Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 24(1): 672, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37936086

RESUMEN

Sino-Tibetan is the most prominent language family in East Asia. Previous genetic studies mainly focused on the Tibetan and Han Chinese populations. However, due to the sparse sampling, the genetic structure and admixture history of Tibeto-Burman-speaking populations in the low-altitude region of Southwest China still need to be clarified. We collected DNA from 157 individuals from four Tibeto-Burman-speaking groups from the Guizhou province in Southwest China. We genotyped the samples at about 700,000 genome-wide single nucleotide polymorphisms. Our results indicate that the genetic variation of the four Tibeto-Burman-speaking groups in Guizhou is at the intermediate position in the modern Tibetan-Tai-Kadai/Austronesian genetic cline. This suggests that the formation of Tibetan-Burman groups involved a large-scale gene flow from lowland southern Chinese. The southern ancestry could be further modelled as deriving from Vietnam's Late Neolithic-related inland Southeast Asia agricultural populations and Taiwan's Iron Age-related coastal rice-farming populations. Compared to the Tibeto-Burman speakers in the Tibetan-Yi Corridor reported previously, the Tibeto-Burman groups in the Guizhou region received additional gene flow from the southeast coastal area of China. We show a difference between the genetic profiles of the Tibeto-Burman speakers of the Tibetan-Yi Corridor and the Guizhou province. Vast mountain ranges and rivers in Southwest China may have decelerated the westward expansion of the southeast coastal East Asians. Our results demonstrate the complex genetic profile in the Guizhou region in Southwest China and support the multiple waves of human migration in the southern area of East Asia.


Asunto(s)
Pueblo Asiatico , Flujo Génico , Humanos , China , Pueblo Asiatico/genética , Polimorfismo de Nucleótido Simple , Genómica , Genética de Población
2.
Mol Genet Genomics ; 297(1): 241-262, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35031862

RESUMEN

Southwest China was the crossroad for the initial settler people of East Asia, which shows the highest diversity in languages and genetics. This region played a significant role in the formation of the genetic makeup of the proto-Hmong-Mien-speaking people and in the north-to-south human expansion during the Neolithic-to-historic transformation. Their genetic history covering migration events and the admixture processes still needs to be further explored. Therefore, in the current study, we have generated genome-wide data from three genomic aspects covering autosomal, mitochondrial and Y-chromosomal regions in 260 Hmong-Mien, Tibeto-Burman, and Sinitic people from 29 different southwestern Chinese groups, and further analyzed them with 2676 published modern and ancient Eurasian genomes. Here, we have noticed a new southwestern East Asian genetic cline composed of the Hmong-Mien-specific ancestry enriched in modern Hmong and Pathen. This newly identified southern inland East Asian lineage contributed to a great extent of the gene pool in the modern southern East Asians. We also have observed genetic substructure among Hmong-Mien-speaking populations. The southern Hmong-Mien-speaking people showed more genetic affinity with modern Tai-Kadai/Austroasiatic people, while the northern Hmong-Mien speakers expressed a closer genetic connection with the Neolithic-to-modern northern East Asians. Moreover, southwestern Sinitic populations had a strong genomic affinity with the adjacent Hmong-Mien-speaking populations and the lowlander Tibeto-Burman-speaking populations, which suggested the large-scale genetic admixture occurred between them. Allele-sharing-based qpAdm/qpGraph results further confirmed that all included southwestern Chinese populations could be modeled as a mixed result of the major ancestry component from the northern millet farmers in the Yellow River basin and the minor ancestry component from the southern rice farmers in the Yangtze River basin. Usually, this newly identified Hmong-Mien-associated southern East Asian ancestry could improve our understanding of the full-scale genetic landscape of the evolutionary and admixture history of southwestern East Asians. Further ancient genomic studies from southeastern China are required to shed deeper light on our established phylogeny context.


Asunto(s)
Pueblo Asiatico/genética , Etnicidad/genética , Migrantes , Pueblo Asiatico/etnología , China/etnología , Etnicidad/estadística & datos numéricos , Femenino , Flujo Genético , Especiación Genética , Variación Genética , Genética de Población , Geografía , Migración Humana , Humanos , Hibridación Genética/genética , Masculino , Filogenia , Migrantes/estadística & datos numéricos
3.
Mol Genet Genomics ; 293(5): 1293-1300, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29923068

RESUMEN

Diffusion of Tibeto-Burman populations across the Tibetan Plateau led to the largest human community in a high-altitude environment and has long been a focus of research on high-altitude adaptation, archeology, genetics, and linguistics. However, much uncertainty remains regarding the origin, diversification, and expansion of Tibeto-Burman populations. In this study, we analyzed a 7.0M bp region of 285 Y-chromosome sequences, including 81 newly reported ones, from male samples from Tibeto-Burman populations and other related Eastern Asian populations. We identified several paternal lineages specific to Tibeto-Burman populations, and most of these lineages emerged between 6000 and 2500 years ago. A phylogenetic tree and lineage dating both support the hypothesis that the establishment of Tibeto-Burman ancestral groups was triggered by Neolithic expansions from the middle Yellow River Basin and admixtures with local populations on the Tibetan Plateau who survived the Paleolithic Age. Furthermore, according to the geographical distributions of the haplogroups, we propose that there are two Neolithic expansion origins for all modern Tibeto-Burman populations. Our research provides a clear scenario about the sources, admixture process and later diffusion process of the ancestor population of all Tibeto-Burman populations.


Asunto(s)
Adaptación Fisiológica/genética , Altitud , Cromosomas Humanos Y/genética , Genética de Población , Haplotipos/genética , Humanos , Lingüística , Masculino , Mianmar/epidemiología , Polimorfismo de Nucleótido Simple/genética , Tibet/epidemiología
4.
J Genet Genomics ; 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37827489

RESUMEN

Tibeto-Burman (TB) people have endeavored to adapt to the hypoxic, cold, and high-UV high-altitude environments in the Tibetan Plateau and complex disease exposures in lowland rainforests since the late Paleolithic period. However, the full landscape of genetic history and biological adaptation of geographically diverse TB-speaking people, as well as their interaction mechanism, remain unknown. Here, we generate a whole-genome meta-database of 500 individuals from 39 TB-speaking populations and present a comprehensive landscape of genetic diversity, admixture history, and differentiated adaptative features of geographically different TB-speaking people. We identify genetic differentiation related to geography and language among TB-speaking people, consistent with their differentiated admixture process with incoming or indigenous ancestral source populations. A robust genetic connection between the Tibetan-Yi corridor and the ancient Yellow River people supports their Northern China origin hypothesis. We finally report substructure-related differentiated biological adaptative signatures between highland Tibetans and Loloish speakers. Adaptative signatures associated with the physical pigmentation (EDAR and SLC24A5) and metabolism (ALDH9A1) are identified in Loloish people, which differed from the high-altitude adaptative genetic architecture in Tibetan. TB-related genomic resources provide new insights into the genetic basis of biological adaptation and better reference for the anthropologically informed sampling design in biomedical and genomic cohort research.

5.
Front Genet ; 13: 1023870, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36303544

RESUMEN

NorthEast India, with its unique geographic location in the midst of the Himalayas and Bay of Bengal, has served as a passage for the movement of modern humans across the Indian subcontinent and East/Southeast Asia. In this study we look into the population genetics of a unique population called the Khasi, speaking a language (also known as the Khasi language) belonging to the Austroasiatic language family and residing amidst the Tibeto-Burman speakers as an isolated population. The Khasi language belongs to one of the three major broad classifications or phyla of the Austroasiatic language and the speakers of the three sub-groups are separated from each other by large geographical distances. The Khasi speakers are separated from their nearest Austroasiatic language-speaking sub-groups: the "Mundari" sub-family from East and peninsular India and the "Mon-Khmers" in Mainland Southeast Asia. We found the Khasi population to be genetically distinct from other Austroasiatic speakers, i.e. Mundaris and Mon-Khmers, but relatively similar to the geographically proximal Tibeto Burmans. The possible reasons for this genetic-linguistic discordance lie in the admixture history of different migration events that originated from East Asia and proceeded possibly towards Southeast Asia. We found at least two distinct migration events from East Asia. While the ancestors of today's Tibeto-Burman speakers were affected by both, the ancestors of Khasis were insulated from the second migration event. Correlating the linguistic similarity of Tibeto-Burman and Sino-Tibetan languages of today's East Asians, we infer that the second wave of migration resulted in a linguistic transition while the Khasis could preserve their linguistic identity.

6.
Am J Biol Anthropol ; 179(2): 184-210, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36790681

RESUMEN

OBJECTIVES: This study examines dental morphology trait prevalence among three southern Naga groups and compares them to 10 ethnic groups from other regions of South Asia to accomplish two objectives: assess the biological relationship of these Tibeto-Burman-speakers to speakers of non-Tibeto-Burman languages in other South Asian regions, and determine which traits distinguish northeast Indians from other South Asians. METHODS: Dental morphology traits were scored with the Arizona State University Dental Anthropology System. Tooth-trait combinations were evaluated for significant inter-trait correlation and intra-trait correspondence within dental fields. Comparisons were based on simple trait prevalence and with Smith's MMD. Affinities based on the former were accomplished with correspondence analysis and principal components analysis. Affinities based on the latter were undertaken with neighbor-joining cluster analysis and multidimensional scaling. RESULTS: After elimination due to inter-trait correlations and uniform prevalence, biodistances based on the remaining 17 tooth-trait combinations identify significant differences between northeast Indians and other South Asian ethnic groups due to high frequencies of shoveling on the maxillary incisors and Cusp 6 on the mandibular molars coupled with low frequencies of Carabelli's trait and Cusp 5 on UM1 and UM2, respectively. CONCLUSIONS: Patterns of biodistances obtained from dental morphology are consilient with those obtained from DNA indicating statistically significant differences between northeast Indians from members of ethnic groups of other regions of South Asia. Researchers should explore the sex-specific patterns. Biodistances should not be limited to "key" teeth within dental fields, for in almost every case traits present on mesial and distal teeth yield non-redundant information.


Asunto(s)
Etnicidad , Diente Molar , Masculino , Femenino , Humanos , Diente Molar/anatomía & histología , Incisivo/anatomía & histología , Corona del Diente/anatomía & histología , India
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA