Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cancer Cell Int ; 24(1): 241, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987818

RESUMEN

Pancreatic cancer, characterized by its poor prognosis, exhibits a marked resistance to conventional chemotherapy and immunotherapy, underscoring the urgent need for more effective treatment modalities. In light of this, the present study is designed to assess the potential antineoplastic efficacy of a combined regimen involving tetrandrine, a plant-derived alkaloid, and autophagy inhibitors in the context of pancreatic cancer. Electron microscopy and immunoblots showed that tetrandrine promoted the formation of autophagosomes and the upregulation of LC3II and the downregulation of p62 expression, indicating that tetrandrine induced autophagy in pancreatic cancer cells. Western blot revealed that tetrandrine inhibited the phosphorylation of AKT and mTOR, as well as the expression of Bcl-2, while upregulating Beclin-1 expression. Moreover, tetrandrine promoted the transcription and protein expression of ATG7. Following the combination of autophagy inhibitors and tetrandrine, the apoptotic rate and cell death significantly increased in pancreatic cancer cells. Consistent results were obtained when ATG7 was silenced. Additionally, tetrandrine induced the generation of ROS, which was involved in the activation of autophagy and apoptosis. Further investigation revealed that upon autophagy inhibition, ROS accumulated in pancreatic cancer cells, resulting in decreased mitochondrial membrane potential and further induction of apoptosis. The results of treating subcutaneous xenograft tumors with a combination of tetrandrine and chloroquine validated that autophagy inhibition enhances the toxicity of tetrandrine against pancreatic cancer in vivo. Altogether, our study demonstrates that tetrandrine induces cytoprotective autophagy in pancreatic cancer cells. Inhibiting tetrandrine-induced autophagy promotes the accumulation of ROS and enhances its toxicity against pancreatic cancer.

2.
Pharmacol Res ; 207: 107314, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059614

RESUMEN

The efficacy of PD-1 therapy in non-small cell lung cancer (NSCLC) patients remains unsatisfactory. Activating the STING pathway is a promising strategy to improve PD-1 inhibitor efficacy. Here, we found tetrandrine (TET), an anti-tumor compound extracted from a medicinal plant commonly used in traditional Chinese medicine, has the ability to inhibit NSCLC tumor growth. Mechanistically, TET induces nuclear DNA damage and increases cytosolic dsDNA, thereby activating the STING/TBK1/IRF3 pathway, which in turn promotes the tumor infiltration of dendritic cells (DCs), macrophages, as well as CD8+ T cells in mice. In vivo imaging dynamically monitored the increased activity of the STING pathway after TET treatment and predicted the activation of the tumor immune microenvironment. We further revealed that the combination of TET with αPD-1 monoclonal antibody (αPD-1 mAb) yields significant anti-cancer effects by promoting CD8+ T cell infiltration and enhancing its cell-killing effect, which in turn reduced the growth of tumors and prolonged survival of NSCLC mice. Therefore, TET effectively eliminates NSCLC cells and enhances immunotherapy efficacy through the activation of the STING pathway, and combining TET with anti-PD-1 immunotherapy deserves further exploration for applications.


Asunto(s)
Bencilisoquinolinas , Carcinoma de Pulmón de Células no Pequeñas , Inhibidores de Puntos de Control Inmunológico , Factor 3 Regulador del Interferón , Neoplasias Pulmonares , Proteínas de la Membrana , Receptor de Muerte Celular Programada 1 , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/uso terapéutico , Humanos , Proteínas de la Membrana/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Ratones , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Línea Celular Tumoral , Inmunoterapia/métodos , Femenino , Ratones Endogámicos C57BL , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Microambiente Tumoral/efectos de los fármacos , Ratones Endogámicos BALB C , Sinergismo Farmacológico
3.
Bioorg Chem ; 143: 107069, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160477

RESUMEN

Tetrandrine (TET) possesses multiple pharmacological activities and could suppress tumor proliferation via PI3K pathway inhibition. However, inferior antitumor activity and potential toxicity limit its clinical application. In the present study, a series of 14-sulfonamide and sulfonate TET derivatives were designed, synthesized, and evaluated for biological activities. Through structural-activity relationship studies, compound 3c with α, ß-unsaturated carbonyl group exhibited the most potent activity against all tested tumor cell lines (including Hela, HCT116, HepG2, MCF-7, and SHSY5Y), as well as negligible toxicity against normal cell lines LO2 and HEK293. Additionally, compound 3c effectively inhibited HCT116 and CT26 cell proliferation in vitro with increased cell proportion in the G2/M phase, activated the mitochondrial apoptosis pathway, and induced colon cancer cell apoptosis by suppressing the PI3K/AKT/mTOR pathway. The further molecular docking results confirmed that compound 3c is potentially bound to multiple residues in PI3K with a stronger binding affinity than TET. Ultimately, compound 3c dramatically suppressed tumor growth in the CT26 xenograft tumor model, without noticeable visceral toxicity detected in the high-dose group. In summary, compound 3c might present new insights for designing new PI3K inhibitors and be a potential candidate for colon cancer treatment.


Asunto(s)
Bencilisoquinolinas , Neoplasias del Colon , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Fosfatidilinositol 3-Quinasas/metabolismo , Simulación del Acoplamiento Molecular , Células HEK293 , Serina-Treonina Quinasas TOR/metabolismo , Línea Celular Tumoral , Apoptosis , Proliferación Celular , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo
4.
Phytother Res ; 38(2): 527-538, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37909161

RESUMEN

Flaps are mainly used for wound repair. However, postoperative ischemic necrosis of the distal flap is a major problem, which needs to be addressed urgently. We evaluated whether tetrandrine, a compound found in traditional Chinese medicine, can prolong the survival rate of random skin flaps. Thirty-six rats were randomly divided into control, low-dose tetrandrine (25 mg/kg/day), and high-dose tetrandrine (60 mg/kg/day) groups. On postoperative Day 7, the flap survival and average survival area were determined. After the rats were sacrificed, the levels of angiogenesis, apoptosis, and inflammation in the flap tissue were detected with immunology and molecular biology analyses. Tetrandrine increased vascular endothelial growth factor and Bcl-2 expression, in turn promoting angiogenesis and anti-apoptotic processes, respectively. Additionally, tetrandrine decreased the expression of Bax, which is associated with the induction of apoptosis, and also decreased inflammation in the flap tissue. Tetrandrine improved the survival rate of random flaps by promoting angiogenesis, inhibiting apoptosis, and reducing inflammation in the flap tissue through the modulation of the PI3K/AKT signaling pathway.


Asunto(s)
Bencilisoquinolinas , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Ratas , Animales , Ratas Sprague-Dawley , Factor A de Crecimiento Endotelial Vascular , Transducción de Señal , Inflamación , Piel
5.
Arch Pharm (Weinheim) ; 357(10): e2400274, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39031554

RESUMEN

Tetrandrine (TET) is a natural bis-benzylisoquinoline alkaloid isolated from Stephania species with a wide range of biological and pharmacologic activities; it mainly serves as an anti-inflammatory agent or antitumor adjuvant in clinical applications. However, limitations such as prominent hydrophobicity, severe off-target toxicity, and low absorption result in suboptimal therapeutic outcomes preventing its widespread adoption. Nanoparticles have proven to be efficient devices for targeted drug delivery since drug-carrying nanoparticles can be passively transported to the tumor site by the enhanced permeability and retention (EPR) effects, thus securing a niche in cancer therapies. Great progress has been made in nanocarrier construction for TET delivery due to their outstanding advantages such as increased water-solubility, improved biodistribution and blood circulation, reduced off-target irritation, and combinational therapy. Herein, we systematically reviewed the latest advancements in TET-loaded nanoparticles and their respective features with the expectation of providing perspective and guidelines for future research and potential applications of TET.


Asunto(s)
Bencilisoquinolinas , Disponibilidad Biológica , Nanopartículas , Solubilidad , Bencilisoquinolinas/química , Bencilisoquinolinas/administración & dosificación , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/farmacocinética , Humanos , Nanopartículas/química , Animales , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Distribución Tisular , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/administración & dosificación
6.
Drug Dev Ind Pharm ; 50(2): 135-149, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38235554

RESUMEN

OBJECTIVE: Glioma is the most common and deadly primary malignant tumor in adults. Treatment outcomes are ungratified due to the presence of blood-brain barrier (BBB), glioma stem cells (GSCs) and multidrug resistance (MDR). Docetaxel (DTX) is considered as a potential drug for the treatment of brain tumor, but its effectiveness is limited by its low bioavailability and drug resistance. Tetrandrine (TET) reverses the resistance of tumor cells to chemotherapy drugs. Borneol (BO) modified in micelles has been shown to promote DTX plus TET to cross the BBB, allowing the drug to better act on tumors. Therefore, we constructed BO-modified DTX plus TET micelles to inhibit chemotherapeutic drug resistance. SIGNIFICANCE: Provide a new treatment method for drug-resistant brain gliomas. METHODS: In this study, BO-modified DTX plus TET micelles were prepared by thin film dispersion method, their physicochemical properties were characterized. Its targeting ability was investigated. The therapeutic effect on GSCs was investigated by in vivo and in vitro experiments. RESULTS: The BO-modified DTX plus TET micelles were successfully constructed by thin film dispersion method, and the micelles showed good stability. The results showed that targeting micelles increased bEnd.3 uptake and helped drugs cross the BBB in vitro. And we also found that targeting micelles could inhibit cell proliferation, promote cell apoptosis and inhibit the expression of drug-resistant protein, thus provide a new treatment method for GSCs in vitro and in vivo. CONCLUSIONS: BO-modified DTX plus TET micelles may provide a new treatment method for drug-resistant brain gliomas.


Asunto(s)
Antineoplásicos , Bencilisoquinolinas , Canfanos , Glioma , Humanos , Docetaxel , Micelas , Glioma/tratamiento farmacológico , Glioma/patología , Encéfalo , Línea Celular Tumoral
7.
Inflammopharmacology ; 32(3): 1743-1757, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38568399

RESUMEN

Inflammation can be triggered by any factor. The primary pathological manifestations can be summarized as the deterioration, exudation, and proliferation of local tissues, which can cause systemic damage in severe cases. Inflammatory lesions are primarily localized but may interact with body systems to cause provocative storms, parenchymal organ lesions, vascular and central nervous system necrosis, and other pathologic responses. Tetrandrine (TET) is a bisbenzylquinoline alkaloid extracted from the traditional Chinese herbal medicine Stephania tetrandra, which has been shown to have significant efficacy in inflammatory conditions such as rheumatoid arthritis, hepatitis, nephritis, etc., through NF-κB, MAPK, ERK, and STAT3 signaling pathways. TET can regulate the body's imbalanced metabolic pathways, reverse the inflammatory process, reduce other pathological damage caused by inflammation, and prevent the vicious cycle. More importantly, TET does not disrupt body's normal immune function while clearing the body's inflammatory state. Therefore, it is necessary to pay attention to its dosage and duration during treatment to avoid unexpected side effects caused by a long half-life. In summary, TET has a promising future in treating inflammatory diseases. The author reviews current therapeutic studies of TET in inflammatory conditions to provide some ideas for subsequent anti-inflammatory studies of TET.


Asunto(s)
Bencilisoquinolinas , Inflamación , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/uso terapéutico , Humanos , Animales , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Transducción de Señal/efectos de los fármacos
8.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 53(4): 519-526, 2024 Aug 25.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-38650449

RESUMEN

OBJECTIVES: To explore the efficacy and safety of tetrandrine in the treatment of rheumatoid arthritis. METHODS: Randomized controlled studies of tetrandrine in the treatment of rheumatoid arthritis were searched in CNKI, VIP, Wanfang database, SinoMed, PubMed, Springer, Web of Science and Cochrane Central Register of Controlled Trails databases. A meta-analysis was conducted using R 3.5.3 software to evaluate the clinical outcomes, including the total effective rate, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), rheumatoid factor (RF), visual analogue scale (VAS), disease activity score (DAS), tender joint count (TJC), swollen joint count (SJC), and morning stiffness duration, as well as adverse events of rheumatoid arthritis patients. RESULTS: A total of 10 articles were included in the study. The meta-analysis indicated that tetrandrine significantly improved the total effective rate (OR=3.27, 95%CI: 2.01-5.37, P<0.01), ESR (SMD=1.12, 95%CI: 0.06-2.19, P<0.05), CRP (SMD=0.75, 95%CI: 0.28-1.22, P<0.01), VAS (SMD=0.64, 95%CI: 0.29-1.00, P<0.01), TJC (SMD=1.16, 95%CI: 0.58-1.74, P<0.01), SJC (SMD=0.85, 95%CI: 0.40-1.31, P<0.01), and morning stiffness (SMD=1.09, 95%CI: 0.68-1.50, P<0.01). However, no statistical significance was found in RF (SMD=1.70, 95%CI: -1.10-4.51, P>0.05) and DAS (SMD=0.26, 95%CI: -0.59-1.11, P>0.05). The overall incidence of adverse events associated with tetrandrine treatment for rheumatoid arthritis was 20% (95%CI: 12%-27%, I2=60%, P<0.05), with mild severity and favorable outcomes. CONCLUSIONS: Tetrandrine is effective in the treatment of RA patients with a mild degree of adverse events.


Asunto(s)
Artritis Reumatoide , Bencilisoquinolinas , Bencilisoquinolinas/uso terapéutico , Bencilisoquinolinas/efectos adversos , Humanos , Artritis Reumatoide/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto , Proteína C-Reactiva/metabolismo , Resultado del Tratamiento , Sedimentación Sanguínea
9.
Mol Pharm ; 20(11): 5463-5475, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37823637

RESUMEN

Nonsmall cell lung cancer (NSCLC) remains one of the leading causes of cancer-related death worldwide, posing a serious threat to global health. Tetrandrine (Tet) is a small molecule in traditional Chinese medicine with proven primary efficacy against multiple cancers. Although previous studies have demonstrated the potential anticancer effects of Tet on NSCLC, its poor water solubility has limited its further clinical application. Herein, a novel nanoparticle-based drug delivery system, platelet membrane (PLTM)-coated Tet-loaded polycaprolactone-b-poly(ethylene glycol)-b-polycaprolactone nanoparticles (PTeNPs), is proposed to increase the potency of Tet against NSCLC. First, tetrandrine nanoparticles (TeNPs) are created using an emulsion solvent evaporation method, and biomimetic nanoparticles (PTeNPs) are prepared by coating the nanoparticles with PLTMs. When coated with PLTMs, PTeNPs are considerably less phagocytized by macrophages than Tet and TeNPs. In addition, compared with Tet and TeNPs, PTeNPs can significantly inhibit the growth and invasion of NSCLC both in vitro and in vivo. With reliable biosafety, this drug delivery system provides a new method of sustained release and efficient anticancer effects against NSCLC, facilitating the incorporation of Tet in modern nanotechnology.


Asunto(s)
Bencilisoquinolinas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Nanopartículas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Portadores de Fármacos , Biomimética , Neoplasias Pulmonares/tratamiento farmacológico , Bencilisoquinolinas/farmacología
10.
Pharmacol Res ; 197: 106955, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37820855

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal malignancies lacking effective therapies. KRAS mutations that occur in over 90% of PDAC are major oncogenic drivers of PDAC. The MAPK signaling pathway plays a central role in KRAS-driven oncogenic signaling. However, pharmacological inhibitors of the MAPK pathway are poorly responded in KRAS-mutant PDAC, raising a compelling need to understand the mechanism behind and to seek new therapeutic solutions. Herein, we perform a screen utilizing a library composed of 800 naturally-derived bioactive compounds to identify natural products that are able to sensitize KRAS-mutant PDAC cells to the MAPK inhibition. We discover that tetrandrine, a natural bisbenzylisoquinoline alkaloid, shows a synergistic effect with MAPK inhibitors in PDAC cells and xenograft models. Mechanistically, pharmacological inhibition of the MAPK pathway exhibits a double-edged impact on the TRAIL-death receptor axis, transcriptionally upregulating TRAIL yet downregulating its agonistic receptors DR4 and DR5, which may explain the limited therapeutic outcomes of MAPK inhibitors in KRAS-mutant PDAC. Of great interest, tetrandrine stabilizes DR4/DR5 protein via impairing ubiquitination-mediated protein degradation, thereby allowing a synergy with MAPK inhibition in inducing apoptosis in KRAS-mutant PDAC. Our findings identify a new combinatorial approach for treating KRAS-mutant PDAC and highlight the role of TRAIL-DR4/DR5 axis in dictating the therapeutic outcome in KRAS-mutant PDAC.


Asunto(s)
Bencilisoquinolinas , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptores de Muerte Celular , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA