Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 171(4): 836-848.e13, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-28988768

RESUMEN

Adrenergic stimulation promotes lipid mobilization and oxidation in brown and beige adipocytes, where the harnessed energy is dissipated as heat in a process known as adaptive thermogenesis. The signaling cascades and energy-dissipating pathways that facilitate thermogenesis have been extensively described, yet little is known about the counterbalancing negative regulatory mechanisms. Here, we identify a two-pore-domain potassium channel, KCNK3, as a built-in rheostat negatively regulating thermogenesis. Kcnk3 is transcriptionally wired into the thermogenic program by PRDM16, a master regulator of thermogenesis. KCNK3 antagonizes norepinephrine-induced membrane depolarization by promoting potassium efflux in brown adipocytes. This limits calcium influx through voltage-dependent calcium channels and dampens adrenergic signaling, thereby attenuating lipolysis and thermogenic respiration. Adipose-specific Kcnk3 knockout mice display increased energy expenditure and are resistant to hypothermia and obesity. These findings uncover a critical K+-Ca2+-adrenergic signaling axis that acts to dampen thermogenesis, maintain tissue homeostasis, and reveal an electrophysiological regulatory mechanism of adipocyte function.


Asunto(s)
Tejido Adiposo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Obesidad/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Receptores Adrenérgicos/metabolismo , Transducción de Señal , Termogénesis , Adipocitos Marrones/metabolismo , Tejido Adiposo/patología , Animales , Separación Celular , Células Cultivadas , Fenómenos Electrofisiológicos , Femenino , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Obesidad/patología , Canales de Potasio de Dominio Poro en Tándem/genética
2.
Am J Respir Cell Mol Biol ; 71(1): 95-109, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38546978

RESUMEN

Pulmonary arterial (PA) hypertension (PAH) is a severe cardiopulmonary disease that may be triggered by exposure to drugs such as dasatinib or facilitated by genetic predispositions. The incidence of dasatinib-associated PAH is estimated at 0.45%, suggesting individual predispositions. The mechanisms of dasatinib-associated PAH are still incomplete. We discovered a KCNK3 gene (Potassium channel subfamily K member 3; coding for outward K+ channel) variant in a patient with dasatinib-associated PAH and investigated the impact of this variant on KCNK3 function. Additionally, we assessed the effects of dasatinib exposure on KCNK3 expression. In control human PA smooth muscle cells (hPASMCs) and human pulmonary endothelial cells (hPECs), we evaluated the consequences of KCNK3 knockdown on cell migration, mitochondrial membrane potential, ATP production, and in vitro tube formation. Using mass spectrometry, we determined the KCNK3 interactome. Patch-clamp experiments revealed that the KCNK3 variant represents a loss-of-function variant. Dasatinib contributed to PA constriction by decreasing KCNK3 function and expression. In control hPASMCs, KCNK3 knockdown promotes mitochondrial membrane depolarization and glycolytic shift. Dasatinib exposure or KCNK3 knockdown reduced the number of caveolae in hPECs. Moreover, KCNK3 knockdown in control hPECs reduced migration, proliferation, and in vitro tubulogenesis. Using proximity labeling and mass spectrometry, we identified the KCNK3 interactome, revealing that KCNK3 interacts with various proteins across different cellular compartments. We identified a novel pathogenic variant in KCNK3 and showed that dasatinib downregulates KCNK3, emphasizing the relationship between dasatinib-associated PAH and KCNK3 dysfunction. We demonstrated that a loss of KCNK3-dependent signaling contributes to endothelial dysfunction in PAH and glycolytic switch of hPASMCs.


Asunto(s)
Dasatinib , Células Endoteliales , Canales de Potasio de Dominio Poro en Tándem , Dasatinib/farmacología , Dasatinib/efectos adversos , Humanos , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Movimiento Celular/efectos de los fármacos , Hipertensión Arterial Pulmonar/inducido químicamente , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Masculino , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/efectos de los fármacos , Proteínas del Tejido Nervioso
3.
Sleep Breath ; 28(1): 123-131, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37428352

RESUMEN

OBJECTIVE: To investigate the role of TWIK-related acid-sensitive potassium channels TASK-1 and TASK-3 in the mechanism of asthma combined with obstructive sleep apnea (OSA) in mice. METHOD: C57BL/6 mice were randomly divided into four groups: control group (NS-RA), asthma group (OVA-RA), OSA group (NS-IH), and asthma combined with OSA group (OVA-IH). After monitoring lung function in each group, the expression levels of TASK-1 and TASK-3 mRNA and protein in lung tissues were measured, and the correlation between the changes of both and lung function was analyzed. RESULTS: A total of 64 male mice were studied. Penh, serum IgE concentrations, and the percentage of eosinophils in bronchoalveolar lavage fluid (BALF) were higher in OVA-RA and OVA-IH mice compared with NS-RA (P < 0.05),while the above indexes were slightly elevated in NS-IH mice compared with NS-RA (P > 0.05), where the Penh and the percentage of eosinophils in BALF was higher in OVA-IH mice than NS-IH (P < 0.05).Increased TASK-3 mRNA expression (P < 0.05) as well as TASK-1 and TASK-3 protein expression (P > 0.05) in lung tissues of OVA-RA and NS-IH mice compared with NS-RA, and TASK-3 mRNA expression was slightly more in the OVA-IH group compared with NS-RA (P > 0.05), but less compared with OVA-RA (P < 0.05) or NS-IH (P > 0.05), while TASK-1 and TASK-3 protein expression was increased in the OVA-IH group compared with the remaining three groups, and TASK-3 protein expression was associated with lung function impairment was positively correlated with the degree of lung function impairment (P < 0.05). CONCLUSION: Task-1 and Task-3 may be involved in the pathogenesis of asthma with OSA by affecting lung function.


Asunto(s)
Asma , Animales , Masculino , Ratones , Líquido del Lavado Bronquioalveolar , Modelos Animales de Enfermedad , Pulmón/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , ARN Mensajero
4.
J Mol Cell Cardiol ; 184: 26-36, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37793594

RESUMEN

RATIONALE: The neurokinin-III receptor was recently shown to regulate atrial cardiomyocyte excitability by inhibiting atrial background potassium currents. TASK-1 (hK2P3.1) two-pore-domain potassium channels, which are expressed atrial-specifically in the human heart, contribute significantly to atrial background potassium currents. As TASK-1 channels are regulated by a variety of intracellular signalling cascades, they represent a promising candidate for mediating the electrophysiological effects of the Gq-coupled neurokinin-III receptor. OBJECTIVE: To investigate whether TASK-1 channels mediate the neurokinin-III receptor activation induced effects on atrial electrophysiology. METHODS AND RESULTS: In Xenopus laevis oocytes, heterologously expressing neurokinin-III receptor and TASK-1, administration of the endogenous neurokinin-III receptor ligands substance P or neurokinin B resulted in a strong TASK-1 current inhibition. This could be reproduced by application of the high affinity neurokinin-III receptor agonist senktide. Moreover, preincubation with the neurokinin-III receptor antagonist osanetant blunted the effect of senktide. Mutagenesis studies employing TASK-1 channel constructs which lack either protein kinase C (PKC) phosphorylation sites or the domain which is regulating the diacyl glycerol (DAG) sensitivity domain of TASK-1 revealed a protein kinase C independent mechanism of TASK-1 current inhibition: upon neurokinin-III receptor activation TASK-1 channels are blocked in a DAG-dependent fashion. Finally, effects of senktide on atrial TASK-1 currents could be reproduced in patch-clamp measurements, performed on isolated human atrial cardiomyocytes. CONCLUSIONS: Heterologously expressed human TASK-1 channels are inhibited by neurokinin-III receptor activation in a DAG dependent fashion. Patch-clamp measurements, performed on human atrial cardiomyocytes suggest that the atrial-specific effects of neurokinin-III receptor activation on cardiac excitability are predominantly mediated via TASK-1 currents.


Asunto(s)
Fibrilación Atrial , Canales de Potasio de Dominio Poro en Tándem , Humanos , Animales , Fibrilación Atrial/metabolismo , Atrios Cardíacos/metabolismo , Transducción de Señal , Proteína Quinasa C/metabolismo , Potasio/metabolismo , Xenopus laevis/metabolismo , Oocitos/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo
5.
J Physiol ; 601(17): 3717-3737, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37477289

RESUMEN

Potassium channel subfamily K member 3 (KCNK3), encoded by the KCNK3 gene, is part of the two-pore domain potassium channel family, constitutively active at resting membrane potentials in excitable cells, including smooth muscle and cardiac cells. Several physiological and pharmacological mediators, such as intracellular signalling pathways, extracellular pH, hypoxia and anaesthetics, regulate KCNK3 channel function. Recent studies show that modulation of KCNK3 channel expression and function strongly influences pulmonary vascular cell and cardiomyocyte function. The altered activity of KCNK3 in pathological situations such as atrial fibrillation, pulmonary arterial hypertension and right ventricular dysfunction demonstrates the crucial role of KCNK3 in cardiovascular homeostasis. Furthermore, loss of function variants of KCNK3 have been identified in patients suffering from pulmonary arterial hypertension and atrial fibrillation. This review focuses on current knowledge of the role of the KCNK3 channel in pulmonary circulation and the heart, in healthy and pathological conditions.


Asunto(s)
Fibrilación Atrial , Canales de Potasio de Dominio Poro en Tándem , Hipertensión Arterial Pulmonar , Humanos , Circulación Pulmonar , Fibrilación Atrial/genética , Fibrilación Atrial/metabolismo , Potenciales de la Membrana , Pulmón/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo
6.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37108693

RESUMEN

The purpose of our study was to analyze abnormal neural regeneration activity in the cornea through means of confocal microscopy in rheumatoid arthritis patients with concomitant dry eye disease. We examined 40 rheumatoid arthritis patients with variable severity and 44 volunteer age- and gender-matched healthy control subjects. We found that all examined parameters were significantly lower (p < 0.05) in rheumatoid arthritis patients as opposed to the control samples: namely, the number of fibers, the total length of the nerves, the number of branch points on the main fibers and the total nerve-fiber area. We examined further variables, such as age, sex and the duration of rheumatoid arthritis. Interestingly, we could not find a correlation between the above variables and abnormal neural structural changes in the cornea. We interpreted these findings via implementing our hypotheses. Correspondingly, one neuroimmunological link between dry eye and rheumatoid arthritis could be through the chronic Piezo2 channelopathy-induced K2P-TASK1 signaling axis. This could accelerate neuroimmune-induced sensitization on the spinal level in this autoimmune disease, with Langerhans-cell activation in the cornea and theorized downregulated Piezo1 channels in these cells. Even more importantly, suggested principal primary-damage-associated corneal keratocyte activation could be accompanied by upregulation of Piezo1. Both activation processes on the periphery would skew the plasticity of the Th17/Treg ratio, resulting in Th17/Treg imbalance in dry eye, secondary to rheumatoid arthritis. Hence, chronic somatosensory-terminal Piezo2 channelopathy-induced impaired Piezo2-Piezo1 crosstalk could result in a mixed picture of disrupted functional regeneration but upregulated morphological regeneration activity of these somatosensory axons in the cornea, providing the demonstrated abnormal neural corneal morphology.


Asunto(s)
Artritis Reumatoide , Canalopatías , Síndromes de Ojo Seco , Humanos , Canalopatías/complicaciones , Síndromes de Ojo Seco/complicaciones , Artritis Reumatoide/complicaciones , Córnea/inervación , Queratocitos de la Córnea , Microscopía Confocal/métodos , Canales Iónicos
7.
Biochem Biophys Res Commun ; 615: 17-23, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35605400

RESUMEN

It has been shown that anti-inflammatory cytokine interleukin-10 (IL-10) can exert anti-hypoxic effect preventing post-hypoxic neuronal hyperexcitability. Yet, exact mechanisms of IL-10 mediated anti-hypoxic action on neuronal function are not fully understood. We suggested that IL-10 can exert its anti-hypoxic action via modulation of activity of two-pore potassium TASK-1 and TASK-3 channels. To study the involvement of TASK-1 and TASK-3 channels we employed a combination of whole-cell patch clamp and pharmacological inhibitory analysis to assess if IL-10 and brief hypoxic episode can modulate K+ background leak current (Ileak) and membrane input resistance (Rin) in cultured hippocampal neurons. We found that IL-10 in a dose-dependent manner can significantly increase Ileak with concomitant reduction in Rin. Neurons that were exposed to brief hypoxic episode on contrary showed significant decrease in Ileak with concomitant increase in Rin. Pretreatment with IL-10 prior hypoxic episode was able to abolish negative effect of hypoxia on Ileak and Rin. IL-10 potentiating action on Ileak and Rin was occluded by co-addition of selective blockers of TASK-1 and TASK-3 channels - ML365 and PK-THPP. Co-addition of LY294002, an inhibitor of PI3-kinase occluded IL-10 action on Ileak and Rin showing involvement of PI3K-associated pathway in IL-10 mediated regulation of TASK channel function. Our results provide new insights into IL-10 mediated neuroprotective and anti-hypoxic actions showing TASK-1 and TASK-3 channels as downstream targets of this anti-inflammatory cytokine.


Asunto(s)
Hipocampo , Interleucina-10 , Antiinflamatorios/farmacología , Hipocampo/metabolismo , Humanos , Hipoxia/metabolismo , Interleucina-10/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo
8.
FASEB J ; 35(5): e21532, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33817828

RESUMEN

TWIK-related acid-sensitive potassium channels (TASKs)-like current was recorded in orexin neurons in the lateral hypothalamus (LH), which are essential in respiratory chemoreflex. However, the specific mechanism responsible for the pH-sensitivity remains elusive. Thus, we hypothesized that TASKs contribute to respiratory chemoreflex. In the present study, we found that TASK1 and TASK3 were expressed in orexin neurons. Blocking TASKs or microinjecting acid artificial cerebrospinal fluid (ACSF) in the LH stimulated breathing. In contrast, alkaline ACSF inhibited breathing, which was attenuated by blocking TASK1. Damage of orexin neurons attenuated the stimulatory effect on respiration caused by microinjection of acid ACSF (at a pH of 6.5) or TASKs antagonists. The orexinA-positive fiber and orexin type 1 receptor (OX1R) neurons were located in the nucleus tractus solitarius (NTS). The exciting effect of acidosis in the LH on respiration was inhibited by blocking OX1R of the NTS. Taken together, we conclude that orexin neurons sense the extracellular pH change through TASKs and regulate respiration by projecting to the NTS.


Asunto(s)
Área Hipotalámica Lateral/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Orexinas/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Reflejo/fisiología , Respiración , Núcleo Solitario/fisiología , Animales , Células Quimiorreceptoras/metabolismo , Masculino , Proteínas del Tejido Nervioso/genética , Orexinas/genética , Canales de Potasio de Dominio Poro en Tándem/genética , Ratas , Ratas Sprague-Dawley
9.
Mol Biol Rep ; 49(1): 817-819, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34705218

RESUMEN

BACKGROUND: Our previous data revealed that reduction of TASK-1 expression, as a consequence of exposure to 17ß-estradiol, could participate in neuroprotective effects in N2A cells. However, it is unclear which estrogen receptor underlies these effects of 17ß-estradiol. METHODS AND RESULTS: In this study, the knockdown experiments are carried out to clarify the estrogen receptor responsible for effects of estrogen on TASK-1 channels. Subsequently, data from QPCR measurements reveal that estrogen receptor ß (ERß), but not estrogen receptor α, serves as a binding target for 17ß-estradiol after a 48-h treatment. CONCLUSIONS: The current result suggests the implication of the ERß-dependent manner in the pro-proliferative action of estrogen via TASK-1 channels.


Asunto(s)
Regulación hacia Abajo/efectos de los fármacos , Estradiol/farmacología , Receptor beta de Estrógeno/metabolismo , Estrógenos/farmacología , Proteínas del Tejido Nervioso/metabolismo , Cresta Neural/metabolismo , Fármacos Neuroprotectores/farmacología , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Regulación hacia Abajo/genética , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/genética , Técnicas de Silenciamiento del Gen/métodos , Ratones , Proteínas del Tejido Nervioso/genética , Reacción en Cadena de la Polimerasa/métodos , Canales de Potasio de Dominio Poro en Tándem/genética , Interferencia de ARN , ARN Mensajero/metabolismo , Transducción de Señal/genética , Transfección
10.
Int J Mol Sci ; 23(9)2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35563072

RESUMEN

The transition from the fetal to the neonatal circulation includes dilatation of the pulmonary arteries (PA) and closure of the Ductus Arteriosus Botalli (DAB). The resting membrane potential and various potassium channel activities in smooth muscle cells (SMC) from fetal and neonatal PA and DAB obtained from the same species has not been systematically analyzed. The key issue addressed in this paper is how the resting membrane potential and the whole-cell potassium current (IK) change when PASMC or DABSMC are transitioned from hypoxia, reflecting the fetal state, to normoxia, reflecting the post-partal state. Patch-clamp measurements were employed to characterize whole-cell K+ channel activity in fetal and post-partal (newborn) PASMC and DABSMC. The main finding of this paper is that the SMC from both tissues use a similar set of K+ channels (voltage-dependent (Kv), calcium-sensitive (KCa), TASK-1 and probably also TASK-2 channels); however, their activity level depends on the cell type and the oxygen level. Furthermore, we provide the first evidence for pH-sensitive non-inactivating K+ current in newborn DABSMC and PASMC, suggesting physiologically relevant TASK-1 and TASK-2 channel activity, the latter particularly in the Ductus Arteriosus Botalli.


Asunto(s)
Conducto Arterial , Canales de Potasio , Circulación Pulmonar , Animales , Conducto Arterial/metabolismo , Desarrollo Fetal/fisiología , Humanos , Recién Nacido , Músculo Liso Vascular/metabolismo , Canales de Potasio/metabolismo , Arteria Pulmonar/metabolismo , Circulación Pulmonar/fisiología , Ratas
11.
Int J Mol Sci ; 24(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36613787

RESUMEN

Somatic expressions of either heteromeric TASK1/3 or homomeric TASK1/1 channels have been reported in various neurons, while expression of homomeric TASK3/3 channels has been re-ported only in dendrites. However, it is not known why homomeric TASK3/3 channels are hardly seen in somata of CNS neurons. Given the absence of somatic TASK3/3 channels, it should be clarified why dendritic expression of TASK3/3 channels is inevitable and necessary and how differentially distributed TASK1/1 and TASK3/3 channels play roles in soma-to-dendritic integration. Here, we addressed these questions. We found that TASK3-transfected HEK293 cells showed decreases in cell volume after being transferred from the cultured medium to HEPES Ringer, suggesting that expressions of TASK3 channels in cell bodies cause an osmolarity problem. Using TASK1- and TASK3-transfected oocytes, we also found that cGMP application slightly suppressed TASK3 currents while it largely enhanced TASK1 currents, alleviating the difference between TASK1 and TASK3 currents at physiological pH. As larger motoneurons have extensive dendritic trees while smaller motoneurons have poor ones, cGMP could integrate Ia-EPSPs to recruit small and large motoneurons synchronously by differentially modulating TASKI and TASK3 channels which were complementary distributed in soma and dendrites of motoneurons in the dorsolateral part of the trigeminal motor nucleus.


Asunto(s)
Neuronas Motoras , Canales de Potasio de Dominio Poro en Tándem , Humanos , Células HEK293 , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo
12.
Biochem Biophys Res Commun ; 578: 163-169, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34571371

RESUMEN

TASK-1, TWIK-related acid-sensitive potassium channel 1, is a member of the two-pore- domain potassium channel family. It is constitutively active at resting potentials and strongly expressed in the heart. However, little is known about the role of TASK-1 channels in hypoxia. A cellular model of hypoxia and reoxygenation from rat heart-derived H9c2 cells or TASK-1 deficient HEK293T cells was employed to explore the role of TASK-1 channels in cytoprotection against hypoxia. The cell viability assay revealed that TASK-1 expression increased the number of viable cells subjected to 2 h of hypoxia followed by 2 h of reoxygenation (H/R). To dissect the protective role of TASK-1 on mitochondrial function, mitochondrial membrane potential (MMP) was assessed by tetramethylrhodamine fluorescence. It was demonstrated that MMP was significantly decreased by H/R, but it was maintained by TASK-1 expression or pretreatment with cyclosporin A, an inhibitor of mitochondrial permeability transition pore (mPTP). The effect of cyclosporin A on MMP was not further altered by TASK-1 expression. Moreover, TASK-1 expression significantly blocked cytochrome c release induced by H/R. While a small fraction of endogenous TASK-1 was found to colocalize with the mitochondrial marker MitoTracker in H9c2 cells, H/R did not alter the extent of colocalization of TASK-1 with MitoTracker. The total TASK-1 protein level was not significantly affected by H/R. In summary, we provided the evidence that TASK-1 channels confer cytoprotection against hypoxia-reoxygenation injury, possibly by their capacity of maintaining the mitochondrial membrane potential via inhibiting MPTP opening.


Asunto(s)
Hipoxia de la Célula/fisiología , Corazón/fisiología , Mitocondrias/fisiología , Miocardio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Animales , Línea Celular , Citoprotección , Humanos , Potencial de la Membrana Mitocondrial , Proteínas del Tejido Nervioso/genética , Canales de Potasio de Dominio Poro en Tándem/genética , Ratas
13.
Pflugers Arch ; 472(7): 911-922, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32472332

RESUMEN

TWIK-related acid-sensitive K+ (TASK) channels contribute to the resting membrane potential in various kinds of cells, such as brain neurons, smooth muscle cells, and endocrine cells. Loss-of-function mutations at multiple sites in the KCNK3 gene encoding for TASK1 channels are one of the causes of pulmonary arterial hypertension in humans, whereas a mutation at only one site is reported for TASK3 channels, resulting in a syndrome of mental retardation, hypotonia, and facial dysmorphism. TASK channels are subject to regulation by G protein-coupled receptors (GPCRs). Two mechanisms have been proposed for the GPCR-mediated inhibition of TASK channels: a change in gating and channel endocytosis. The most feasible mechanism for altered gating is diacylglycerol binding to a site in the C-terminus, which is shared by TASK1 and TASK3. The inhibition of channel function by endocytosis requires the presence of a tyrosine residue subjected to phosphorylation by the non-receptor tyrosine kinase Src and a dileucine motif in the C-terminus of TASK1. Therefore, homomeric TASK1 and heteromeric TASK1-TASK3 channels, but not homomeric TASK3, are internalized by GPCR stimulation. Tyrosine phosphorylation by Src is expected to result in a conformational change in the C-terminus, allowing for AP-2, an adaptor protein for clathrin, to bind to the dileucine motif. It is likely that a raft membrane domain is a platform where TASK1 is located and the signaling molecules protein kinase C, Pyk2, and Src are recruited in sequence in response to GPCR stimulation.


Asunto(s)
Canalopatías/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Transporte de Proteínas/fisiología , Animales , Humanos , Fosforilación/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología
14.
Mol Biol (Mosk) ; 54(3): 457-468, 2020.
Artículo en Ruso | MEDLINE | ID: mdl-32492009

RESUMEN

TWIK-related acid-sensitive potassium channel-1 (TASK-1) is a "leak" potassium channel sensitive to extracellular protons. It contributes to setting the resting potential in mammalian neurons. TASK-1 channels are widely expressed in respiratory-related neurons in the central nervous system. Inhibition of TASK-1 by extracellular acidosis can depolarize and increase the excitability of these cells. Here we describe the distribution of TASK-1 in the rat brainstem and show that TASK-1 mRNAs are present in respiratory-related nuclei in the ventrolateral medulla, which have been proposed as neural substrates for central chemo-reception in rats. After inhalation of 8% CO2 for 30 and 60 min, TASK-1 mRNA levels in positive-expression neurons were remarkably upregulated. Injection of the TASK-1 blocker anandamide (AEA) into the rat lateral cerebral ventricle, showed a significant excitement of respiratory at 10 min posttreatment, with a marked decrease in inspiratory and expiratory durations and an increased frequency of respiration. We suggest that TASK-1 channel may serve as a chemosensor for in central respiration and may contribute to pH-sensitive respiratory effects. TASK-1 channel might be an attractive candidate for sensing H^(+)/CO2 in several respiratory-related nuclei in the brainstem. It is likely that TASK-1 participates in pH-sensitive chemical regulation in the respiratory center under physiological and pathological conditions.


Asunto(s)
Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Canales de Potasio de Dominio Poro en Tándem/fisiología , Centro Respiratorio/fisiología , Animales , Ácidos Araquidónicos/farmacología , Endocannabinoides/farmacología , Concentración de Iones de Hidrógeno , Potenciales de la Membrana , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Alcamidas Poliinsaturadas/farmacología , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Ratas
16.
J Physiol ; 597(4): 1087-1101, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30365877

RESUMEN

KEY POINTS: The TASK-1 channel gene (KCNK3) has been identified as a possible disease-causing gene in heritable pulmonary arterial hypertension (PAH). In the present study, we show that novel mutated TASK-1 channels, seen in PAH patients, have a substantially reduced current compared to wild-type TASK-1 channels. These mutated TASK-1 channels are located at the plasma membrane to the same degree as wild-type TASK-1 channels. ONO-RS-082 and alkaline pH 8.4 both activate TASK-1 channels but do not recover current through mutant TASK-1 channels. We show that the guanylate cyclase activator, riociguat, a novel treatment for PAH, enhances current through TASK-1 channels but does not recover current through mutant TASK-1 channels. ABSTRACT: Pulmonary arterial hypertension (PAH) affects ∼15-50 people per million. KCNK3, the gene that encodes the two pore domain potassium channel TASK-1 (K2P3.1), has been identified as a possible disease-causing gene in heritable PAH. Recently, two new mutations have been identified in KCNK3 in PAH patients: G106R and L214R. The present study aimed to characterize the functional properties and regulation of wild-type (WT) and mutated TASK-1 channels and determine how these might contribute to PAH and its treatment. Currents through WT and mutated human TASK-1 channels transiently expressed in tsA201 cells were measured using whole-cell patch clamp electrophysiology. Localization of fluorescence-tagged channels was visualized using confocal microscopy and quantified with in-cell and on-cell westerns. G106R or L214R mutated channels were located at the plasma membrane to the same degree as WT channels; however, their current was markedly reduced compared to WT TASK-1 channels. Functional current through these mutated channels could not be restored using activators of WT TASK-1 channels (pH 8.4, ONO-RS-082). The guanylate cyclase activator, riociguat, enhanced current through WT TASK-1 channels; however, similar to the other activators investigated, riociguat did not have any effect on current through mutated TASK-1 channels. Thus, novel mutations in TASK-1 seen in PAH substantially alter the functional properties of these channels. Current through these channels could not be restored by activators of TASK-1 channels. Riociguat enhancement of current through TASK-1 channels could contribute to its therapeutic benefit in the treatment of PAH.


Asunto(s)
Potenciales de Acción , Hipertensión Pulmonar/genética , Mutación Missense , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/fisiología , Activadores de Enzimas/farmacología , Células HEK293 , Humanos , Proteínas del Tejido Nervioso/genética , Canales de Potasio de Dominio Poro en Tándem/genética , Pirazoles/farmacología , Pirimidinas/farmacología
18.
J Cell Physiol ; 234(10): 17886-17895, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30864194

RESUMEN

Hypoglossal motoneurons innervate genioglossus muscle, the contraction of which is critical in the maintenance of upper airway patency in patients with obstructive sleep apnea. As a potassium channel distributed in hypoglossal motoneurons, TWIK-related acid-sensitive K+ channel-1 (TASK-1) could be inhibited by 5-HT. This study aimed to investigate if TASK-1 expression in hypoglossal nucleus could be influenced by chronic intermittent hypoxia (CIH) and 5-HT2A receptors antagonist. Two hundred twenty-eight rats were exposed to CIH or normoxia (NO) in the presence and absence of 5-HT 2A receptor antagonist (MDL-100907) microinjected into the hypoglossal nucleus. The expression of 5-HT and TASK-1 in the hypoglossal nucleus were detected by immunohistochemistry and reverse transcription quantitative polymerase chain reaction on the 1st, 3rd, 7th, 14th and 21st day of CIH exposure. The mean optical density (MOD) of 5-HT in the XII nucleus was significantly increased in the CIH and CIH + MDL group than the NO group on the 7th and 21st day ( p < 0.05). Compared with the NO group, the MOD and gene expression of TASK-1 in the CIH group was significantly increased on the 7th and 14th day ( p < 0.05), then normalized on the 21st day. The TASK-1 expression in the CIH + MDL group was significantly lower than the CIH + PBS and CIH group on the 7th and 14th day ( p < 0.05). The CIH-induced transiently upregulation of the TASK-1 expression in the hypoglossal nucleus could be reversed by 5-HT 2A receptor antagonist, indicating that the modulation of the TASK-1 expression in response to CIH involves 5-HT and 5-HT 2A receptors, and this CIH effect might be 5-HT 2A receptor-dependent.


Asunto(s)
Hipoxia/tratamiento farmacológico , Bulbo Raquídeo/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Receptor de Serotonina 5-HT2A/metabolismo , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Regulación hacia Arriba/efectos de los fármacos , Animales , Hipoxia/metabolismo , Masculino , Bulbo Raquídeo/metabolismo , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso , Ratas , Ratas Sprague-Dawley , Apnea Obstructiva del Sueño/tratamiento farmacológico , Apnea Obstructiva del Sueño/metabolismo , Activación Transcripcional/efectos de los fármacos
19.
Glia ; 67(5): 870-883, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30623969

RESUMEN

In multiple sclerosis, demyelination occurs as a consequence of chronic autoimmunity in the central nervous system causing progressive neurological impairment in patients. After a demyelinating event, new myelin sheaths are formed by adult oligodendroglial progenitor cells; a process called remyelination. However, remyelination often fails in multiple sclerosis due to insufficient recruitment and differentiation of oligodendroglial precursor cells. A pivotal role for the two-pore-domain potassium (K2P ) channel, TASK1, has already been proven for an animal model of multiple sclerosis. However, the mechanisms underlying the TASK1-mediated effects are still elusive. Here, we tested the role of TASK1 channels in oligodendroglial differentiation and remyelination after cuprizone-induced demyelination in male mice. We found TASK1 channels to be functionally expressed on primary murine and human, pluripotent stem cell-derived oligodendrocytes. Lack of TASK1 channels resulted in an increase of mature oligodendrocytes in vitro as well as a higher number of mature oligodendrocytes and accelerated developmental myelination in vivo. Mechanistically, Task1-deficient cells revealed a higher amount of phosphorylated WNK1, a kinase known to be involved in the downstream signaling of the myelination regulator LINGO-1. Furthermore, we analyzed the effect of genetic TASK1 ablation or pharmacological TASK1 inhibition on disease-related remyelination. Neither channel inhibition nor lack of TASK1 channels promoted remyelination after pathological demyelination. In summary, we conclude that functional TASK1 channels participate in the modulation of differentiating oligodendroglial cells in a previously unknown manner. However, while being involved in developmental myelination our data suggest that TASK1 channels have no major effect on remyelination.


Asunto(s)
Diferenciación Celular/genética , Enfermedades Desmielinizantes/patología , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Anestésicos Locales/farmacología , Animales , Animales Recién Nacidos , Bupivacaína/farmacología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Células Cultivadas , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibidores de la Monoaminooxidasa/toxicidad , Proteínas de la Mielina/genética , Proteínas de la Mielina/metabolismo , Proteínas de la Mielina/ultraestructura , Proteínas del Tejido Nervioso/genética , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Células Precursoras de Oligodendrocitos/fisiología , Células Precursoras de Oligodendrocitos/ultraestructura , Oligodendroglía/efectos de los fármacos , Oligodendroglía/fisiología , Oligodendroglía/ultraestructura , Canales de Potasio de Dominio Poro en Tándem/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/farmacología
20.
Cell Physiol Biochem ; 52(5): 1223-1235, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31001961

RESUMEN

BACKGROUND/AIMS: The two-pore-domain potassium channel TASK-1 regulates atrial action potential duration. Due to the atrium-specific expression of TASK-1 in the human heart and the functional upregulation of TASK-1 currents in atrial fibrillation (AF), TASK-1 represents a promising target for the treatment of AF. Therefore, detailed knowledge of the molecular determinants of TASK-1 inhibition may help to identify new drugs for the future therapy of AF. In the current study, the molecular determinants of TASK-1 inhibition by the potent and antiarrhythmic compound A293 (AVE1231) were studied in detail. METHODS: Alanine-scanning mutagenesis together with two-electrode voltage-clamp recordings were combined with in silico docking experiments. RESULTS: Here, we have identified Q126 located in the M2 segment together with L239 and N240 of the M4 segment as amino acids essential for the A293-mediated inhibition of TASK-1. These data indicate a binding site which is different to that of A1899 for which also residues of the pore signature sequence and the late M4 segments are essential. Using in silico docking experiments, we propose a binding site at the lower end of the cytosolic pore, located at the entry to lateral side fenestrations of TASK-1. Strikingly, TASK-1 inhibition by the low affinity antiarrhythmic TASK-1 blockers propafenone, amiodarone and carvedilol was also strongly diminished by mutations at this novel binding site. CONCLUSION: We have identified the A293 binding site in the central cavity of TASK-1 and propose that this site might represent a conserved site of action for many low affinity antiarrhythmic TASK-1 blockers.


Asunto(s)
Antiarrítmicos/química , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/química , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Canales de Potasio de Dominio Poro en Tándem/química , Sustitución de Aminoácidos , Animales , Sitios de Unión , Humanos , Mutagénesis Sitio-Dirigida , Mutación Missense , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA