Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Regul Toxicol Pharmacol ; 132: 105170, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35460801

RESUMEN

Meloxicam is a non-steroidal anti-inflammatory drug (NSAID) commonly prescribed in an extralabel manner for treating chickens in urbanized settings. The objectives of this study were to determine meloxicam depletion profiles in eggs and ovarian follicles and to estimate associated withdrawal intervals (WDI) in laying hens following a single intravenous or repeated oral administration. The observed peak concentration of meloxicam in ovarian follicles were consistently higher than in egg yolk and egg white samples. Terminal half-lives were 31-h, 113-h and 12-h in ovarian follicles, egg yolk and egg white samples, respectively, for repeated oral administrations at 1 mg/kg for 20 doses at 12-h intervals. The terminal half-life following a single intravenous administration at 1 mg/kg was 50-h for ovarian follicles. Meloxicam WDI estimations using ovarian follicle and egg yolk concentration data following 20 doses at 12-h intervals were 36 and 12 days, respectively. Meloxicam WDI estimation using egg yolk concentration data following 8 doses at 24-h intervals was 12 days. These results improve our understanding on the residue depletion of meloxicam from chickens' reproductive tracts and egg products and provide WDIs to help ensure food safety for humans consuming eggs from treated laying hens.


Asunto(s)
Pollos , Residuos de Medicamentos , Administración Intravenosa , Administración Oral , Animales , Residuos de Medicamentos/análisis , Yema de Huevo , Huevos/análisis , Femenino , Meloxicam/análisis , Folículo Ovárico
2.
Front Vet Sci ; 11: 1444009, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144087

RESUMEN

Introduction: Prescribing fenbendazole medicated feed for pheasants in the USA is considered extra-label drug use under CPG Sec 615.115, and a safe estimated withdrawal interval (WDI) must be applied following administration to this minor food-producing species. This study sought to determine the pharmacokinetic and residue depletion profile for fenbendazole and its major metabolites to estimate a WDI for pheasants following fenbendazole administration as an oral medicated feed. Method: Pheasants (n = 32) were administered fenbendazole as an oral medicated feed (100 ppm) for 7 days. Fenbendazole, fenbendazole sulfoxide, and fenbendazole sulfone (FBZ-SO2) in liver and muscle samples were analyzed using HPLC-UV. Tissue WDIs were estimated using FDA, European Medicines Agency (EMA), and half-life multiplication methods for US poultry tolerances, EMA maximum residue limits, and the analytical limit of detection (LOD; 0.004 ppm). Terminal tissue elimination half-lives (T1/2) were estimated by non-compartmental analysis using a naïve pooled data approach. Results: The tissue T1/2 was 14.4 h for liver, 13.2 h for thigh muscle, and 14.1 h for pectoral muscle. The maximum estimated withdrawal interval was 153 h (7 days) for FBZ-SO2 in pectoral muscle using the FDA tolerance method (95% confidence interval for the 99th percentile of the population), and the LOD as the residue limit. Discussion: The results from this study support the use of FBZ-SO2 as the marker residue in the liver of pheasants and the provision of evidence based WDIs following the extra-label administration of fenbendazole medicated feed (100 ppm) for 7 days.

3.
J Anim Sci ; 97(9): 3714-3726, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31342061

RESUMEN

The objectives of this study were to evaluate the injection site pathology and determine tissue residue depletion of tulathromycin in calves following pneumatic dart administration and to calculate the associated extralabel withdrawal interval (WDI). Castrated male Holstein calves were injected with ~2.6 mg/kg tulathromycin via pneumatic dart administration. At 1 (n = 2), 6, 12, 18, and 24 d after drug injection (n = 3/time point), calves were euthanized, and muscle, liver, kidney, fat, and injection site samples were harvested and analyzed for tulathromycin concentrations using a LC-MS/MS method. Gross pathology and histopathology evaluations on the injection site samples were also performed. Pneumatic dart administration of tulathromycin caused severe localized lesions of hemorrhage and edema on days 1 and 6, as well as severe pathological reactions in the subcutaneous muscle on days 1, 6, and 12. Slight to moderate reactions were still observed in the majority of the skin or subcutaneous/muscle samples on day 24. Measured tulathromycin concentrations were converted to calculate the concentrations of the marker residue CP-60,300 by dividing a conversion factor of 1.4. The data were used to calculate extralabel WDIs based on the guidelines from U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA). The results showed that tulathromycin concentrations were the highest in the liver (4,877.84 ± 65.33 µg/kg), kidney (5,819.52 ± 1,087.00 µg/kg), muscle (1,717.04 ± 140.35 µg/kg), injection site (51,884.05 ± 7,529.34 µg/kg), and fat (161.69 ± 36.48 µg/kg) at 6, 1, 1, 1, and 1 d, respectively, after treatment. Tulathromycin concentrations remained above the limit of quantification of 5 µg/kg in all tissues at 24 d. The calculated WDIs based on kidney data were 26 d using EMA method, 36 d using FDA method based on CP-60,300 data, and 45 d using FDA method based on tulathromycin data. These results suggest that pneumatic dart administration of tulathromycin causes injection site reactions in calves and an extended WDI is needed. One limitation of this study was the small sample size of 3 that did not meet FDA guideline requirement. Therefore, the calculated WDIs should be considered as preliminary and additional studies that use a larger number of animals and directly measure the concentrations of the marker residue CP-60,300 are needed to make a more conclusive recommendation on the extralabel WDI.


Asunto(s)
Bienestar del Animal , Antibacterianos/farmacocinética , Bovinos/fisiología , Disacáridos/farmacocinética , Compuestos Heterocíclicos/farmacocinética , Animales , Antibacterianos/administración & dosificación , Biomarcadores/sangre , Cromatografía Liquida/veterinaria , Disacáridos/administración & dosificación , Sistemas de Liberación de Medicamentos/veterinaria , Residuos de Medicamentos/análisis , Compuestos Heterocíclicos/administración & dosificación , Inyecciones/veterinaria , Masculino , Carne Roja/análisis , Espectrometría de Masas en Tándem/veterinaria , Distribución Tisular
4.
Artículo en Inglés | MEDLINE | ID: mdl-29718774

RESUMEN

To date, a tissue depletion study of moxidectin (MOX) in lambs is not available. Thus, considering that lamb meat is of great commercial interest in the world, the aim of the present study was to determine the residue levels of MOX in lamb target-tissues (muscle, liver, kidney and fat) and subsequently calculate the MOX withdrawal period. For this purpose, the target-tissues were analysed by ultra-high-performance liquid chromatography-tandem mass spectrometry. Method validation was performed based on Commission Decision 2002/657/EC and VICH GL49. To quantify the analyte, matrix-matched analytical curves were constructed with spiked blank tissues. The limits of detection and quantitation were 1.5 and 5 ng g-1, respectively, for all matrices. The linearity, decision limit, detection capability accuracy and inter- and intra-day precision of the method are reported. The lambs were treated with a single subcutaneous dose of 0.2 mg MOX kg-1 body weight and were slaughtered in accordance with accepted animal care protocols. Samples of target-tissues were collected on 2, 4, 7, 14, 28 and 42 days after MOX administration. During the whole study, the highest drug residue level occurred in the fat. For the other target-tissues (muscle, liver and kidney), MOX concentrations were below the maximum residue limit (MRL). Considering the MRL value of 500 µg kg-1 for MOX residues in sheep fat, our results in lambs allowed the estimation of a MOX withdrawal period of 31 days. This indicates that the withdrawal period established for MOX in adult sheep (28 days) does not apply for lambs.


Asunto(s)
Residuos de Medicamentos/análisis , Residuos de Medicamentos/farmacocinética , Grasas/química , Riñón/química , Hígado/química , Macrólidos/administración & dosificación , Macrólidos/análisis , Músculos/química , Animales , Cromatografía Líquida de Alta Presión , Inyecciones Subcutáneas , Macrólidos/farmacocinética , Carne/análisis , Oveja Doméstica , Espectrometría de Masas en Tándem , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA