Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.879
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(10): 2359-2374.e18, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38653240

RESUMEN

Brown adipose tissue (BAT) is best known for thermogenesis. Rodent studies demonstrated that enhanced BAT thermogenesis is tightly associated with increased energy expenditure, reduced body weight, and improved glucose homeostasis. However, human BAT is protective against type 2 diabetes, independent of body weight. The mechanism underlying this dissociation remains unclear. Here, we report that impaired mitochondrial catabolism of branched-chain amino acids (BCAAs) in BAT, by deleting mitochondrial BCAA carriers (MBCs), caused systemic insulin resistance without affecting energy expenditure and body weight. Brown adipocytes catabolized BCAA in the mitochondria as nitrogen donors for the biosynthesis of non-essential amino acids and glutathione. Impaired mitochondrial BCAA-nitrogen flux in BAT resulted in increased oxidative stress, decreased hepatic insulin signaling, and decreased circulating BCAA-derived metabolites. A high-fat diet attenuated BCAA-nitrogen flux and metabolite synthesis in BAT, whereas cold-activated BAT enhanced the synthesis. This work uncovers a metabolite-mediated pathway through which BAT controls metabolic health beyond thermogenesis.


Asunto(s)
Tejido Adiposo Pardo , Aminoácidos de Cadena Ramificada , Resistencia a la Insulina , Mitocondrias , Nitrógeno , Termogénesis , Tejido Adiposo Pardo/metabolismo , Animales , Aminoácidos de Cadena Ramificada/metabolismo , Ratones , Nitrógeno/metabolismo , Mitocondrias/metabolismo , Masculino , Humanos , Metabolismo Energético , Ratones Endogámicos C57BL , Estrés Oxidativo , Insulina/metabolismo , Dieta Alta en Grasa , Adipocitos Marrones/metabolismo , Transducción de Señal
2.
Cell ; 185(6): 949-966.e19, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35247329

RESUMEN

Beige fat plays key roles in the regulation of systemic energy homeostasis; however, detailed mechanisms and safe strategy for its activation remain elusive. In this study, we discovered that local hyperthermia therapy (LHT) targeting beige fat promoted its activation in humans and mice. LHT achieved using a hydrogel-based photothermal therapy activated beige fat, preventing and treating obesity in mice without adverse effects. HSF1 is required for the effects since HSF1 deficiency blunted the metabolic benefits of LHT. HSF1 regulates Hnrnpa2b1 (A2b1) transcription, leading to increased mRNA stability of key metabolic genes. Importantly, analysis of human association studies followed by functional analysis revealed that the HSF1 gain-of-function variant p.P365T is associated with improved metabolic performance in humans and increased A2b1 transcription in mice and cells. Overall, we demonstrate that LHT offers a promising strategy against obesity by inducing beige fat activation via HSF1-A2B1 transcriptional axis.


Asunto(s)
Tejido Adiposo Beige , Tejido Adiposo Blanco , Hipertermia Inducida , Obesidad/terapia , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo
3.
Cell ; 185(3): 419-446, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35120662

RESUMEN

Adipose tissue, colloquially known as "fat," is an extraordinarily flexible and heterogeneous organ. While historically viewed as a passive site for energy storage, we now appreciate that adipose tissue regulates many aspects of whole-body physiology, including food intake, maintenance of energy levels, insulin sensitivity, body temperature, and immune responses. A crucial property of adipose tissue is its high degree of plasticity. Physiologic stimuli induce dramatic alterations in adipose-tissue metabolism, structure, and phenotype to meet the needs of the organism. Limitations to this plasticity cause diminished or aberrant responses to physiologic cues and drive the progression of cardiometabolic disease along with other pathological consequences of obesity.


Asunto(s)
Adaptación Fisiológica , Tejido Adiposo/fisiología , Enfermedad , Salud , Adipocitos Blancos/metabolismo , Animales , Humanos , Termogénesis
4.
Cell ; 184(13): 3502-3518.e33, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34048700

RESUMEN

Thermogenic adipocytes possess a therapeutically appealing, energy-expending capacity, which is canonically cold-induced by ligand-dependent activation of ß-adrenergic G protein-coupled receptors (GPCRs). Here, we uncover an alternate paradigm of GPCR-mediated adipose thermogenesis through the constitutively active receptor, GPR3. We show that the N terminus of GPR3 confers intrinsic signaling activity, resulting in continuous Gs-coupling and cAMP production without an exogenous ligand. Thus, transcriptional induction of Gpr3 represents the regulatory parallel to ligand-binding of conventional GPCRs. Consequently, increasing Gpr3 expression in thermogenic adipocytes is alone sufficient to drive energy expenditure and counteract metabolic disease in mice. Gpr3 transcription is cold-stimulated by a lipolytic signal, and dietary fat potentiates GPR3-dependent thermogenesis to amplify the response to caloric excess. Moreover, we find GPR3 to be an essential, adrenergic-independent regulator of human brown adipocytes. Taken together, our findings reveal a noncanonical mechanism of GPCR control and thermogenic activation through the lipolysis-induced expression of constitutively active GPR3.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Receptor de Androstano Constitutivo/metabolismo , Lipólisis , Receptores Acoplados a Proteínas G/metabolismo , Termogénesis , Adipocitos/metabolismo , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Frío , Grasas de la Dieta/farmacología , Humanos , Ratones Endogámicos C57BL , Fenotipo , Receptores Acoplados a Proteínas G/genética , Transducción de Señal , Sistema Nervioso Simpático/metabolismo , Transcripción Genética
5.
Immunity ; 57(1): 141-152.e5, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38091996

RESUMEN

Adipose tissues (ATs) are innervated by sympathetic nerves, which drive reduction of fat mass via lipolysis and thermogenesis. Here, we report a population of immunomodulatory leptin receptor-positive (LepR+) sympathetic perineurial barrier cells (SPCs) present in mice and humans, which uniquely co-express Lepr and interleukin-33 (Il33) and ensheath AT sympathetic axon bundles. Brown ATs (BATs) of mice lacking IL-33 in SPCs (SPCΔIl33) had fewer regulatory T (Treg) cells and eosinophils, resulting in increased BAT inflammation. SPCΔIl33 mice were more susceptible to diet-induced obesity, independently of food intake. Furthermore, SPCΔIl33 mice had impaired adaptive thermogenesis and were unresponsive to leptin-induced rescue of metabolic adaptation. We therefore identify LepR+ SPCs as a source of IL-33, which orchestrate an anti-inflammatory BAT environment, preserving sympathetic-mediated thermogenesis and body weight homeostasis. LepR+IL-33+ SPCs provide a cellular link between leptin and immune regulation of body weight, unifying neuroendocrinology and immunometabolism as previously disconnected fields of obesity research.


Asunto(s)
Tejido Adiposo Pardo , Leptina , Animales , Humanos , Ratones , Tejido Adiposo Pardo/inervación , Tejido Adiposo Pardo/metabolismo , Peso Corporal , Metabolismo Energético/fisiología , Interleucina-33/genética , Interleucina-33/metabolismo , Obesidad/metabolismo , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Termogénesis/fisiología
6.
Cell ; 172(1-2): 218-233.e17, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29249357

RESUMEN

Signaling pathways that promote adipose tissue thermogenesis are well characterized, but the limiters of energy expenditure are largely unknown. Here, we show that ablation of the anti-inflammatory cytokine IL-10 improves insulin sensitivity, protects against diet-induced obesity, and elicits the browning of white adipose tissue. Mechanistic studies define bone marrow cells as the source of the IL-10 signal and adipocytes as the target cell type mediating these effects. IL-10 receptor alpha is highly enriched in mature adipocytes and is induced in response to differentiation, obesity, and aging. Assay for transposase-accessible chromatin sequencing (ATAC-seq), ChIP-seq, and RNA-seq reveal that IL-10 represses the transcription of thermogenic genes in adipocytes by altering chromatin accessibility and inhibiting ATF and C/EBPß recruitment to key enhancer regions. These findings expand our understanding of the relationship between inflammatory signaling pathways and adipose tissue function and provide insight into the physiological control of thermogenesis that could inform future therapy.


Asunto(s)
Adipocitos/metabolismo , Ensamble y Desensamble de Cromatina , Metabolismo Energético , Interleucina-10/metabolismo , Termogénesis , Factores de Transcripción Activadores/metabolismo , Animales , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Línea Celular , Células Cultivadas , Interleucina-10/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal
7.
Cell ; 173(3): 554-567, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677509

RESUMEN

The essential roles played by the immune system in the discrimination between self- versus non/altered-self and its integral role in promoting host defense against invading microbes and tumors have been extensively studied for many years. In these contexts, significant advances have been made in defining the molecular and cellular networks that orchestrate cell-cell communication to mediate host defense and pathogen expulsion. Notably, recent studies indicate that in addition to these classical immune functions, cells of the innate and adaptive immune system also sense complex tissue- and environment-derived signals, including those from the nervous system and the diet. In turn these responses regulate physiologic processes in multiple tissues throughout the body, including nervous system function, metabolic state, thermogenesis, and tissue repair. In this review we propose an integrated view of how the mammalian immune system senses and interacts with other complex organ systems to maintain tissue and whole-body homeostasis.


Asunto(s)
Metabolismo Energético , Sistema Inmunológico/fisiología , Inmunidad Innata/fisiología , Inmunidad Adaptativa , Animales , Comunicación Celular , Dieta , Homeostasis , Interacciones Huésped-Patógeno , Humanos , Inflamación , Neuronas/fisiología , Regeneración , Sistema Nervioso Simpático , Péptido Intestinal Vasoactivo/química
8.
Cell ; 175(6): 1561-1574.e12, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30449620

RESUMEN

The molecular mediator and functional significance of meal-associated brown fat (BAT) thermogenesis remains elusive. Here, we identified the gut hormone secretin as a non-sympathetic BAT activator mediating prandial thermogenesis, which consequentially induces satiation, thereby establishing a gut-secretin-BAT-brain axis in mammals with a physiological role of prandial thermogenesis in the control of satiation. Mechanistically, meal-associated rise in circulating secretin activates BAT thermogenesis by stimulating lipolysis upon binding to secretin receptors in brown adipocytes, which is sensed in the brain and promotes satiation. Chronic infusion of a modified human secretin transiently elevates energy expenditure in diet-induced obese mice. Clinical trials with human subjects showed that thermogenesis after a single-meal ingestion correlated with postprandial secretin levels and that secretin infusions increased glucose uptake in BAT. Collectively, our findings highlight the largely unappreciated function of BAT in the control of satiation and qualify BAT as an even more attractive target for treating obesity.


Asunto(s)
Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Ingestión de Alimentos , Secretina/metabolismo , Termogénesis , Adipocitos Marrones/citología , Tejido Adiposo Pardo/citología , Animales , Células HEK293 , Humanos , Lipólisis , Ratones , Ratones Noqueados , Ratones Obesos , Secretina/genética
9.
Cell ; 171(4): 836-848.e13, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-28988768

RESUMEN

Adrenergic stimulation promotes lipid mobilization and oxidation in brown and beige adipocytes, where the harnessed energy is dissipated as heat in a process known as adaptive thermogenesis. The signaling cascades and energy-dissipating pathways that facilitate thermogenesis have been extensively described, yet little is known about the counterbalancing negative regulatory mechanisms. Here, we identify a two-pore-domain potassium channel, KCNK3, as a built-in rheostat negatively regulating thermogenesis. Kcnk3 is transcriptionally wired into the thermogenic program by PRDM16, a master regulator of thermogenesis. KCNK3 antagonizes norepinephrine-induced membrane depolarization by promoting potassium efflux in brown adipocytes. This limits calcium influx through voltage-dependent calcium channels and dampens adrenergic signaling, thereby attenuating lipolysis and thermogenic respiration. Adipose-specific Kcnk3 knockout mice display increased energy expenditure and are resistant to hypothermia and obesity. These findings uncover a critical K+-Ca2+-adrenergic signaling axis that acts to dampen thermogenesis, maintain tissue homeostasis, and reveal an electrophysiological regulatory mechanism of adipocyte function.


Asunto(s)
Tejido Adiposo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Obesidad/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Receptores Adrenérgicos/metabolismo , Transducción de Señal , Termogénesis , Adipocitos Marrones/metabolismo , Tejido Adiposo/patología , Animales , Separación Celular , Células Cultivadas , Fenómenos Electrofisiológicos , Femenino , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Obesidad/patología , Canales de Potasio de Dominio Poro en Tándem/genética
10.
Genes Dev ; 37(11-12): 454-473, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37364987

RESUMEN

The circadian clock plays an essential role in coordinating feeding and metabolic rhythms with the light/dark cycle. Disruption of clocks is associated with increased adiposity and metabolic disorders, whereas aligning feeding time with cell-autonomous rhythms in metabolism improves health. Here, we provide a comprehensive overview of recent literature in adipose tissue biology as well as our understanding of molecular mechanisms underlying the circadian regulation of transcription, metabolism, and inflammation in adipose tissue. We highlight recent efforts to uncover the mechanistic links between clocks and adipocyte metabolism, as well as its application to dietary and behavioral interventions to improve health and mitigate obesity.


Asunto(s)
Tejido Adiposo , Relojes Circadianos , Humanos , Tejido Adiposo/fisiología , Relojes Circadianos/genética , Obesidad , Ritmo Circadiano/genética , Metabolismo Energético
11.
Genes Dev ; 35(9-10): 729-748, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33888560

RESUMEN

The MED1 subunit has been shown to mediate ligand-dependent binding of the Mediator coactivator complex to multiple nuclear receptors, including the adipogenic PPARγ, and to play an essential role in ectopic PPARγ-induced adipogenesis of mouse embryonic fibroblasts. However, the precise roles of MED1, and its various domains, at various stages of adipogenesis and in adipose tissue have been unclear. Here, after establishing requirements for MED1, including specific domains, for differentiation of 3T3L1 cells and both primary white and brown preadipocytes, we used multiple genetic approaches to assess requirements for MED1 in adipocyte formation, maintenance, and function in mice. We show that MED1 is indeed essential for the differentiation and/or function of both brown and white adipocytes, as its absence in these cells leads to, respectively, defective brown fat function and lipodystrophy. This work establishes MED1 as an essential transcriptional coactivator that ensures homeostatic functions of adipocytes.


Asunto(s)
Adipocitos/citología , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Subunidad 1 del Complejo Mediador/genética , Subunidad 1 del Complejo Mediador/metabolismo , Células 3T3-L1 , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Células Cultivadas , Células Madre Embrionarias/citología , Complejo Mediador/genética , Ratones , Unión Proteica/genética , Dominios Proteicos
12.
Trends Biochem Sci ; 49(6): 506-519, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38565497

RESUMEN

In mitochondria, the oxidation of nutrients is coupled to ATP synthesis by the generation of a protonmotive force across the mitochondrial inner membrane. In mammalian brown adipose tissue (BAT), uncoupling protein 1 (UCP1, SLC25A7), a member of the SLC25 mitochondrial carrier family, dissipates the protonmotive force by facilitating the return of protons to the mitochondrial matrix. This process short-circuits the mitochondrion, generating heat for non-shivering thermogenesis. Recent cryo-electron microscopy (cryo-EM) structures of human UCP1 have provided new molecular insights into the inhibition and activation of thermogenesis. Here, we discuss these structures, describing how purine nucleotides lock UCP1 in a proton-impermeable conformation and rationalizing potential conformational changes of this carrier in response to fatty acid activators that enable proton leak for thermogenesis.


Asunto(s)
Termogénesis , Proteína Desacopladora 1 , Humanos , Proteína Desacopladora 1/metabolismo , Animales , Mitocondrias/metabolismo , Tejido Adiposo Pardo/metabolismo
13.
Mol Cell ; 74(4): 844-857.e7, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31000437

RESUMEN

Brown adipose tissue (BAT) is rich in mitochondria and plays important roles in energy expenditure, thermogenesis, and glucose homeostasis. We find that levels of mitochondrial protein succinylation and malonylation are high in BAT and subject to physiological and genetic regulation. BAT-specific deletion of Sirt5, a mitochondrial desuccinylase and demalonylase, results in dramatic increases in global protein succinylation and malonylation. Mass spectrometry-based quantification of succinylation reveals that Sirt5 regulates the key thermogenic protein in BAT, UCP1. Mutation of the two succinylated lysines in UCP1 to acyl-mimetic glutamine and glutamic acid significantly decreases its stability and activity. The reduced function of UCP1 and other proteins in Sirt5KO BAT results in impaired mitochondria respiration, defective mitophagy, and metabolic inflexibility. Thus, succinylation of UCP1 and other mitochondrial proteins plays an important role in BAT and in regulation of energy homeostasis.


Asunto(s)
Metabolismo Energético/genética , Mitocondrias/metabolismo , Obesidad/genética , Sirtuinas/genética , Proteína Desacopladora 1/genética , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/patología , Animales , Regulación de la Expresión Génica , Glucosa/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/genética , Proteínas Mitocondriales/genética , Obesidad/metabolismo , Obesidad/patología , Proteómica/métodos , Ácido Succínico/metabolismo , Termogénesis/genética , Proteína Desacopladora 1/metabolismo
14.
Mol Cell ; 76(3): 500-515.e8, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31422874

RESUMEN

Diet-induced obesity can be caused by impaired thermogenesis of beige adipocytes, the brown-like adipocytes in white adipose tissue (WAT). Promoting brown-like features in WAT has been an attractive therapeutic approach for obesity. However, the mechanism underlying beige adipocyte formation is largely unknown. N-α-acetyltransferase 10 protein (Naa10p) catalyzes N-α-acetylation of nascent proteins, and overexpression of human Naa10p is linked to cancer development. Here, we report that both conventional and adipose-specific Naa10p deletions in mice result in increased energy expenditure, thermogenesis, and beige adipocyte differentiation. Mechanistically, Naa10p acetylates the N terminus of Pgc1α, which prevents Pgc1α from interacting with Pparγ to activate key genes, such as Ucp1, involved in beige adipocyte function. Consistently, fat tissues of obese human individuals show higher NAA10 expression. Thus, Naa10p-mediated N-terminal acetylation of Pgc1α downregulates thermogenic gene expression, making inhibition of Naa10p enzymatic activity a potential strategy for treating obesity.


Asunto(s)
Adipocitos Beige/enzimología , Tejido Adiposo Beige/enzimología , Acetiltransferasa A N-Terminal/metabolismo , Acetiltransferasa E N-Terminal/metabolismo , Obesidad/enzimología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Procesamiento Proteico-Postraduccional , Termogénesis , Acetilación , Tejido Adiposo Beige/fisiopatología , Adiposidad , Adolescente , Adulto , Anciano , Animales , Estudios de Casos y Controles , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Metabolismo Energético , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Acetiltransferasa A N-Terminal/deficiencia , Acetiltransferasa A N-Terminal/genética , Acetiltransferasa E N-Terminal/deficiencia , Acetiltransferasa E N-Terminal/genética , Células 3T3 NIH , Obesidad/genética , Obesidad/fisiopatología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Fenotipo , Transducción de Señal , Adulto Joven
15.
Proc Natl Acad Sci U S A ; 121(3): e2310711121, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38190531

RESUMEN

Brown adipose tissue (BAT) is the main site of nonshivering thermogenesis which plays an important role in thermogenesis and energy metabolism. However, the regulatory factors that inhibit BAT activity remain largely unknown. Here, cardiotrophin-like cytokine factor 1 (CLCF1) is identified as a negative regulator of thermogenesis in BAT. Adenovirus-mediated overexpression of CLCF1 in BAT greatly impairs the thermogenic capacity of BAT and reduces the metabolic rate. Consistently, BAT-specific ablation of CLCF1 enhances the BAT function and energy expenditure under both thermoneutral and cold conditions. Mechanistically, adenylate cyclase 3 (ADCY3) is identified as a downstream target of CLCF1 to mediate its role in regulating thermogenesis. Furthermore, CLCF1 is identified to negatively regulate the PERK-ATF4 signaling axis to modulate the transcriptional activity of ADCY3, which activates the PKA substrate phosphorylation. Moreover, CLCF1 deletion in BAT protects the mice against diet-induced obesity by promoting BAT activation and further attenuating impaired glucose and lipid metabolism. Therefore, our results reveal the essential role of CLCF1 in regulating BAT thermogenesis and suggest that inhibiting CLCF1 signaling might be a potential therapeutic strategy for improving obesity-related metabolic disorders.


Asunto(s)
Tejido Adiposo Pardo , Metabolismo Energético , Animales , Ratones , Adenoviridae , Interleucinas , Obesidad/genética , Termogénesis/genética
16.
Proc Natl Acad Sci U S A ; 121(16): e2318935121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38588421

RESUMEN

Glucose is required for generating heat during cold-induced nonshivering thermogenesis in adipose tissue, but the regulatory mechanism is largely unknown. CREBZF has emerged as a critical mechanism for metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD). We investigated the roles of CREBZF in the control of thermogenesis and energy metabolism. Glucose induces CREBZF in human white adipose tissue (WAT) and inguinal WAT (iWAT) in mice. Lys208 acetylation modulated by transacetylase CREB-binding protein/p300 and deacetylase HDAC3 is required for glucose-induced reduction of proteasomal degradation and augmentation of protein stability of CREBZF. Glucose induces rectal temperature and thermogenesis in white adipose of control mice, which is further potentiated in adipose-specific CREBZF knockout (CREBZF FKO) mice. During cold exposure, CREBZF FKO mice display enhanced thermogenic gene expression, browning of iWAT, and adaptive thermogenesis. CREBZF associates with PGC-1α to repress thermogenic gene expression. Expression levels of CREBZF are negatively correlated with UCP1 in human adipose tissues and increased in WAT of obese ob/ob mice, which may underscore the potential role of CREBZF in the development of compromised thermogenic capability under hyperglycemic conditions. Our results reveal an important mechanism of glucose sensing and thermogenic inactivation through reversible acetylation.


Asunto(s)
Tejido Adiposo Pardo , Glucosa , Ratones , Humanos , Animales , Glucosa/metabolismo , Tejido Adiposo Pardo/metabolismo , Acetilación , Tejido Adiposo Blanco/metabolismo , Metabolismo Energético , Obesidad/genética , Obesidad/metabolismo , Termogénesis/genética , Ratones Endogámicos C57BL , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo
17.
Proc Natl Acad Sci U S A ; 121(19): e2311116121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38683977

RESUMEN

Conventionally, women are perceived to feel colder than men, but controlled comparisons are sparse. We measured the response of healthy, lean, young women and men to a range of ambient temperatures typical of the daily environment (17 to 31 °C). The Scholander model of thermoregulation defines the lower critical temperature as threshold of the thermoneutral zone, below which additional heat production is required to defend core body temperature. This parameter can be used to characterize the thermoregulatory phenotypes of endotherms on a spectrum from "arctic" to "tropical." We found that women had a cooler lower critical temperature (mean ± SD: 21.9 ± 1.3 °C vs. 22.9 ± 1.2 °C, P = 0.047), resembling an "arctic" shift compared to men. The more arctic profile of women was predominantly driven by higher insulation associated with more body fat compared to men, countering the lower basal metabolic rate associated with their smaller body size, which typically favors a "tropical" shift. We did not detect sex-based differences in secondary measures of thermoregulation including brown adipose tissue glucose uptake, muscle electrical activity, skin temperatures, cold-induced thermogenesis, or self-reported thermal comfort. In conclusion, the principal contributors to individual differences in human thermoregulation are physical attributes, including body size and composition, which may be partly mediated by sex.


Asunto(s)
Regulación de la Temperatura Corporal , Humanos , Femenino , Masculino , Regulación de la Temperatura Corporal/fisiología , Adulto , Regiones Árticas , Adulto Joven , Tejido Adiposo Pardo/fisiología , Tejido Adiposo Pardo/metabolismo , Caracteres Sexuales , Factores Sexuales , Temperatura Corporal/fisiología , Termogénesis/fisiología , Metabolismo Basal/fisiología
18.
Genes Dev ; 33(13-14): 747-762, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31123067

RESUMEN

Prolonged cold exposure stimulates the recruitment of beige adipocytes within white adipose tissue. Beige adipocytes depend on mitochondrial oxidative phosphorylation to drive thermogenesis. The transcriptional mechanisms that promote remodeling in adipose tissue during the cold are not well understood. Here we demonstrate that the transcriptional coregulator transducin-like enhancer of split 3 (TLE3) inhibits mitochondrial gene expression in beige adipocytes. Conditional deletion of TLE3 in adipocytes promotes mitochondrial oxidative metabolism and increases energy expenditure, thereby improving glucose control. Using chromatin immunoprecipitation and deep sequencing, we found that TLE3 occupies distal enhancers in proximity to nuclear-encoded mitochondrial genes and that many of these binding sites are also enriched for early B-cell factor (EBF) transcription factors. TLE3 interacts with EBF2 and blocks its ability to promote the thermogenic transcriptional program. Collectively, these studies demonstrate that TLE3 regulates thermogenic gene expression in beige adipocytes through inhibition of EBF2 transcriptional activity. Inhibition of TLE3 may provide a novel therapeutic approach for obesity and diabetes.


Asunto(s)
Adipocitos Beige/metabolismo , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Glucosa/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Cultivadas , Dieta Alta en Grasa , Metabolismo Energético/genética , Eliminación de Gen , Regulación de la Expresión Génica/genética , Estudio de Asociación del Genoma Completo , Resistencia a la Insulina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/genética , Mitocondrias/metabolismo , Termogénesis/genética
19.
EMBO Rep ; 25(6): 2635-2661, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38730210

RESUMEN

Obesity is characterized by low-grade inflammation, energy imbalance and impaired thermogenesis. The role of regulatory T cells (Treg) in inflammation-mediated maladaptive thermogenesis is not well established. Here, we find that the p38 pathway is a key regulator of T cell-mediated adipose tissue (AT) inflammation and browning. Mice with T cells specifically lacking the p38 activators MKK3/6 are protected against diet-induced obesity, leading to an improved metabolic profile, increased browning, and enhanced thermogenesis. We identify IL-35 as a driver of adipocyte thermogenic program through the ATF2/UCP1/FGF21 pathway. IL-35 limits CD8+ T cell infiltration and inflammation in AT. Interestingly, we find that IL-35 levels are reduced in visceral fat from obese patients. Mechanistically, we demonstrate that p38 controls the expression of IL-35 in human and mouse Treg cells through mTOR pathway activation. Our findings highlight p38 signaling as a molecular orchestrator of AT T cell accumulation and function.


Asunto(s)
Interleucinas , Obesidad , Linfocitos T Reguladores , Termogénesis , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Interleucinas/metabolismo , Obesidad/metabolismo , Ratones , Humanos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Inflamación/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados
20.
Proc Natl Acad Sci U S A ; 120(4): e2117503120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36649401

RESUMEN

Resting skeletal muscle generates heat for endothermy in mammals but not amphibians, while both use the same Ca2+-handling proteins and membrane structures to conduct excitation-contraction coupling apart from having different ryanodine receptor (RyR) isoforms for Ca2+ release. The sarcoplasmic reticulum (SR) generates heat following Adenosine triphosphate (ATP) hydrolysis at the Ca2+ pump, which is amplified by increasing RyR1 Ca2+ leak in mammals, subsequently increasing cytoplasmic [Ca2+] ([Ca2+]cyto). For thermogenesis to be functional, rising [Ca2+]cyto must not interfere with cytoplasmic effectors of the sympathetic nervous system (SNS) that likely increase RyR1 Ca2+ leak; nor should it compromise the muscle remaining relaxed. To achieve this, Ca2+ activated, regenerative Ca2+ release that is robust in lower vertebrates needs to be suppressed in mammals. However, it has not been clear whether: i) the RyR1 can be opened by local increases in [Ca2+]cyto; and ii) downstream effectors of the SNS increase RyR Ca2+ leak and subsequently, heat generation. By positioning amphibian and malignant hyperthermia-susceptible human-skinned muscle fibers perpendicularly, we induced abrupt rises in [Ca2+]cyto under identical conditions optimized for activating regenerative Ca2+ release as Ca2+ waves passed through the junction of fibers. Only mammalian fibers showed resistance to rising [Ca2+]cyto, resulting in increased SR Ca2+ load and leak. Fiber heat output was increased by cyclic adenosine monophosphate (cAMP)-induced RyR1 phosphorylation at Ser2844 and Ca2+ leak, indicating likely SNS regulation of thermogenesis. Thermogenesis occurred despite the absence of SR Ca2+ pump regulator sarcolipin. Thus, evolutionary isolation of RyR1 provided increased dynamic range for thermogenesis with sensitivity to cAMP, supporting endothermy.


Asunto(s)
Músculo Esquelético , Canal Liberador de Calcio Receptor de Rianodina , Animales , Humanos , Calcio/metabolismo , Músculo Esquelético/metabolismo , Isoformas de Proteínas/metabolismo , Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Termogénesis , Anfibios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA