Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 261
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 29(8)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38675709

RESUMEN

The pretreatment for torrefaction impacts the performance of biomass fuels and operational costs. Given their diversity, it is crucial to determine the optimal torrefaction conditions for different types of biomass. In this study, three typical solid biofuels, corn stover (CS), agaric fungus bran (AFB), and spent coffee grounds (SCGs), were prepared using fluidized bed torrefaction. The thermal stability of different fuels was extensively discussed and a novel comprehensive fuel index, "displacement level", was analyzed. The functional groups, pore structures, and microstructural differences between the three raw materials and the optimally torrefied biochar were thoroughly characterized. Finally, the biomass fuel consumption for household heating and water supply was calculated. The results showed that the optimal torrefaction temperatures for CS, AFB, and SCGs were 240, 280, and 280 °C, respectively, with comprehensive quality rankings of the optimal torrefied biochar of AFB (260) > SCG (252) > CS (248). Additionally, the economic costs of the optimally torrefied biochar were reduced by 7.03-19.32%. The results indicated that the displacement level is an index universally applicable to the preparation of solid fuels through biomass torrefaction. AFB is the most suitable solid fuel to be upgraded through torrefaction and has the potential to replace coal.


Asunto(s)
Biocombustibles , Biomasa , Carbón Orgánico , Zea mays , Carbón Orgánico/química , Zea mays/química , Café/química , Temperatura
2.
Ecotoxicol Environ Saf ; 264: 115426, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37683430

RESUMEN

In the current study, two agro-waste lignocellulosic corncob (CC) and rice husk (RH) were thermally torrefied at 200-300 °C into a porous carbon-enriched biofuel. The scanning electron microscopy (SEM) of produced biofuel confirmed the rounded, homogenous, and spherical structure of the produced biofuels with higher porosity at a temperature between 250 and 300 °C with 60 min retention time. Brunauer-Emmett-Teller (BET) analysis indicated the high surface area (CC: 1.19-2.87 m2 g-1 and RH: 1.22-2.67 m2 g-1) and pore volume (CC: 1.23-2.81 ×10-3 m3 g-1 and RH: 1.46-2.58 ×10-3 m3 g-1). Crystallinity index decline percent (CC= 62.87% and RH=57.10%) estimated thermal stability and rise in amorphous cellulose reformation during (250-300 °C)/60 min that would efficiently hydrolyze during oxidative pyrolysis carbon reactive sites the rise in surface area and total pore's volume, having higher conversion rate as compared to raw materials. Carbon content was upgraded to 94% by eliminating hydrogen and oxygen from lignocellulosic agro-waste to produce energy-dense CC and RH. The lignin macromolecule transformation extent was estimated by O/C trend, which was equal to 63% and 47% for CC and RH, respectively, at 300 °C for 60 min. Due to low bulk density and pre-grinding energy requirements, torrefied biofuel with decomposed fibrous structure have lower transportation costs.


Asunto(s)
Biocombustibles , Oryza , Porosidad , Carbono , Celulosa , Hidrógeno
3.
Molecules ; 28(12)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37375287

RESUMEN

Wheat straw, a typical agricultural solid waste, was employed to clarify the effects of torrefaction on the structural features and combustion reactivity of biomass. Two typical torrefaction temperatures (543 K and 573 K), four atmospheres (argon, 6 vol.% O2, dry flue gas and raw flue gas) were selected. The elemental distribution, compositional variation, surface physicochemical structure and combustion reactivity of each sample were identified using elemental analysis, XPS, N2 adsorption, TGA and FOW methods. Oxidative torrefaction tended to optimize the fuel quality of biomass effectively, and the enhancement of torrefaction severity improved the fuel quality of wheat straw. The O2, CO2 and H2O in flue gas could synergistically enhance the desorption of hydrophilic structures during oxidative torrefaction process, especially at high temperatures. Meanwhile, the variations in microstructure of wheat straw promoted the conversion of N-A into edge nitrogen structures (N-5 and N-6), especially N-5, which is a precursor of HCN. Additionally, mild surface oxidation tended to promote the generation of some new oxygen-containing functionalities with high reactivity on the surface of wheat straw particles after undergoing oxidative torrefaction pretreatment. Due to the removal of hemicellulose and cellulose from wheat straw particles and the generation of new functional groups on the particle surfaces, the ignition temperature of each torrefied sample expressed an increasing tendency, while the Ea clearly decreased. According to the results obtained from this research, it could be concluded that torrefaction conducted in a raw flue gas atmosphere at 573 K would improve the fuel quality and reactivity of wheat straw most significantly.

4.
Molecules ; 28(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38005393

RESUMEN

A novel gas-pressurized (GP) torrefaction method at 250 °C has recently been developed that realizes the deep decomposition of cellulose in lignocellulosic solid wastes (LSW) to as high as 90% through deoxygenation and aromatization reactions. However, the deoxygenation and aromatization mechanisms are currently unclear. In this work, these mechanisms were studied through a developed molecular structure calculation method and the GP torrefaction of pure cellulose. The results demonstrate that GP torrefaction at 250 °C causes 47 wt.% of mass loss and 72 wt.% of O removal for cellulose, while traditional torrefaction at atmospheric pressure has almost no impact on cellulose decomposition. The GP-torrefied cellulose is determined to be composed of an aromatic furans nucleus with branch aliphatic C through conventional characterization. A molecular structure calculation method and its principles were developed for further investigation of molecular-level mechanisms. It was found 2-ring furans aromatic compound intermediate is formed by intra- and inter-molecular dehydroxylation reactions of amorphous cellulose, and the removal of O-containing function groups is mainly through the production of H2O. The three-ring furans aromatic compound intermediate and GP-torrefied cellulose are further formed through the polymerization reaction, which enhances the removal of ketones and aldehydes function groups in intermediate torrefied cellulose and form gaseous CO and O-containing organic molecules. A deoxygenation and aromatization mechanism model was developed based on the above investigation. This work provides theoretical guidance for the optimization of the gas-pressurized torrefaction method and a study method for the determination of molecular-level structure and the mechanism investigation of the thermal conversion processes of LSW.

5.
Molecules ; 28(6)2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36985540

RESUMEN

Combining biomass, a clean and renewable energy source, with waste plastic, which serves as a good auxiliary fuel, can produce high-quality clean fuel. The performance of biomass-derived fuel can be improved by torrefaction. This study optimized the co-torrefaction of fungus bran and polypropylene (PP) waste plastic to obtain clean solid biofuel with high calorific value and low ash content (AC) using response surface methodology. Two sets of mixed biochars were investigated using a multiobjective optimization method: mass yield-higher heating value-ash content (MY-HHV-AC) and energy yield-ash content (EY-AC). PP increased the heat value, decreased AC, and acted as a binder. The optimal operating conditions regarding reaction temperature, reaction time, and PP blending ratio were 230.68 °C, 30 min, and 20%, respectively, for the MY-HHV-AC set and 220 °C, 30 min, 20%, respectively, for the EY-AC set. The MY-HHV-AC set had properties close to those of peat and lignite. Furthermore, compared with that of the pure biochar, the AC of the two sets decreased by 15.71% and 14.88%, respectively, indicating that the prepared mixed biochars served as ideal biofuels. Finally, a circular economy framework for biobriquette fuel was proposed and prospects for preparing pellets provided.

6.
Environ Res ; 212(Pt C): 113389, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35561822

RESUMEN

Oxidative torrefaction is a promising way for biomass upgrading and solid biofuel production. Alkali metals are considered to be efficient activators for enhancing biofuel upgrading during the thermal reaction process. Herein, the microalga Nannochloropsis Oceanica is selected as the feedstock for assessing potassium carbonate activated effect on solid biofuel production through oxidative torrefaction. The potential of potassium carbonate on microalgal biofuel properties upgrading is deeply explored. SEM observation and BET analysis show that torrefied microalgae can be transformed from a spherical structure with wrinkles to smaller particles with larger surface areas and higher total pore volumes, implying that potassium carbonate is a promising porogen. Moreover, potassium carbonate can significantly change the DTG curve at the temperatures of 250 °C and 300 °C from one peak to two peaks, inferring that the activated effect of potassium carbonate occurs on the torrefied microalgae. 13C NMR analysis reveals that the microalgal components significantly change as the torrefaction severity increases, with the decomposition of carbohydrate and protein components. When the potassium carbonate ratio increases from 0:1 to 1:1, the graphitization degree increase from 3.065 to 1.262, along with the increase in the HHV of solid biofuel from 25.024 MJ kg-1 to 31.890 MJ kg-1. In total, this study has comprehensively revealed the activated effect of potassium carbonate on improving the properties of microalgal solid biofuel.


Asunto(s)
Biocombustibles , Microalgas , Biomasa , Carbonatos , Microalgas/metabolismo , Estrés Oxidativo , Potasio , Temperatura
7.
Environ Res ; 215(Pt 1): 114016, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35977586

RESUMEN

Biochar is a carbon-neutral solid fuel and has emerged as a potential candidate to replace coal. Meanwhile, spent coffee grounds (SCGs) are an abundant and promising biomass waste that could be used for biochar production. This study develops a biochar valorization strategy by mixing SCGs with hydrogen peroxide (H2O2) at a weight ratio of 1:0.75 to upgrade SCG biochar. In this dual pretreatment method, the H2O2 oxidative ability at a pretreatment temperature of 105 °C contributes to an increase in the higher heating value (HHV) and carbon content of the SCG biochars. The HHV and carbon content of biochar increase by about 6.5% and 7.8%, respectively, when compared to the unpretreated one under the same conditions. Maximized biochar's HHV derived via the Taguchi method is 30.33 MJkg-1, a 46.9% increase compared to the raw SCG, and a 6.5% increase compared to the unpretreated SCG biochar. The H2O2 concentration is 18% for the maximized HHV. A quantitative identification index of intensity of difference (IOD) is adopted to evaluate the contributive level of H2O2 pretreatment in terms of the HHV and carbon content. IOD increases with increasing H2O2 pretreatment temperature. Before torrefaction, SCGs' IOD pretreated at 50 °C is 1.94%, while that pretreated at 105 °C is 8.06%. This is because, before torrefaction, H2O2 pretreatment sufficiently weakens SCGs' molecular structure, resulting in a higher IOD value. The IOD value of torrefied SCGs (TSCG) pretreated at 105 °C is 10.71%, accounting for a 4.59% increase compared to that pretreated at 50 °C. This implies that TSCG pretreated by H2O2 at 105 °C has better thermal stability. For every 1% increase in IOD of TSCG, the carbon content of the biochar increases 0.726%, and the HHV increases 0.529%. Overall, it is demonstrated that H2O2 is a green and promising pretreatment additive for upgrading SCG biochar's calorific value, and torrefied SCGs can be used as a potential solid fuel to approach carbon neutrality.


Asunto(s)
Café , Peróxido de Hidrógeno , Biomasa , Carbono , Carbón Orgánico , Carbón Mineral
8.
Environ Chem Lett ; 20(3): 1645-1669, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35350388

RESUMEN

The rising global population is inducing a fast increase in the amount of municipal waste and, in turn, issues of rising cost and environmental pollution. Therefore, alternative treatments such as waste-to-energy should be developed in the context of the circular economy. Here, we review the conversion of municipal solid waste into energy using thermochemical methods such as gasification, combustion, pyrolysis and torrefaction. Energy yield depends on operating conditions and feedstock composition. For instance, torrefaction of municipal waste at 200 °C generates a heating value of 33.01 MJ/kg, while the co-pyrolysis of cereals and peanut waste yields a heating value of 31.44 MJ/kg at 540 °C. Gasification at 800 °C shows higher carbon conversion for plastics, of 94.48%, than for waste wood and grass pellets, of 70-75%. Integrating two or more thermochemical treatments is actually gaining high momentum due to higher energy yield. We also review reforming catalysts to enhance dihydrogen production, such as nickel on support materials such as CaTiO3, SrTiO3, BaTiO3, Al2O3, TiO3, MgO, ZrO2. Techno-economic analysis, sensitivity analysis and life cycle assessment are discussed.

9.
Environ Res ; 195: 110775, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33497681

RESUMEN

Sludge dewatering is a matter of great concern to reduce the volume of sludge, stabilize its organic components, and achieve resource utilization. This study investigates sludge dewatering by microwave torrefaction along with the production of sludge solid biofuel at 480-800 W combined with durations of 5-25 min. Proximate analysis, calorific value analysis, thermogravimetric analysis, and scanning electron microscopy observations are employed to evaluate the dewatering degree, fuel properties, and energy efficiency of the torrefaction process. The independent parallel reaction (IPR) model and particle swarm optimization (PSO) analysis are also adopted for sludge pyrolysis kinetics calculation. The results show that microwave torrefaction is efficient for sludge dewatering with a short duration. The produced sludge solid biofuel is similar to stone-like coal, and can be used for civil or industrial boilers after flotation or just co-firing with briquette. The ash content of sludge solid biofuel shows a declining trend and the surface characteristics change from smooth to rough and fluffy with increasing the torrefaction severity. The bio-oil is mainly composed of phenols, siloxanes, and cholesterol. In addition, hydrogen is detected in the torgas. Furthermore, it is found that lower torrefaction power with a shorter duration yields a higher energy efficiency of the torrefaction process.


Asunto(s)
Biocombustibles , Aguas del Alcantarillado , Biomasa , Microondas , Temperatura
10.
J Environ Manage ; 281: 111908, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33421938

RESUMEN

Switchgrass, both raw and torrefied, was tested for its ability to sorb water or oil. The cyclic performance was also examined, utilizing centrifugal extraction as the regeneration method. Both oil and water sorption capacity increase with the decreasing size of raw switchgrass particles. Results indicate that 3 mm raw switchgrass can sorb water at a capacity of about 6 times its mass and can sorb oil at a capacity of about 3 times its mass, which makes it a suitable biodegradable sorbent. Torrefaction at 220 °C for 30 min reduces water sorption capacity by an average of 55% but does not have a statistically significant impact on oil sorption. Sorption of liquid is negatively correlated to particle size. Centrifugation is able to partially desorb either liquid from the sorbent, and subsequent sorption cycles do not display lower sorption capacity than the first cycle when calculated on a dry mass basis.


Asunto(s)
Panicum , Contaminación por Petróleo , Contaminantes Químicos del Agua , Tamaño de la Partícula , Contaminación por Petróleo/análisis , Agua , Contaminantes Químicos del Agua/análisis
11.
J Environ Manage ; 294: 112992, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34116302

RESUMEN

Torrefaction is a thermochemical process used to convert the biomass into solid fuel. In this study, torrefaction increased the raw microalgal biomass' energy content from 20.22 MJ⋅kg-1 to 27.93 MJ⋅kg-1. To determine if more energy is produced than energy consumption from torrefaction, this study identified the energy balance of torrefied microalgal biomass production based on a life cycle approach. The energy analysis showed that, among all processes, torrefaction had the least amount of energy demand. The experimental setup, defined as scenario A, revealed that the principal source of energy demand, about 85%, was consumed on the microalgal growth using a photobioreactor system. A sensitivity analysis was also performed to determine the varying energy demand for torrefied microalgal biomass production. The different types of cultivation methods and various production scales were considered in scenarios B to D. Scenario D, which represented the commercial production-scale, the energy demand drastically decreased by 59.46% as compared to the experimental setup (scenario A). The open-pond cultivation system resulted in the least energy requirement, regardless of the production scale (scenarios B and C) among all the given scenarios. Unlike scenarios A and D, scenarios B and C identified the drying process to consume a high amount of energy. All the scenarios have shown an energy demand deficit. Therefore, efforts to decrease the energy demand on the upstream processes are needed to make the torrefied microalgal biomass a viable alternative energy source.


Asunto(s)
Microalgas , Animales , Biocombustibles , Biomasa , Estadios del Ciclo de Vida
12.
Molecules ; 26(4)2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33672961

RESUMEN

Miscanthus is resistant to dry, frosty winters in Poland and most European Union countries. Miscanthus gives higher yields compared to native species. Farmers can produce Miscanthus pellets after drying it for their own heating purposes. From the third year, the most efficient plant development begins, resulting in a yield of 25-30 tons of dry matter from an area of 1 hectare. Laboratory scale tests were carried out on the processes of drying, compacting, and torrefaction of this biomass type. The analysis of the drying process was conducted at three temperature levels of the drying agent (60, 100, and 140 °C). Compaction on a hydraulic press was carried out in the pressure range characteristic of a pressure agglomeration (130.8-457.8 MPa) at different moisture contents of the raw material (0.5% and 10%). The main interest in this part was to assess the influence of drying temperature, moisture content, and compaction pressure on the specific densities (DE) and the mechanical durability of the pellets (DU). In the next step, laboratory analyses of the torrefaction process were carried out, initially using the Thermogravimetric Analysis TGA and Differential Scaning Calorimeter DSC techniques (to assess activation energy (EA)), followed by a flow reactor operating at five temperature levels (225, 250, 275, 300, and 525 °C). A SEM analysis of Miscanthus after torrefaction processes at three different temperatures was performed. Both the parameters of biochar (proximate and ultimate analysis) and the quality of the torgas (volatile organic content (VOC)) were analyzed. The results show that both drying temperature and moisture level will affect the quality of the pellets. Analysis of the torrefaction process shows clearly that the optimum process temperature would be around 300-340 °C from a mass loss ratio and economical perspective.


Asunto(s)
Biocombustibles , Desecación , Fertilizantes , Poaceae/química , Temperatura , Análisis de Varianza , Biomasa , Rastreo Diferencial de Calorimetría , Cinética , Tamaño de la Partícula , Poaceae/ultraestructura , Termogravimetría , Factores de Tiempo , Compuestos Orgánicos Volátiles/análisis , Volatilización
13.
Molecules ; 25(15)2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32752237

RESUMEN

This article presents the findings of a study investigating the explosion and combustion parameters of dust from the raw biomass of wheat straw and energy willow and from the products of biomass torrefaction generated at temperatures ranging from 220 to 300 °C. Agricultural waste and energy crops and their modifications, e.g., in the torrefaction process, did not find a place in explosive risk research, which the authors decided to present in their work. The study was designed to estimate explosion hazard during the processing of the materials into fuels and during the storage process. The measurements recorded a maximum explosion pressure Pmax in the case of dust from biomass ranging from 7.2 to 7.3 bar and for dust from torrefied materials amounting to 7.5-9.2 bar, and a maximum rate of pressure rise over time (dp/dt)max in raw biomass ranging from 201.4 to 261.3 bar/s and in torrefied materials amounting to 209.6-296.6 bar/s. The estimated explosion index Kstmax for raw biomass was 55-72 m*bar/s and for torrefied materials was in the range from 57 to 81 m*bar/s. In the results, the authors present values for specific types of fuel which differ significantly depending on the type of biomass. The research findings show that the torrefaction process used in fuel production is not associated with a significantly greater risk of explosion and the materials obtained may safely be used as an alternative to conventional solid fuels. Given the growing interest in the use of biomass and in the variety of biomass processing methods for energy-related purposes, it seems there is a need for research to develop appropriate guidelines and for effective practices to be introduced in the energy industry in order to ensure the safety of the processes used in the production of novel fuels especially in small installations converting these materials into more efficient energy material.


Asunto(s)
Biomasa , Polvo , Fuentes Generadoras de Energía , Explosiones , Pirólisis , Biotecnología , Calor , Lignina , Presión , Salix , Triticum
14.
Molecules ; 25(17)2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32854284

RESUMEN

The aim of the research was to investigate the effect of biogas plant waste on the physiological activity, growth, and yield of Jerusalem artichoke and the energetic usefulness of the biomass obtained in this way after the torrefaction process. The use of waste from corn grain biodigestion to methane as a biofertilizer, used alone or supplemented with Apol-humus and Stymjod, caused increased the physiological activity, growth, and yield of Jerusalem artichoke plants and can limit the application of chemical fertilizers, whose production and use in agriculture is harmful for the environment. The experiment, using different equipment, exhibited the high potential of Jerusalem artichoke fertilized by the methods elaborated as a carbonized solid biofuel after the torrefaction process. The use of a special design of the batch reactor using nitrogen, Thermogravimetric analysis, Differential thermal analysis, and Fourier-transform infrared spectroscopy and combustion of Jerusalem artichoke using TG-MS showed a thermo-chemical conversion mass loss on a level of 30% with energy loss (torgas) on a level of 10%. Compared to research results on other energy crops and straw biomass, the isothermal temperature of 245 °C during torrefaction for the carbonized solid biofuel of Jerusalem artichoke biomass fertilized with biogas plant waste is relativlely low. An SEM-EDS analysis of ash from carbonized Jerusalem artichoke after torrefaction was performed after its combustion.


Asunto(s)
Técnicas de Cultivo Celular por Lotes , Biocombustibles , Biomasa , Reactores Biológicos , Helianthus , Administración de Residuos
15.
Waste Manag Res ; 38(11): 1284-1294, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32347191

RESUMEN

Biomass is considered as the largest renewable energy source in the world. However, some of its inherent properties such as hygroscopicity, lower energy content, low mass density and bio-degradation on storage hinder its extensive application in energy generation processes. Torrefaction, a thermochemical process carried out at 200-300°C in a non-oxidative environment, can address these inherent problems of the biomass. In this work, torrefaction of bagasse was performed in a bench-scale tubular reactor at 250°C and 275°C with residence times of 30, 60 and 90 mins. The effects of torrefaction conditions on the elemental composition, mass yield, energy yield, oxygen/carbon (O/C) and hydrogen/carbon (H/C) ratios, higher heating values and structural composition were investigated and compared with the commercially available 'Thar 6' and 'Tunnel C' coal. Based on the targeted mass and energy yields of 80% and 90% respectively, the optimal process conditions turned out to be 250°C and 30 mins. Torrefaction of the bagasse conducted at 275°C and 90 min raised the carbon content in bagasse to 58.14% and resulted in a high heating value of 23.84 MJ/kg. The structural and thermal analysis of the torrefied bagasse indicates that the moisture, non-structural carbohydrates and hemicellulose were reduced, which induced the hydrophobicity in the bagasse and enhanced its energy value. These findings showed that torrefaction can be a sustainable pre-treatment process to improve the fuel and structural properties of biomass as a feedstock for energy generation processes.


Asunto(s)
Carbono , Celulosa , Biomasa , Hidrógeno , Temperatura
16.
Waste Manag Res ; 38(8): 896-902, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31868133

RESUMEN

To evaluate the combustion characteristics of raw or torrefied bamboo wastes and coal blends, the co-firing process determined by cone and pollutant emission was investigated by thermogravimetric analysis coupled with Fourier transform infrared spectroscopy. The results showed that torrefaction improved the fuel properties of bamboo wastes. Torrefied bamboo had a lower volatile fuel ratio, H/C and O/C ratios, pollutant emission and a higher heating value. They further affected the co-firing process of raw or torrefied bamboo and coal. All blends had a lower ignition temperature and a more stable flame than coal. Torrefied bamboo and coal blends had a lower percentage of quality loss, a higher heat release rate (HRR), total heat release (THR) and total smoke release (TSR). With an increase in the proportion of torrefied bamboo in the blends, the HRR, THR, TSR and percentage of quality loss increased. The main pollutant emissions included CO2, CO, SO2 and NOx. All blends of torrefied bamboo and coal had a lower pollutant emission. The optimum blend suggested was 20% torrefied bamboo/80% coal.


Asunto(s)
Carbón Mineral/análisis , Biomasa , Calorimetría , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
17.
Waste Manag Res ; 38(11): 1259-1268, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31918636

RESUMEN

The pyrolysis and co-pyrolysis behaviours of cotton stalk (CS), torrefied cotton stalk (TCS) and mined coal, as single fuels, and their blends, have been examined through thermogravimetric analysis. Biomass has been torrefied at 250°C for 45 min to enhance physicochemical properties, and then mixed with mined coal for co-pyrolysis. Thermal degradation of CS and TCS is characterized by a reaction. However, this is not the case for mined coal, which shows a single-stage reaction. The thermal degradation of all blends was done in three stages: dehydration; biomass and small mined coal; and lignin or mined coal. A similar trend emerged for mass loss of individual fuels, which depended mainly on their ratios in the blend. The kinetics of pyrolysis and co-pyrolysis of all fuels were calculated at 20°Cmin-1 heating rate using the Coats-Redfern model-fitting method.


Asunto(s)
Carbón Mineral , Pirólisis , Biomasa , Cinética , Lignina , Termogravimetría
18.
J Environ Manage ; 236: 551-560, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30771674

RESUMEN

Several types of shrubs and oak inducing high wildland fire risk in the South of Europe were evaluated for their potential valorization through torrefaction. Biomasses were firstly characterized in terms of macromolecular and elemental composition. Lab-scale TGA-GC/MS torrefaction experiments allowed the in-depth study of the solid mass transformation and the production profile of 23 volatile species (200 to 300 °C at 3 °C·min-1 and 300 °C for 30 min). The proportion of the torrefied products (solid, CO, CO2, water and volatile species) was evaluated through mass balance in a lab-scale furnace under typical torrefaction conditions (300 °C, 40 min). The results show a similar characterization and behavior in torrefaction for oak and shrublands, and slightly different characteristics for fern. However, fern may grow separately from shrublands and is considered to present a low fire risk. This suggests that the in-situ direct valorization of these biomasses through torrefaction mobile units seems promising. However, other properties, such as density, flowability and grindability need to be studied to confirm the feasibility of the process. Regarding torrefaction products, a higher carbon content and an interesting increase in heating value were measured for the torrefied solid, which makes it suitable for energetic valorization, among other uses. The composition of permanent gases was evaluated and found in agreement with previous studies. Finally, the volatile species released were studied in function of the torrefaction temperature, in view of their possible valorization as green chemicals.


Asunto(s)
Incendios Forestales , Biomasa , Europa (Continente) , Gases , Temperatura
19.
Waste Manag Res ; 37(7): 737-745, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30945613

RESUMEN

Torrefaction, is a pretreatment process in the conversion of various biomass feedstocks into an efficient solid fuel. In the present research, rice husk was torrefied at 200°C, 250°C, and 300°C for 10, 30, 90, and 150 minutes under a non-oxidative environment. The energy yield and mass yield of torrefied solid residues ranged from 51.3% to 96.8%, and 49.1% to 95.1%, respectively, under torrefaction conditions. Increasing the residence time and temperature of thermal treatment causes a rise in carbon content from 32.45% to 48.5%, and raises the calorific value from 16.48 MJ/kg to 19.82 MJ/kg. The torrefaction process also reduced the swelling tendency of the biomass in water from its initial value of 308% to 92% only. Various other characterizations including Fourier transform infrared radiation, thermogravimetric analysis (TGA) and scanning electron microscopy were performed to analyze the structural and textural aspects of torrefied biomass. The TGA and derivative thermogravimetric analysis curves indicated that torrefaction affected the hemicellulose fraction of biomass significantly. The surface morphology of thermolyzed samples revealed the rupture of the surface induced by the torrefaction process. Overall, the torrefaction process has not only improved the fuel characteristics of the rice husk but also enhanced its hydrophobicity.


Asunto(s)
Oryza , Biomasa , Temperatura , Agua
20.
J Environ Manage ; 227: 155-161, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30176435

RESUMEN

The impact of torrefaction on the NO and SO2 emissions from combustion of biomass was investigated. Combustion experiments were carried out with two torrefied biomass fuels, i.e., poultry litter and olive tree pruning and their blends with lignite using a bench scale single particle reactor. For comparison, NO and SO2 emissions from tests with untorrefied biomasses and their blends with lignite were also investigated. The total release of SO2 and NO for each fuel was determined at three different temperatures: 900, 1000, and 1100 °C. The NO release from the untorrefied biomasses was found to be lower than those from torrefied biomasses, despite their higher fuel- N content. In case of co-combustion of both raw and torrefied biomass with lignite, the NO release was lower than the anticipated one. On the other hand, in the co-combustion experiments, blends with torrefied biomass showed a larger reduction in SO2 release than the blends with raw biomass. The study revealed that the SO2 emissions from blends are not proportional to the mixing ratio of the fuels and to the emissions properties of the respective fuels. No clear correlation was detected between the NOx emissions and fuel-N content. In addition to the NO and SO2 emissions, the sintering propensity of the ash residue were investigated using scanning electron microscopy (SEM).


Asunto(s)
Óxido Nítrico , Dióxido de Azufre , Biomasa , Carbón Mineral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA