Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Hepatol ; 80(3): 454-466, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37952766

RESUMEN

BACKGROUND & AIMS: Hereditary tyrosinemia type 1 (HT1) results from the loss of fumarylacetoacetate hydrolase (FAH) activity and can lead to lethal liver injury. Therapeutic options for HT1 remain limited. In this study, we aimed to construct an engineered bacterium capable of reprogramming host metabolism and thereby provide a potential alternative approach for the treatment of HT1. METHODS: Escherichia coli Nissle 1917 (EcN) was engineered to express genes involved in tyrosine metabolism in the anoxic conditions that are characteristic of the intestine (EcN-HT). Bodyweight, survival rate, plasma (tyrosine/liver function), H&E staining and RNA sequencing were used to assess its ability to degrade tyrosine and protect against lethal liver injury in Fah-knockout (KO) mice, a well-accepted model of HT1. RESULTS: EcN-HT consumed tyrosine and produced L-DOPA (levodopa) in an in vitro system. Importantly, in Fah-KO mice, the oral administration of EcN-HT enhanced tyrosine degradation, reduced the accumulation of toxic metabolites, and protected against lethal liver injury. RNA sequencing analysis revealed that EcN-HT rescued the global gene expression pattern in the livers of Fah-KO mice, particularly of genes involved in metabolic signaling and liver homeostasis. Moreover, EcN-HT treatment was found to be safe and well-tolerated in the mouse intestine. CONCLUSIONS: This is the first report of an engineered live bacterium that can degrade tyrosine and alleviate lethal liver injury in mice with HT1. EcN-HT represents a novel engineered probiotic with the potential to treat this condition. IMPACT AND IMPLICATIONS: Patients with hereditary tyrosinemia type 1 (HT1) are characterized by an inability to metabolize tyrosine normally and suffer from liver failure, renal dysfunction, neurological impairments, and cancer. Given the overlap and complementarity between the host and microbial metabolic pathways, the gut microbiome provides a potential chance to regulate host metabolism through degradation of tyrosine and reduction of byproducts that might be toxic. Herein, we demonstrated that an engineered live bacterium, EcN-HT, could enhance tyrosine breakdown, reduce the accumulation of toxic tyrosine byproducts, and protect against lethal liver injury in Fah-knockout mice. These findings suggested that engineered live biotherapeutics that can degrade tyrosine in the gut may represent a viable and safe strategy for the prevention of lethal liver injury in HT1 as well as the mitigation of its associated pathologies.


Asunto(s)
Tirosinemias , Humanos , Ratones , Animales , Tirosinemias/complicaciones , Tirosinemias/genética , Tirosinemias/metabolismo , Hígado/patología , Modelos Animales de Enfermedad , Ratones Noqueados , Tirosina/metabolismo , Escherichia coli/genética
2.
Medicina (Kaunas) ; 60(1)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38256395

RESUMEN

Hereditary type 1 tyrosinemia (HT1) is a rare inherited autosomal recessive disorder of tyrosine metabolism, characterized by progressive liver damage, dysfunction of kidney tubules, and neurological crises. In the course of this disease, due to the deficiency of the enzyme fumarylacetoacetate hydrolase (FAH), toxic intermediate metabolites of tyrosine breakdown, such as fumarylacetoacetate (FAA), succinylacetoacetate (SAA), and succinylacetone (SA), accumulate in liver and kidney cells, causing cellular damage. Because of this, an increased SA concentration in the blood or urine is pathognomonic of HT1. In the year 2000, HT1 was diagnosed in Lithuania for the first time, and this was the first time when a specific treatment for HT1 was administered in the country. Over two decades, four cases of this disease have been diagnosed in Lithuania. In the first of these patients, the disease was diagnosed in infancy, manifesting as liver damage with liver failure. Treatment with nitisinone was initiated, which continues to be administered, maintaining normal liver function. Liver transplantation was performed on two subsequent patients due to complications of HT1. It is crucial to diagnose HT1 as early as possible in order to reduce or completely eliminate complications related to the disease, including progressive liver failure and kidney dysfunction, among others. This can only be achieved by conducting a universal newborn screening for tyrosinemia and by starting treatment with nitisinone (NTBC) before the age of 1 month in all cases of HT1. However, in those countries where this screening is not being carried out, physicians must be aware of and consider this highly rare disorder. They should be vigilant, paying attention to even minimal changes in a few specific laboratory test results-such as unexplained anemia alongside neutropenia and thrombocytopenia-and should conduct more detailed examinations to determine the causes of these changes. In this article, we present the latest clinical case of HT1 in Lithuania, diagnosed at the Children's Diseases' Clinic of the Lithuanian University of Health Sciences (LUHS) Hospital Kaunas Clinics. The case manifested as life-threatening acute liver failure in early childhood. This article explores and discusses the peculiarities of diagnosing this condition in the absence of universal newborn screening for tyrosinemia in the country, as well as the course, treatment, and ongoing monitoring of patients with this disorder.


Asunto(s)
Ciclohexanonas , Fallo Hepático Agudo , Fallo Hepático , Nitrobenzoatos , Tirosinemias , Niño , Recién Nacido , Humanos , Preescolar , Tirosinemias/complicaciones , Tirosinemias/diagnóstico , Lituania , Tirosina
3.
J Inherit Metab Dis ; 46(6): 1104-1113, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37545091

RESUMEN

Dried blood spot succinylacetone (SA) is often used as a biomarker for newborn screening (NBS) for tyrosinemia type 1 (TT1). However, false-positive SA results are often observed. Elevated SA may also be due to maleylacetoacetate isomerase deficiency (MAAI-D), which appears to be clinically insignificant. This study investigated whether urine organic acid (uOA) and quantitative urine maleic acid (Q-uMA) analyses can distinguish between TT1 and MAAI-D. We reevaluated/measured uOA (GC-MS) and/or Q-uMA (LC-MS/MS) in available urine samples of nine referred newborns (2 TT1, 7 false-positive), eight genetically confirmed MAAI-D children, and 66 controls. Maleic acid was elevated in uOA of 5/7 false-positive newborns and in the three available samples of confirmed MAAI-D children, but not in TT1 patients. Q-uMA ranged from not detectable to 1.16 mmol/mol creatinine in controls (n = 66) and from 0.95 to 192.06 mmol/mol creatinine in false-positive newborns and MAAI-D children (n = 10). MAAI-D was genetically confirmed in 4/7 false-positive newborns, all with elevated Q-uMA, and rejected in the two newborns with normal Q-uMA. No sample was available for genetic analysis of the last false-positive infant with elevated Q-uMA. Our study shows that MAAI-D is a recognizable cause of false-positive TT1 NBS results. Elevated urine maleic acid excretion seems highly effective in discriminating MAAI-D from TT1.


Asunto(s)
Tirosinemias , Humanos , Recién Nacido , Biomarcadores , Cromatografía Liquida , Creatinina , Tamizaje Neonatal/métodos , Espectrometría de Masas en Tándem , Tirosinemias/diagnóstico
4.
Mol Genet Metab ; 137(1-2): 9-17, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35868243

RESUMEN

BACKGROUND: Tyrosinemia type 1 (HT1) is a rare metabolic disorder caused by a defect in the tyrosine catabolic pathway. Since HT1 patients are treated with NTBC, outcome improved and life expectancy greatly increased. However extensive neurocognitive and behavioural problems have been described, which might be related to treatment with NTBC, the biochemical changes induced by NTBC, or metabolites accumulating due to the enzymatic defect characterizing the disease. OBJECTIVE: To study the possible pathophysiological mechanisms of brain dysfunction in HT1, we assessed blood and brain LNAA, and brain monoamine neurotransmitter metabolite levels in relation to behavioural and cognitive performance of HT1 mice. DESIGN: C57BL/6 littermates were divided in three different experimental groups: HT1, heterozygous and wild-type mice (n = 10; 5 male). All groups were treated with NTBC and underwent cognitive and behavioural testing. One week after behavioural testing, blood and brain material were collected to measure amino acid profiles and brain monoaminergic neurotransmitter levels. RESULTS: Irrespective of the genetic background, NTBC treatment resulted in a clear increase in brain tyrosine levels, whereas all other brain LNAA levels tended to be lower than their reference values. Despite these changes in blood and brain biochemistry, no significant differences in brain monoamine neurotransmitter (metabolites) were found and all mice showed normal behaviour and learning and memory. CONCLUSION: Despite the biochemical changes, NTBC and genotype of the mice were not associated with poorer behavioural and cognitive function of the mice. Further research involving dietary treatment of FAH-/- are warranted to investigate whether this reveals the cognitive impairments that have been seen in treated HT1 patients.


Asunto(s)
Nitrobenzoatos , Tirosinemias , Animales , Ratones , Masculino , Ciclohexanonas , Ratones Endogámicos C57BL , Tirosinemias/tratamiento farmacológico , Tirosinemias/genética , Tirosina/metabolismo
5.
J Inherit Metab Dis ; 45(5): 952-962, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35722880

RESUMEN

Tyrosinemia type 1 (TT1) and phenylketonuria (PKU) are both inborn errors of phenylalanine-tyrosine metabolism. Neurocognitive and behavioral outcomes have always featured in PKU research but received less attention in TT1 research. This study aimed to investigate and compare neurocognitive, behavioral, and social outcomes of treated TT1 and PKU patients. We included 33 TT1 patients (mean age 11.24 years; 16 male), 31 PKU patients (mean age 10.84; 14 male), and 58 age- and gender-matched healthy controls (mean age 10.82 years; 29 male). IQ (Wechsler-subtests), executive functioning (the Behavioral Rating Inventory of Executive Functioning), mental health (the Achenbach-scales), and social functioning (the Social Skills Rating System) were assessed. Results of TT1 patients, PKU patients, and healthy controls were compared using Kruskal-Wallis tests with post-hoc Mann-Whitney U tests. TT1 patients showed a lower IQ and poorer executive functioning, mental health, and social functioning compared to healthy controls and PKU patients. PKU patients did not differ from healthy controls regarding these outcome measures. Relatively poor outcomes for TT1 patients were particularly evident for verbal IQ, BRIEF dimensions "working memory", "plan and organize" and "monitor", ASEBA dimensions "social problems" and "attention problems", and for the SSRS "assertiveness" scale (all p values <0.001). To conclude, TT1 patients showed cognitive impairments on all domains studied, and appeared to be significantly more affected than PKU patients. More attention should be paid to investigating and monitoring neurocognitive outcome in TT1 and research should focus on explaining the underlying pathophysiological mechanism.


Asunto(s)
Fenilcetonurias , Tirosinemias , Niño , Humanos , Masculino , Salud Mental , Redes y Vías Metabólicas , Pruebas Neuropsicológicas , Tirosinemias/genética
6.
Pediatr Transplant ; 26(7): e14334, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35698261

RESUMEN

BACKGROUND: Hereditary tyrosinemia type 1 is a rare metabolic condition associated with an increased risk of hepatocellular carcinoma. Nitisinone (2-[2-nitro-4-trifluoromethylbenzoyl]-1,3-cyclohexanedione, NTBC) treatment has reduced but not eliminated the risk. The delayed initiation of nitisinone treatment, and persistently abnormal α1-fetoprotein (AFP) levels are recognized to be risk factors for late-onset hepatocellular carcinoma. We report three children diagnosed and treated with nitisinone since infancy who developed hepatocellular carcinoma despite long-term normalization of AFP. METHODS: A retrospective review of all patients with tyrosinemia on nitisinone managed at our center was undertaken. Patient demographics, age at diagnosis, duration of therapy, timing of AFP normalization, and radiographic imaging findings were noted. RESULTS: Three patients at our center with tyrosinemia type 1 developed hepatocellular carcinoma 9-13 years after diagnosis despite long-term nitisinone therapy and normalization of AFP. Two patients developed new nodules on imaging with an elevation of AFP leading to the diagnosis and subsequent liver transplant. The third patient proceeded with liver transplant because of a very nodular liver and increasing splenomegaly despite normal AFP and no change in surveillance gadoxetate magnetic resonance imaging. Early hepatocellular carcinoma was found in her liver explant. All three patients were cirrhotic at diagnosis. CONCLUSIONS: Patients with hereditary tyrosinemia type 1, especially those already cirrhotic at diagnosis, remain at high risk of developing hepatocellular carcinoma despite long-term nitisinone therapy and AFP normalization, and warrant close monitoring and surveillance.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Trasplante de Hígado , Tirosinemias , Carcinoma Hepatocelular/etiología , Niño , Ciclohexanonas , Femenino , Humanos , Cirrosis Hepática/complicaciones , Neoplasias Hepáticas/diagnóstico , Trasplante de Hígado/efectos adversos , Nitrobenzoatos , Tirosinemias/complicaciones , Tirosinemias/diagnóstico , alfa-Fetoproteínas
7.
Mol Ther ; 29(3): 1001-1015, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33221434

RESUMEN

Patients with hereditary tyrosinemia type I (HT1) present acute and irreversible liver and kidney damage during infancy. CRISPR-Cas9-mediated gene correction during infancy may provide a promising approach to treat patients with HT1. However, all previous studies were performed on adult HT1 rodent models, which cannot authentically recapitulate some symptoms of human patients. The efficacy and safety should be verified in large animals to translate precise gene therapy to clinical practice. Here, we delivered CRISPR-Cas9 and donor templates via adeno-associated virus to newborn HT1 rabbits. The lethal phenotypes could be rescued, and notably, these HT1 rabbits reached adulthood normally without 2-(2-nitro-4-trifluoromethylbenzyol)-1,3 cyclohexanedione administration and even gave birth to offspring. Adeno-associated virus (AAV)-treated HT1 rabbits displayed normal liver and kidney structures and functions. Homology-directed repair-mediated precise gene corrections and non-homologous end joining-mediated out-of-frame to in-frame corrections in the livers were observed with efficiencies of 0.90%-3.71% and 2.39%-6.35%, respectively, which appeared to be sufficient to recover liver function and decrease liver and kidney damage. This study provides useful large-animal preclinical data for rescuing hepatocyte-related monogenetic metabolic disorders with precise gene therapy.


Asunto(s)
Sistemas CRISPR-Cas , Dependovirus/genética , Edición Génica , Vectores Genéticos/administración & dosificación , Hidrolasas/genética , Tirosinemias/terapia , Animales , Animales Recién Nacidos , Reparación del ADN por Unión de Extremidades , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Terapia Genética , Riñón/metabolismo , Hígado/metabolismo , Masculino , RNA-Seq , Conejos , Tirosinemias/genética , Tirosinemias/patología
8.
Proc Natl Acad Sci U S A ; 116(44): 22229-22236, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31611405

RESUMEN

Fumarylacetoacetate hydrolase (FAH) is the last enzyme in tyrosine catabolism, and mutations in the FAH gene are associated with hereditary tyrosinemia type I (HT1 or TYRSN1) in humans. In a behavioral screen of N-ethyl-N-nitrosourea mutagenized mice we identified a mutant line which we named "swingshift" (swst, MGI:3611216) with a nonsynonymous point mutation (N68S) in Fah that caused age-dependent disruption of sleep-wake patterns. Mice homozygous for the mutation had an earlier onset of activity (several hours before lights off) and a reduction in total activity and body weight when compared with wild-type or heterozygous mice. Despite abnormal behavioral entrainment to light-dark cycles, there were no differences in the period or phase of the central clock in mutant mice, indicating a defect downstream of the suprachiasmatic nucleus. Interestingly, these behavioral phenotypes became milder as the mice grew older and were completely rescued by the administration of NTBC [2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione], an inhibitor of 4-hydroxyphenylpyruvate dioxygenase, which is upstream of FAH. Mechanistically, the swst mutation had no effect on the enzymatic activity of FAH, but rather promoted the degradation of the mutant protein. This led to reduced FAH protein levels and enzymatic activity in the liver and kidney (but not the brain or fibroblasts) of homozygous mice. In addition, plasma tyrosine-but not methionine, phenylalanine, or succinylacetone-increased in homozygous mice, suggesting that swst mutants provide a model of mild, chronic HT1.


Asunto(s)
Ritmo Circadiano , Hidrolasas/genética , Mutación , Sueño , Tirosinemias/genética , 4-Hidroxifenilpiruvato Dioxigenasa/antagonistas & inhibidores , Animales , Células Cultivadas , Ciclohexanonas/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Estabilidad de Enzimas , Células HEK293 , Homocigoto , Humanos , Hidrolasas/deficiencia , Hidrolasas/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Nitrobenzoatos/uso terapéutico , Especificidad de Órganos , Núcleo Supraquiasmático/metabolismo , Tirosinemias/tratamiento farmacológico , Tirosinemias/fisiopatología
9.
Indian J Clin Biochem ; 37(1): 40-50, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35125692

RESUMEN

Tyrosinemia type 1 (TYR1) is a devastating aminoacidopathy, leading to mortality without medical intervention. Although, detection and quantification of tyrosine in dried blood spot (DBS) is possible, but being a non-specific marker for TYR1 and its frequent association with transient neonatal tyrosinemia limits its applicability. Despite, Succinylacetone (SUAC) being a pathognomonic marker for TYR1, but not often detectable by routine newborn screening (NBS). We envisaged to determine SUAC in DBS by an in-house flow injection analysis method on a liquid chromatography/tandem mass spectrometry (LC-MS/MS). Succinylacetone was eluted from the residual 3.2 mm DBS of primary NBS by an extraction solution containing acetonitrile-water-formic acid mixture containing stable-isotope labelled internal standard (IS) for SUAC and hydrazine. Detection and quantification was performed by the mass spectrometer using multiple reaction monitoring mode at m/z 155.1 → 109.1 for SUAC and m/z 160.1 → 114.1 for the SUAC IS. The assay was linear over a calibration range of 0.122-117.434 µmol/L. The Intra-day and Inter-day precision and accuracy for the assay was determined at two different levels of SUAC (2.542 µmol/L and 14.641 µmol/L), which showed a coefficient of variation of (6.91% and 12.65%) and (8.57% and 12.27%) respectively. The accuracy also ranged between 101.2 and 103.87%.This method provided the necessary sensitivity, precision, accuracy, recovery and linearity and hence, has the potential to reduce the false positive, false negative results which significantly minimise the cost involved in the screening and follow up of TYR1 patients. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s12291-020-00944-z) contains supplementary material, which is available to authorized users.

10.
J Pediatr ; 236: 124-130, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34023347

RESUMEN

OBJECTIVE: To use next generation sequencing (NGS) technology to identify undiagnosed, monogenic diseases in a cohort of children who suffered from acute liver failure (ALF) without an identifiable etiology. STUDY DESIGN: We identified 148 under 10 years of age admitted to King's College Hospital, London, with ALF of indeterminate etiology between 2000 and 2018. A custom NGS panel of 64 candidate genes known to cause ALF and/or metabolic liver disease was constructed. Targeted sequencing was carried out on 41 children in whom DNA samples were available. Trio exome sequencing was performed on 4 children admitted during 2019. A comparison of the clinical characteristics of those identified with biallelic variants against those without biallelic variants was then made. RESULTS: Homozygous and compound heterozygous variants were identified in 8 out of 41 children (20%) and 4 out of 4 children (100%) in whom targeted and exome sequencing were carried out, respectively. The genes involved were NBAS (3 children); DLD (2 children); and CPT1A, FAH, LARS1, MPV17, NPC1, POLG, SUCLG1, and TWINK (1 each). The 12 children who were identified with biallelic variants were younger at presentation and more likely to die in comparison with those who did not: median age at presentation of 3 months and 30 months and survival rate 75% and 97%, respectively. CONCLUSIONS: NGS was successful in identifying several specific etiologies of ALF. Variants in NBAS and mitochondrial DNA maintenance genes were the most common findings. In the future, a rapid sequencing NGS workflow could help in reaching a timely diagnosis and facilitate clinical decision making in children with ALF.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Fallo Hepático Agudo/diagnóstico , Fallo Hepático Agudo/genética , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Recién Nacido , Fallo Hepático Agudo/mortalidad , Masculino
11.
Int J Mol Sci ; 22(4)2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670179

RESUMEN

Fumarylacetoacetate hydrolase (FAH) is the fifth enzyme in the tyrosine catabolism pathway. A deficiency in human FAH leads to hereditary tyrosinemia type I (HT1), an autosomal recessive disorder that results in the accumulation of toxic metabolites such as succinylacetone, maleylacetoacetate, and fumarylacetoacetate in the liver and kidney, among other tissues. The disease is severe and, when untreated, it can lead to death. A low tyrosine diet combined with the herbicidal nitisinone constitutes the only available therapy, but this treatment is not devoid of secondary effects and long-term complications. In this study, we targeted FAH for the first-time to discover new chemical modulators that act as pharmacological chaperones, directly associating with this enzyme. After screening several thousand compounds and subsequent chemical redesign, we found a set of reversible inhibitors that associate with FAH close to the active site and stabilize the (active) dimeric species, as demonstrated by NMR spectroscopy. Importantly, the inhibitors are also able to partially restore the normal phenotype in a newly developed cellular model of HT1.


Asunto(s)
Sistemas de Liberación de Medicamentos , Inhibidores Enzimáticos/farmacología , Hidrolasas/antagonistas & inhibidores , Hidrolasas/metabolismo , Tirosinemias/tratamiento farmacológico , Tirosinemias/enzimología , Animales , Dominio Catalítico , Inhibidores Enzimáticos/química , Células HEK293 , Humanos , Hidrolasas/genética , Ratones , Tirosinemias/genética
12.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 50(4): 514-523, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34704422

RESUMEN

Hereditary tyrosinemia type Ⅰ (HT-1) is a severe autosomal recessive inherited metabolic disease. Due to the deficiency of fumarylacetoacetase hydrolase (FAH), the toxic metabolites are accumulated in the body, resulting in severe liver dysfunction, renal tubular dysfunctions, neurological crises, and the increased risk of hepatocellular carcinoma. Clinical symptoms typically begin at after the birth; the prognosis of patients is poor if they are not treated timely. Succinylacetone is a specific and sensitive marker for HT-1, and the screening in newborns can make early diagnosis of HT-1 at the asymptomatic stage. The diagnosis of HT-1 can be confirmed based on the characteristic biochemical findings and molecular testing of mutations in both alleles of gene. Combined treatment with nitisinone and a low tyrosine diet may significantly improve outcomes for patients. Liver transplantation is an effective treatment in cases where nitisinone is not available. Some novel HT-1 treatments are in clinical trials, including enzyme replacement therapy, hepatocyte transplantation and gene-targeted therapy.


Asunto(s)
Trasplante de Hígado , Tirosinemias , Humanos , Recién Nacido , Hígado , Mutación , Tamizaje Neonatal , Tirosinemias/diagnóstico , Tirosinemias/terapia
13.
J Biol Chem ; 294(35): 13051-13060, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31300554

RESUMEN

More than 100 mutations in the gene encoding fumarylacetoacetate hydrolase (FAH) cause hereditary tyrosinemia type I (HT1), a metabolic disorder characterized by elevated blood levels of tyrosine. Some of these mutations are known to decrease FAH catalytic activity, but the mechanisms of FAH mutation-induced pathogenicity remain poorly understood. Here, using diffusion ordered NMR spectroscopy, cryo-EM, and CD analyses, along with site-directed mutagenesis, enzymatic assays, and molecular dynamics simulations, we investigated the putative role of thermodynamic and kinetic stability in WT FAH and a representative set of 19 missense mutations identified in individuals with HT1. We found that at physiological temperatures and concentrations, WT FAH is in equilibrium between a catalytically active dimer and a monomeric species, with the latter being inactive and prone to oligomerization and aggregation. We also found that the majority of the deleterious mutations reduce the kinetic stability of the enzyme and always accelerate the FAH aggregation pathway. Depending mainly on the position of the amino acid in the structure, pathogenic mutations either reduced the dimer population or decreased the energy barrier that separates the monomer from the aggregate. The mechanistic insights reported here pave the way for the development of pharmacological chaperones that target FAH to tackle the severe disease HT1.


Asunto(s)
Hidrolasas/química , Hidrolasas/genética , Tirosinemias/genética , Células Cultivadas , Estabilidad de Enzimas , Humanos , Hidrolasas/metabolismo , Cinética , Mutación Missense , Agregado de Proteínas , Termodinámica , Tirosinemias/metabolismo
14.
Am J Med Genet C Semin Med Genet ; 184(4): 1009-1013, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33300677

RESUMEN

We report the case of a 17-year-old girl with Tyrosinemia type 1a who carried a planned pregnancy to term while being under 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC, nitisinone) treatment and a tyrosine- and phenylalanine-restricted diet. She was on treatment since 2 months of age with poor metabolic control prior to her pregnancy (tyrosine 838 ± 106 umol/L). NTBC and a low tyrosine and phenylalanine diet were continued during her pregnancy. She unfortunately suffered from urinary tract infection and anemia during her pregnancy, with median plasma tyrosine and phenylalanine levels of 613 ± 106 umol/L (200-400 umol/L) and 40.2 ± 8 umol/L (35-90 umol/L), respectively. After 40 weeks of gestation, the patient gave birth to a healthy boy, with no adverse effects related to the use of NTBC. The newborn presented with a transitory elevation of plasma tyrosine levels and normal phenylalanine, methionine, and succinylacetone levels. By 12 months of age, the child was determined to have normal psychomotor development. At 20 months old, he was diagnosed with a mild developmental delay; however, global cognitive evaluation with the Wechsler Intelligence Scale for Children (WISC) test at 5 years old showed normal performance. Here, we discuss one of the few reported cases of nitisinone treatment during pregnancy and demonstrate a lack of teratogenicity and long-term cognitive disabilities.


Asunto(s)
Tirosinemias , Adolescente , Chile , Dieta , Femenino , Humanos , Fenilalanina , Tirosina , Tirosinemias/diagnóstico , Tirosinemias/tratamiento farmacológico
15.
Mol Genet Metab ; 130(4): 247-254, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32546364

RESUMEN

BACKGROUND: The prognosis of patients with Hereditary Tyrosinemia Type 1 (HT-1) has greatly improved with early detection through newborn screening and the introduction of nitisinone (NTBC) therapy. A recent guideline calls for periodic monitoring of biochemical markers and NTBC levels to tailor treatment; however, this is currently only achieved through a combination of clinical laboratory tests. We developed a multiplexed assay measuring relevant amino acids, succinylacetone (SUAC), and NTBC in dried blood spots (DBS) to facilitate treatment monitoring. METHODS: Tyrosine, phenylalanine, methionine, NTBC and SUAC were eluted from DBS with methanol containing internal standards for each analyte and analyzed by liquid chromatography tandem mass spectrometry over 6.5 min in the multiple reaction monitoring positive mode. RESULTS: Pre-analytical and analytical factors were studied and demonstrated a reliable assay. Chromatography resolved an unknown substance that falsely elevates SUAC concentrations and was present in all samples. To establish control and disease ranges, the method was applied to DBS collected from controls (n = 284) and affected patients before (n = 2) and after initiation of treatment (n = 29). In the treated patients SUAC concentrations were within the normal range over a wide range of NTBC levels. CONCLUSIONS: This assay enables combined, accurate measurement of revelevant metabolites and NTBC in order to simplify treatment monitoring of patients with HT-1. In addition, the use of DBS allows for specimen collection at home to facilitate more standardization in relation to drug and dietary treatment.


Asunto(s)
Aminoácidos/sangre , Biomarcadores/sangre , Ciclohexanonas/sangre , Heptanoatos/sangre , Laboratorios/normas , Nitrobenzoatos/sangre , Tirosinemias/diagnóstico , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Estudios de Seguimiento , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Pronóstico , Estándares de Referencia , Manejo de Especímenes , Tirosinemias/sangre , Tirosinemias/genética , Adulto Joven
16.
J Inherit Metab Dis ; 43(2): 259-268, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31503358

RESUMEN

Alkaptonuria (AKU) is caused by homogentisate 1,2-dioxygenase deficiency that leads to homogentisic acid (HGA) accumulation, ochronosis and severe osteoarthropathy. Recently, nitisinone treatment, which blocks HGA formation, has been effective in AKU patients. However, a consequence of nitisinone is elevated tyrosine that can cause keratopathy. The effect of tyrosine and phenylalanine dietary restriction was investigated in nitisinone-treated AKU mice, and in an observational study of dietary intervention in AKU patients. Nitisinone-treated AKU mice were fed tyrosine/phenylalanine-free and phenylalanine-free diets with phenylalanine supplementation in drinking water. Tyrosine metabolites were measured pre-nitisinone, post-nitisinone, and after dietary restriction. Subsequently an observational study was undertaken in 10 patients attending the National Alkaptonuria Centre (NAC), with tyrosine >700 µmol/L who had been advised to restrict dietary protein intake and where necessary, to use tyrosine/phenylalanine-free amino acid supplements. Elevated tyrosine (813 µmol/L) was significantly reduced in nitisinone-treated AKU mice fed a tyrosine/phenylalanine-free diet in a dose responsive manner. At 3 days of restriction, tyrosine was 389.3, 274.8, and 144.3 µmol/L with decreasing phenylalanine doses. In contrast, tyrosine was not effectively reduced in mice by a phenylalanine-free diet; at 3 days tyrosine was 757.3, 530.2, and 656.2 µmol/L, with no dose response to phenylalanine supplementation. In NAC patients, tyrosine was significantly reduced (P = .002) when restricting dietary protein alone, and when combined with tyrosine/phenylalanine-free amino acid supplementation; 4 out of 10 patients achieved tyrosine <700 µmol/L. Tyrosine/phenylalanine dietary restriction significantly reduced nitisinone-induced tyrosinemia in mice, with phenylalanine restriction alone proving ineffective. Similarly, protein restriction significantly reduced circulating tyrosine in AKU patients.


Asunto(s)
Alcaptonuria/dietoterapia , Alcaptonuria/tratamiento farmacológico , Ciclohexanonas/farmacología , Dieta con Restricción de Proteínas , Nitrobenzoatos/farmacología , Tirosinemias/dietoterapia , Alcaptonuria/metabolismo , Animales , Femenino , Humanos , Masculino , Ratones , Fenilalanina/metabolismo , Tirosina/metabolismo , Tirosinemias/metabolismo
17.
Metab Brain Dis ; 35(2): 295-303, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31828693

RESUMEN

Tyrosinemia type II is an autosomal recessive inborn error of metabolism caused by hepatic cytosolic tyrosine aminotransferase deficiency. Importantly, this disease is associated with neurological and developmental abnormalities in many patients. Considering that the mechanisms underlying neurological dysfunction in hypertyrosinemic patients are poorly understood, in the present work we investigated the levels of cytokines - tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), IL-6 and IL-10 - in cerebellum, hippocampus, striatum of young rats exposed to chronic administration of L-tyrosine. In addition, we also investigated the impact of the supplementation with Omega-3 fatty acids (n-3 PUFA) on the rodent model of Tyrosinemia. Notably, previous study demonstrated an association between L-tyrosine toxicity and n-3 PUFA deficiency. Our results showed a significant increase in the levels of pro- and anti-inflammatory cytokines in brain structures when animals were administered with L-tyrosine. Cerebral cortex and striatum seem to be more susceptible to the inflammation induced by tyrosine toxicity. Importantly, n-3 PUFA supplementation attenuated the alterations on cytokines levels induced by tyrosine exposure in brain regions of infant rats. In conclusion, the brain inflammation is also an important process related to tyrosine neurotoxicity observed in the experimental model of Tyrosinemia. Finally, n-3 PUFA supplementation could be considered as a potential neuroprotective adjunctive therapy for Tyrosinemias, especially type II.


Asunto(s)
Suplementos Dietéticos , Encefalitis/inducido químicamente , Encefalitis/tratamiento farmacológico , Ácidos Grasos Omega-3/administración & dosificación , Mediadores de Inflamación/antagonistas & inhibidores , Tirosina/toxicidad , Animales , Animales Recién Nacidos , Esquema de Medicación , Encefalitis/metabolismo , Mediadores de Inflamación/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Ratas , Ratas Wistar , Tirosina/administración & dosificación
18.
Metab Brain Dis ; 35(1): 193-200, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31705440

RESUMEN

Tyrosinemia type II is a genetic disorder characterized by elevated blood levels of the amino acid tyrosine caused by the deficiency of tyrosine aminotransferase enzyme, resulting in neurologic and developmental difficulties in the patients. Although neurological sequelae are common in Tyrosinemia type II patients, the mechanisms involved are still poorly understood. The oxidative stress appears to be, at least in part, responsible for neurological complication in this inborn error metabolism. We observed that an acute injection of tyrosine in rats caused a massive oxidative stress in different brain structures. The glutathione system and superoxide dismutase enzyme are relevant antioxidant strategies of the cells and tissues, including in the brain. Other important point is the strong relation between oxidative damage and inflammatory events. Herein, we investigated the effects of chronic administration of tyrosine in the hippocampus of young rats, with emphasis in the activity of GSH related enzymes and superoxide dismutase enzyme, and the astrocytosis. We observed that rats exposed to high levels of tyrosine presented an increased content of tyrosine, which was associated with an increment in the activity of glutathione peroxidase and glutathione reductase as well as with a diminished activity of superoxide dismutase. This antioxidant imbalance was accompanied by enhanced glial fibrillary acidic protein immunoreactivity, a marker of astrocytes, in the brain area studied. In conclusion, hippocampus astrogliosis is also a characteristic of brain alteration in Tyrosinemia. In addition, the chronic exposition to high levels of tyrosine is associated with an alteration in the activity of fundamental antioxidant enzymes.


Asunto(s)
Antioxidantes/metabolismo , Astrocitos/metabolismo , Gliosis/metabolismo , Hipocampo/metabolismo , Tirosina/metabolismo , Tirosina/toxicidad , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Astrocitos/patología , Esquema de Medicación , Gliosis/inducido químicamente , Gliosis/patología , Hipocampo/efectos de los fármacos , Hipocampo/patología , Masculino , Ratas , Ratas Wistar , Tirosina/administración & dosificación
19.
Int J Mol Sci ; 21(6)2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32244944

RESUMEN

The elucidation of aberrant splicing mechanisms, frequently associated with disease has led to the development of RNA therapeutics based on the U1snRNA, which is involved in 5' splice site (5'ss) recognition. Studies in cellular models have demonstrated that engineered U1snRNAs can rescue different splicing mutation types. However, the assessment of their correction potential in vivo is limited by the scarcity of animal models with the targetable splicing defects. Here, we challenged the U1snRNA in the FAH5961SB mouse model of hepatic fumarylacetoacetate hydrolase (FAH) deficiency (Hereditary Tyrosinemia type I, HT1) due to the FAH c.706G>A splicing mutation. Through minigene expression studies we selected a compensatory U1snRNA (U1F) that was able to rescue this mutation. Intriguingly, adeno-associated virus-mediated delivery of U1F (AAV8-U1F), but not of U1wt, partially rescued FAH splicing in mouse hepatocytes. Consistently, FAH protein was detectable only in the liver of AAV8-U1F treated mice, which displayed a slightly prolonged survival. Moreover, RNA sequencing revealed the negligible impact of the U1F on the splicing profile and overall gene expression, thus pointing toward gene specificity. These data provide early in vivo proof-of-principle of the correction potential of compensatory U1snRNAs in HTI and encourage further optimization on a therapeutic perspective, and translation to other splicing-defective forms of metabolic diseases.


Asunto(s)
Hidrolasas/genética , Empalme del ARN/genética , ARN Nuclear Pequeño/genética , Tirosinemias/enzimología , Tirosinemias/genética , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
20.
Fetal Pediatr Pathol ; 39(5): 430-440, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31584309

RESUMEN

Background: Inborn errors of metabolism are inherited disorders that present in early childhood and are usually caused by monogenic recessive mutations in specific enzymes that metabolize dietary components. Distinct mutations are present in specific populations.Objective: To determine which genomic variants are present in Pakistani cohorts with hepatorenal tyrosinemia type 1 (HT1) and fructose 1,6-bisphosphatase deficiency (FBPD).Materials and Methods: We sequenced the fumaryl acetoacetate hydrolase encoding gene (FAH) including flanking regions in four unrelated HT1 cohorts and the fructose 1,6-bisphosphatase gene (FBP1) in eight FBPD cohorts.Results: We mapped two recessive mutations in FAH gene for HT1; c.1062 + 5G > A(IVS12 + 5G > A) in three families and c.974C > T(pT325M) in one. We identified three mutations in FBP1 gene; c.841G > A(p.E281K) in five FBPD families, c.472C > T(p.R158W) in two families and c.778G > A(p.G260R) in one.Conclusion: Knowledge of common variants for HTI and FBDP in our study population can be used in the future to build a diagnostic algorithm.


Asunto(s)
Deficiencia de Fructosa-1,6-Difosfatasa/genética , Fructosa-Bifosfatasa/genética , Hidrolasas/genética , Tirosinemias/genética , Niño , Preescolar , Fructosa , Humanos , Mutación , Pakistán , Linaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA