabolism. To correlate lipid and metabolic parameters with the genetic variants of the rs8135828 polymorphism of the THOC5 gene in middle-aged women. DNA was extracted from the whole blood of 183 women aged 40-65 and tested for the rs8135828 polymorphism of the THOC5 gene using real-time PCR. HDL-C, LDL-C, triglyceride, and total cholesterol levels, as well as other metabolic parameters, were correlated with the polymorphism genotypes: GG, AG, and AA. Mean age of women was 50.6 ± 6.3 years, 54.6% were postmenopausal and 16.4% had the metabolic syndrome. GG was the most frequently determined genotype (62.3%). There were no differences in lipid levels according to genotypes; although there was a trend for lower HDL-C levels for the AA and AG + AA genotypes. Those with the AG and AG + AA genotypes displayed significantly higher glucose levels (p = .02 and p = .002, respectively); with a trend toward a higher metabolic syndrome prevalence and increased abdominal perimeters in both variants (AG and AG + AA). The AG genotype was related to higher glucose levels but not with abnormal lipid parameters. There is a need for more research in this regard.


Asunto(s)
Glucemia/metabolismo , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , Proteínas Nucleares/genética , Triglicéridos/metabolismo , Adulto , Glucemia/genética , Colesterol/metabolismo , Femenino , Genotipo , Humanos , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Persona de Mediana Edad , Proyectos Piloto , Polimorfismo de Nucleótido Simple
5.
RNA ; 22(8): 1200-14, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27251550

RESUMEN

The nuclear THO and TREX-2 complexes are implicated in several steps of nuclear mRNP biogenesis, including transcription, 3' end processing and export. In a recent genomic microscopy screen in Saccharomyces cerevisiae for mutants with constitutive stress granules, we identified that absence of THO and TREX-2 complex subunits leads to the accumulation of Pab1-GFP in cytoplasmic foci. We now show that these THO/TREX-2 mutant induced foci ("TT foci") are not stress granules but instead are a mRNP granule containing poly(A)(+) mRNA, some mRNP components also found in stress granules, as well several proteins involved in mRNA 3' end processing and export not normally seen in stress granules. In addition, TT foci are resistant to cycloheximide-induced disassembly, suggesting the presence of mRNPs impaired for entry into translation. THO mutants also exhibit defects in normal stress granule assembly. Finally, our data also suggest that TT foci are targeted by autophagy. These observations argue that defects in nuclear THO and TREX-2 complexes can affect cytoplasmic mRNP function by producing aberrant mRNPs that are exported to cytosol, where they accumulate in TT foci and ultimately can be cleared by autophagy. This identifies a novel mechanism of quality control for aberrant mRNPs assembled in the nucleus.


Asunto(s)
Autofagia , Citoplasma/metabolismo , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Cicloheximida/farmacología
6.
Clin Genet ; 91(1): 92-99, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27102954

RESUMEN

THOC6 is a part of the THO complex, which is involved in coordinating mRNA processing with export. The THO complex interacts with additional components to form the larger TREX complex (transcription export complex). Previously, a homozygous missense mutation in THOC6 in the Hutterite population was reported in association with syndromic intellectual disability. Using exome sequencing, we identified three unrelated patients with bi-allelic mutations in THOC6 associated with intellectual disability and additional clinical features. Two of the patients were compound heterozygous for a stop and a missense mutation, and the third was homozygous for a missense mutation; the missense mutations were predicted to be pathogenic by in silico analysis and modeling. Clinical features of the three newly identified patients and those previously reported are reviewed; intellectual disability is moderate to severe, and malformations are variable including renal and heart defects, cleft palate, microcephaly, and corpus callosum dysgenesis. Facial features are variable and include tall forehead, short upslanting palpebral fissures +/- deep set eyes, and a long nose with overhanging columella. These subtle facial features render the diagnosis difficult to make in isolation with certainty. Our results expand the mutational and clinical spectrum of this rare disease, confirm that THOC6 is an intellectual disability causing gene, while providing insight into the importance of the THO complex in neurodevelopment.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Discapacidad Intelectual/genética , Mutación Missense , Proteínas de Unión al ARN/genética , Adolescente , Niño , Exoma/genética , Femenino , Genes Recesivos , Genotipo , Humanos , Discapacidad Intelectual/patología , Masculino , Modelos Moleculares , Fenotipo , Dominios Proteicos , Proteínas de Unión al ARN/química , Análisis de Secuencia de ADN/métodos , Índice de Severidad de la Enfermedad , Síndrome
7.
Aging Cell ; 23(8): e14203, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38769776

RESUMEN

The relationship between aging and RNA biogenesis and trafficking is attracting growing interest, yet the precise mechanisms are unknown. The THO complex is crucial for mRNA cotranscriptional maturation and export. Herein, we report that the THO complex is closely linked to the regulation of lifespan. Deficiencies in Hpr1 and Tho2, components of the THO complex, reduced replicative lifespan (RLS) and are linked to a novel Sir2-independent RLS control pathway. Although transcript sequestration in hpr1Δ or tho2Δ mutants was countered by exosome component Rrp6, loss of this failed to mitigate RLS defects in hpr1Δ. However, RLS impairment in hpr1Δ or tho2Δ was counteracted by the additional expression of Nrd1-specific mutants that interacted with Rrp6. This effect relied on the interaction of Nrd1, a transcriptional regulator of aging-related genes, including ribosome biogenesis or RNA metabolism genes, with RNA polymerase II. Nrd1 overexpression reduced RLS in a Tho2-dependent pathway. Intriguingly, Tho2 deletion mirrored Nrd1 overexpression effects by inducing arbitrary Nrd1 chromatin binding. Furthermore, our genome-wide ChIP-seq analysis revealed an increase in the recruitment of Nrd1 to translation-associated genes, known to be related to aging, upon Tho2 loss. Taken together, these findings underscore the importance of Tho2-mediated Nrd1 escorting in the regulation of lifespan pathway through transcriptional regulation of aging-related genes.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Envejecimiento/genética , Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
World J Gastrointest Oncol ; 14(11): 2170-2182, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36438699

RESUMEN

BACKGROUND: Gastric cancer (GC) is a common type of digestive cancer with high morbidity and mortality rates worldwide. Considerable effort has been expended in understanding the mechanism of GC development and metastasis. The current study therefore explores the involvement of microRNAs in the regulation of GC progression. AIM: To explore the expression and function of miR-30e-3p in GC development. METHODS: MiR-30e-3p was found to be downregulated in GC, with low levels thereof predicting poor outcomes among patients with GC. Functionally, we revealed that miR-30e-3p suppressed cell growth and metastatic behaviors of GC cells. Bioinformatics analysis predicted that THO complex 2 (THOC2) was a direct target of miR-30e-3p, and the interaction between miR-30e-3p and THOC2 was further validated by a luciferase reporter assay. RESULTS: Our findings revealed that knockdown of THOC2 inhibited the growth and metastatic behaviors of GC cells. After investigating signaling pathways involved in miR-30e-3p regulation, we found that the miR-30e-3p/THOC2 axis regulated the PI3K/AKT/mTOR pathway in GC. CONCLUSION: Our findings suggest the novel functional axis miR-30e-3p/THOC2 is involved in GC development and progression. The miR-30e-3p/THOC2 axis could be utilized to develop new therapies against GC.

9.
Gene ; 732: 144350, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-31935505

RESUMEN

THO complex is a multisubunit family with a function in transcription and mRNA export. In the present study, transcripts of THO complex (thoc) were identified in developing ovary of common carp and their role during ovarian development and growth has been characterized for the first time in a teleost using expression profiling and transient siRNA silencing. Thoc expression revealed a spatiotemporal pattern in the gonads with high levels at 120 days post-hatch, with moderately high levels thereafter. In situ hybridization and immunohistochemical localization revealed the presence of thoc3 in follicular layer of stage-III/IV oocytes. High levels of thoc3, thoc5, and thoc7 genes in the follicular layer suggest a possible role in ovarian growth. Reduced levels of serum estradiol-17ß and 17α, 20ß-dihydroxypregn-4-en-3-one after thoc3 transient silencing indicated differential action on steroidogenic enzyme, transcription factor, and growth factor genes. Furthermore, transient silencing of thoc3, in vivo and in vitro, downregulated ad4bp/sf1, amh, cyp19a1a, foxl2, hsd3b, hsd11b1, hsd20b, hsd17b1, rspo1, and vtg. Incidentally, gdf9 and igf1 were upregulated, while no change was seen in esr1/2, nanos, and vasa. These observations imply that thoc3 seems to regulate ovarian function including steroidogenesis, either directly or indirectly.


Asunto(s)
Carpas/genética , Perfilación de la Expresión Génica/veterinaria , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ovario/crecimiento & desarrollo , Animales , Núcleo Celular/genética , Estradiol/metabolismo , Evolución Molecular , Femenino , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Regulación del Desarrollo de la Expresión Génica , Folículo Ovárico , Ovario/química , ARN Interferente Pequeño/farmacología , Diferenciación Sexual
10.
Cell Rep ; 28(6): 1551-1563.e7, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31390568

RESUMEN

THO/TREX is a conserved complex with a role in messenger ribonucleoprotein biogenesis that links gene expression and genome instability. Here, we show that human THO interacts with MFAP1 (microfibrillar-associated protein 1), a spliceosome-associated factor. Interestingly, MFAP1 depletion impairs cell proliferation and genome integrity, increasing γH2AX foci and DNA breaks. This phenotype is not dependent on either transcription or RNA-DNA hybrids. Mutations in the yeast orthologous gene SPP381 cause similar transcription-independent genome instability, supporting a conserved role. MFAP1 depletion has a wide effect on splicing and gene expression in human cells, determined by transcriptome analyses. MFAP1 depletion affects a number of DNA damage response (DDR) genes, which supports an indirect role of MFAP1 on genome integrity. Our work defines a functional interaction between THO and RNA processing and argues that splicing factors may contribute to genome integrity indirectly by regulating the expression of DDR genes rather than by a direct role.


Asunto(s)
Proteínas Contráctiles/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Inestabilidad Genómica , Estructuras R-Loop , Factores de Empalme de ARN/metabolismo , Empalme Alternativo , Ciclo Celular , Proliferación Celular , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Genoma Humano , Células HEK293 , Células HeLa , Humanos , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Empalmosomas/metabolismo
11.
Bioarchitecture ; 2(4): 134-7, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22964977

RESUMEN

The THO complex is a nuclear structure whose architecture is conserved among all kingdoms and plays an important role in mRNP biogenesis connecting transcription elongation with mRNA maturation and export. Recent data indicates that the THO complex is necessary for the proper expression of some genes, assurance of genetic stability by preventing transcription-associated recombination. Yeast THO has been described as a heterotetramer (Tho2, Hpr1, Mft1 and Thp2) that performs several functions through the interaction with other proteins like Tex1 or the mRNA export factors Sub2 and Yra1, with which it forms the TRanscription and EXport complex (TREX). In this article we review the cellular role of THO, which we show to be composed of five subunits with Tex1 being also an integral part of the complex. We also show a low-resolution structure of THO and localize some of its components. We discuss the consequences of THO interaction with nucleic acids through the unfolded C-terminal region of Tho2, highlighting the importance of unfolded regions in eukaryotic proteins. Finally, we comment on THO recruitment to active chromatin, a role that is linked to mRNA biogenesis.


Asunto(s)
Ácidos Nucleicos/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA