Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Int Microbiol ; 25(1): 47-59, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34224048

RESUMEN

Foot-and-mouth disease (FMD) is highly infectious, limits live animal trade, and affects ranchers owing to the loss of animal yield. The present study was designed to perform vaccine matching for field FMD virus isolates from clinically diseased cattle and assess the antigenic properties of the field isolates against the current vaccine strains used for vaccine production at the National Veterinary Institute, Ethiopia. Both sequencing and reverse transcription-polymerase chain reactions were used for distinguishing between the viral strains. To evaluate the serological relationship of the vaccine strain with these field isolates (r1 value), in vitro cross-neutralization was performed using ETH/6/2000 and ETH/38/2005 antisera. Infectious field FMD viral samples represented serotypes A and O. Sequence analysis showed that serotype A VP1/1D possessed amino acid variability at positions 28 and 42 to 48, 138, 141, 142, 148, 156, 173, and 197 compared with the ETH/6/2000 vaccine strain, whereas serotype O possessed amino acid variability at positions 45, 48, 138, 139, 140, 141, and 197 compared with the ETH/38/2005 vaccine strain. Based on the one-dimensional virus neutralization test, serotypes A and O demonstrated antigenic matching of up to 13/17 (76.47%) with the vaccine strain, except for the isolates ETH/40/2018, ETH/48/2018, ETH/55/2018, and ETH/61/2018, which had r-values less than 0.3. Therefore, the currently used vaccine strains ETH/38/2005 for serotype O and ETH/6/2000 for serotype A protected against all and most field viruses characterized as serotypes O and A, respectively, and amino acid residue variation was observed in different FMD virus B-C loops, G-H loops, and C-termini of VP1 at sites 1 and 3 in both serotypes.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Vacunas Virales , Animales , Variación Antigénica , Bovinos , Fiebre Aftosa/prevención & control , Virus de la Fiebre Aftosa/genética , Filogenia , Serogrupo
2.
Vaccines (Basel) ; 12(5)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38793727

RESUMEN

Outbreaks caused by foot-and-mouth disease (FMD) A/ASIA/G-VII lineage viruses have often occurred in Middle Eastern and Southeast Asian countries since 2015. Because A/ASIA/G-VII lineage viruses are reported to have distinct antigenic relatedness with available commercial FMD vaccine strains, it is necessary to investigate whether inoculation with vaccines used in Korea could confer cross-protection against A/ASIA/G-VII lineage viruses. In the present study, we conducted two vaccination challenge trials to evaluate the efficacy of three commercial FMD vaccines (O/Manisa + O/3039 + A/Iraq, O/Campos + A/Cruzeiro + A/2001, and O/Primorsky + A/Zabaikalsky) against heterologous challenge with ASIA/G-VII lineage viruses (A/TUR/13/2017 or A/BHU/3/2017 strains) in pigs. In each trial, clinical signs, viremia, and salivary shedding of virus were measured for 7 days after challenge. In summary, the O/Campos + A/Cruzeiro + A/2001 vaccine provided full protection against two A/ASIA/G-VII lineage viruses in vaccinated pigs, where significant protection was observed. Although unprotected animals were observed in groups vaccinated with O/Manisa + O/3039 + A/Iraq or O/Primorsky + A/Zabaikalsky vaccines, the clinical scores and viral RNA levels in the sera and oral swabs of vaccinated animals were significantly lower than those of unvaccinated controls.

3.
Vet Sci ; 11(6)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38922019

RESUMEN

Despite the annual vaccination of livestock against foot and mouth disease (FMD) in the United Arab Emirates (UAE), outbreaks of the disease continue to be reported. The effective control of field outbreaks by vaccination requires that the vaccines used are antigenically matched to circulating field FMD viruses. In this study, a vaccine matching analysis was performed using the two-dimensional virus neutralization test (VNT) for three field isolates belonging to the O/ME-SA/PanAsia-2/ANT-10 and O/ME-SA/SA-2018 lineages collected from different FMD outbreaks that occurred within the Abu Dhabi Emirate in 2021 affecting Arabian oryx (Oryx leucoryx), goat, and sheep. In addition, post-vaccination antibodies in sheep and goats were measured using solid-phase competitive ELISA (SPCE) for FMDV serotypes A and O at five months after a single vaccine dose and a further 28 days later after a second dose of the FMD vaccine. An analysis of vaccine matching revealed that five out of the six vaccine strains tested were antigenically matched to the UAE field isolates, with r1-values ranging between 0.32 and 0.75. These results suggest that the vaccine strains (O-3039 and O1 Manisa) included in the FMD vaccine used in the Abu Dhabi Emirate are likely to provide protection against outbreaks caused by the circulating O/ME-SA/PanAsia-2/ANT-10 and O/ME-SA/SA-2018 lineages. All critical residues at site 1 and site 3 of VP1 were conserved in all isolates, although an analysis of the VP1-encoding sequences revealed 14-16 amino acid substitutions compared to the sequence of the O1 Manisa vaccine strain. This study also reports on the results of post-vaccination monitoring where the immunization coverage rates against FMDV serotypes A and O were 47% and 69% five months after the first dose of the FMD vaccine, and they were increased to 81 and 88%, respectively, 28 days after the second dose of the vaccine. These results reinforce the importance of using a second booster dose to maximize the impact of vaccination. In conclusion, the vaccine strains currently used in Abu Dhabi are antigenically matched to circulating field isolates from two serotype O clades (O/ME-SA/PanAsia-2/ANT-10 sublineage and O/ME-SA/SA-2018 lineage). The bi-annual vaccination schedule for FMD in the Abu Dhabi Emirate has the potential to establish a sufficient herd immunity, especially when complemented by additional biosecurity measures for comprehensive FMD control. These findings are pivotal for the successful implementation of the region's vaccination-based FMD control policy, showing that high vaccination coverage and the wide-spread use of booster doses in susceptible herds is required to achieve a high level of FMDV-specific antibodies in vaccinated animals.

4.
Vaccines (Basel) ; 11(8)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37631920

RESUMEN

Foot-and-mouth disease (FMD) is an endemic, highly contagious, and devastating disease of livestock production in Ethiopia. Control of this disease relies mainly on prophylactic vaccination by willing farmers without a countrywide vaccination program. The objectives of this study were to quantify the humoral immune response and evaluation of the serological relationship of the vaccine strain used with representative field strain isolates. This was performed by primo vaccination of 6-9-month-old Holstein Friesian calves (35 treatment and 4 control calves) on day one and booster vaccination on day 28. Calves were vaccinated using the locally available National Veterinary Institute (NVI), Bishoftu, Ethiopia, inactivated aluminum hydroxide adjuvant monovalent (either O, A, SAT-2 alone) or trivalent (combination of A, O, SAT-2) vaccine (A/ETH/6/2000 (G-VII, O/ETH/38/2005(EA-3) and SAT-2/ETH/64/2009(XIII)). A 2 mL or 4 mL dose was used to vaccinate all calves except the animals that served as a control. In the case of the trivalent vaccine, a 4 mL dose was used to vaccinate calves. The serum was collected at 7, 14, 21, 28, and 56 days post-vaccination (d.p.v.). The humoral immune response was quantified by the solid-phase competitive enzyme-linked immunosorbent assay (SPC ELISA) and the virus-neutralization test (VNT). The serological relationship of heterologous and homologous viruses was also evaluated by adjuvant vaccine matching tests. The r1-value was determined using serum collected 21 d.p.v. An increase in immune response was observed from 7 d.p.v. to 28 d.p.v. in calves who received a 4 mL dose containing a 107.24 antigen load of 100 tissue culture infective dose (100TCID50) virus titer in the formulation. Upon receiving a booster dose on day 28, the humoral immune response was checked on the 56th day post-initial vaccination. Amounts of 54%, 72%, 79%, and 72% of inhibition for A, O, SAT-2, and trivalent vaccine in the three serotypes SPCE, respectively, was measured. Here, it was found that the immune response of calves increased from day 7 to 56, as evidenced by SPCE analysis. Likewise, an increase in antibody titer measured by a one-dimensional virus neutralization assay was also in line with SPCE analysis. This indicates that the vaccine is capable of inducing a neutralizing antibody that confers a protective immune response in 70%, 62%, and 100% heterologous field strains of A, O, and SAT-2 isolates, respectively, and has an average antigenic relationship of >0.3 with a standard deviation of +0.05 (N = 3) to the vaccine strains A/ETH/6/2000, O/ETH/38/2005 and SAT-2/ETH/64/2009, respectively, when using the one-dimensional virus neutralization test. The contribution and importance of this study is a confirmation of the vaccine and the field strain serological relationship for serotype SAT-2 strain and further research/change of vaccination strategy/ improvement in the currently used vaccine to cover a wide range of prevailing genotypes/lineages and induction of sound immune response after vaccination for serotype A and O strain. This study suggests that the trivalent vaccine produced by the National Veterinary Institute containing viral isolates from serotype O, A, and SAT-2 has a good serological relationship with the majority of circulating field strains in Ethiopia.

5.
Front Vet Sci ; 10: 1143765, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36777672

RESUMEN

[This corrects the article DOI: 10.3389/fvets.2022.1029075.].

6.
Virus Res ; 333: 199140, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37268276

RESUMEN

Foot and mouth disease (FMD) has engendered large scale socioeconomic crises on numerous occasions owing to its extreme contagiousness, transboundary nature, complicated epidemiology, negative impact on productivity, trade embargo, and need for intensive surveillance and expensive control measures. Emerging FMD virus variants have been predicted to have originated and spread from endemic Pool 2, native to South Asia, to other parts of the globe. In this study, 26 Indian serotype A isolates sampled between the year 2015 and 2022 were sequenced for the VP1 region. BLAST and maximum likelihood phylogeny suggest emergence of a novel genetic group within genotype 18, named here as 'A/ASIA/G-18/2019' lineage, that is restricted so far only to India and its eastern neighbour, Bangladesh. The lineage subsequent to its first appearance in 2019 seems to have displaced all other prevalent strains, in support of the phenomenon of 'genotype/lineage turnover'. It has diversified into two distinct sub-clusters, reflecting a phase of active evolution. The rate of evolution of the VP1 region for the Indian serotype A dataset was estimated to be 6.747 × 10-3 substitutions/site/year. India is implementing a vaccination centric FMD control programme. The novel lineage showed good antigenic match with the proposed vaccine candidate A IND 27/2011 when tested in virus neutralization test, while the existing vaccine strain A IND 40/2000 showed homology with only 31% of the isolates. Therefore, in order to combat this challenge of antigenic divergence, A IND 27/2011 could be the preferred strain in the Indian vaccine formulations.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Virus de la Fiebre Aftosa/genética , Serogrupo , Antígenos Virales , India/epidemiología , Filogenia
7.
Front Vet Sci ; 9: 1029075, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36590816

RESUMEN

Antigen banks have been established to supply foot-and-mouth disease virus (FMDV) vaccines at short notice to respond to incursions or upsurges in cases of FMDV infection. Multiple vaccine strains are needed to protect against specific FMDV lineages that circulate within six viral serotypes that are unevenly distributed across the world. The optimal selection of distinct antigens held in a bank must carefully balance the desire to cover these risks with the costs of purchasing and maintaining vaccine antigens. PRAGMATIST is a semi-quantitative FMD vaccine strain selection tool combining three strands of evidence: (1) estimates of the risk of incursion from specific areas (source area score); (2) estimates of the relative prevalence of FMD viral lineages in each specific area (lineage distribution score); and (3) effectiveness of each vaccine against specific FMDV lineages based on laboratory vaccine matching tests (vaccine coverage score). The output is a vaccine score, which identifies vaccine strains that best address the threats, and consequently which are the highest priority for inclusion in vaccine antigen banks. In this paper, data used to populate PRAGMATIST are described, including the results from expert elicitations regarding FMD risk and viral lineage circulation, while vaccine coverage data is provided from vaccine matching tests performed at the WRLFMD between 2011 and 2021 (n = 2,150). These data were tailored to working examples for three hypothetical vaccine antigen bank perspectives (Europe, North America, and Australia). The results highlight the variation in the vaccine antigens required for storage in these different regions, dependent on risk. While the tool outputs are largely robust to uncertainty in the input parameters, variation in vaccine coverage score had the most noticeable impact on the estimated risk covered by each vaccine, particularly for vaccines that provide substantial risk coverage across several lineages.

8.
Viruses ; 14(4)2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35458530

RESUMEN

As existing vaccines fail to completely prevent COVID-19 infections or community transmission, there is an unmet need for vaccines that can better combat SARS-CoV-2 variants of concern (VOC). We previously developed highly thermo-tolerant monomeric and trimeric receptor-binding domain derivatives that can withstand 100 °C for 90 min and 37 °C for four weeks and help eliminate cold-chain requirements. We show that mice immunised with these vaccine formulations elicit high titres of antibodies that neutralise SARS-CoV-2 variants VIC31 (with Spike: D614G mutation), Delta and Omicron (BA.1.1) VOC. Compared to VIC31, there was an average 14.4-fold reduction in neutralisation against BA.1.1 for the three monomeric antigen-adjuvant combinations and a 16.5-fold reduction for the three trimeric antigen-adjuvant combinations; the corresponding values against Delta were 2.5 and 3.0. Our findings suggest that monomeric formulations are suitable for upcoming Phase I human clinical trials and that there is potential for increasing the efficacy with vaccine matching to improve the responses against emerging variants. These findings are consistent with in silico modelling and AlphaFold predictions, which show that, while oligomeric presentation can be generally beneficial, it can make important epitopes inaccessible and also carries the risk of eliciting unwanted antibodies against the oligomerisation domain.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Humanos , Ratones , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
9.
Transbound Emerg Dis ; 68(6): 3126-3135, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33915027

RESUMEN

The presence of foot-and-mouth disease virus (FMDV) of the O/ME-SA/Ind-2001e sublineage within Pakistan was initially detected in two samples collected during 2019. Analysis of further serotype O FMDVs responsible for disease outbreaks in 2019-2020 in the country has now identified the spread of this sublineage to 10 districts within two separate provinces in North-Eastern and North-Western Pakistan. Phylogenetic analysis indicates that these viruses are closely related to those circulating in Bhutan, Nepal and India. The VP1 coding sequences of these viruses from Pakistan belong to three distinct clusters, which may indicate multiple introductions of this virus sublineage, although the routes of introduction are unknown. Vaccine matching studies against O1 Manisa, O 3039 and O TUR/5/2009 support the suitability of existing vaccine strains to control current field outbreaks, but further studies are warranted to monitor the spread and evolution of the O/ME-SA/Ind-2001e sublineage in the region. (145 words).


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Brotes de Enfermedades/veterinaria , Fiebre Aftosa/epidemiología , Virus de la Fiebre Aftosa/genética , Pakistán/epidemiología , Filogenia , Serogrupo
10.
Transbound Emerg Dis ; 68(2): 648-655, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32677765

RESUMEN

National programs for foot-and-mouth disease (FMD) eradication includes the use of vaccination; Turkey which is endemic to FMD virus (FMDV) (except for the Thrace region) and there is a risk of incursion of exotic strains from eastern borders. In 2015, a devastating outbreak was caused by the A/ASIA/G-VII (G-VII) lineage, which led to the inclusion of a new vaccine strain (A/TUR/15) derived from this lineage in 3 months. Although most of the cattle population in Turkey was then immunized with A/TUR/15 (vaccine coverage: 92.8%), the G-VII lineage continued to cause outbreaks in the field despite the evidence of protection observed with A/TUR/15 in in vivo and in vitro tests. When G-VII field strains were examined, changes in their genomes were detected. As the lineage appeared to be evolving, an unconventional vaccination strategy was adapted which changed the vaccine strain with new variants of G-VII according to antigenic evolution. To assess the suitability of candidate vaccine strains derived from the variants of the G-VII lineage, three viral candidates were assessed (A/TUR/15, A/TUR/16 and A/TUR/17) by in vitro virus neutralization tests for r1 vaccine matching and in vivo heterologous challenge tests. Although all three vaccine strains were antigenically well matched with each other and other G-VII field viruses, due to continues outbreaks the vaccine strain was changed three times in 20 months from A/TUR/15 (Dec 2015) to A/TUR/16 (Dec 2016) and then to A/TUR/17 (Aug 2017). With this strategy serotype A has not been observed in the field since January 2018. This study highlights the importance of adapting the vaccine strains according to antigenic evolution as this could be a valuable combat strategy in endemic countries, rather than using well-known vaccine strain and relying only on the relationship coefficient (r1 ) value.


Asunto(s)
Variación Antigénica , Antígenos Virales/inmunología , Enfermedades de los Bovinos/virología , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/virología , Vacunas Virales/inmunología , Sustitución de Aminoácidos , Animales , Antígenos Virales/genética , Bovinos , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/prevención & control , Brotes de Enfermedades/veterinaria , Epítopos , Fiebre Aftosa/epidemiología , Fiebre Aftosa/prevención & control , Pruebas de Neutralización , Serogrupo , Turquía/epidemiología , Vacunación/veterinaria
11.
Expert Rev Vaccines ; 20(1): 13-22, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33455492

RESUMEN

Introduction: Vaccination against foot-and-mouth disease virus is regarded as the most effective way to prevent disease. Selection of appropriate vaccine strains is challenging due to lack of cross-protection between serotypes and incomplete protection between some strains within a serotype. Vaccine effectiveness can be affected by vaccine formulation, vaccination approaches, and also by emerging field variants. Therefore, a precise evaluation of the protective capacity of the selected vaccine virus is essential.Areas covered: This article discusses the limitations of currently in use in vitro methods to assess the protective capacity of vaccine strains. It includes the assessment of well-established South American vaccine strains, O1/Campos and A24/Cruzeiro, against outbreaks/emergencies in the continent, as well as against recent isolates from East and Southeast Asia.Expert opinion: In vitro methods, and particularly r1 values, used to evaluate the protective capacity of vaccine strains are not conclusive and do not cover the variety of field scenarios. At present, an option when facing emergencies could be to use well-established vaccine strains with broad antigenic/immunogenic coverage, including conditions that lead to increased coverage such as vaccine formulations and vaccination schemes.


Asunto(s)
Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Vacunas Virales/administración & dosificación , Animales , Protección Cruzada/inmunología , Brotes de Enfermedades/prevención & control , Fiebre Aftosa/inmunología , Virus de la Fiebre Aftosa/aislamiento & purificación , Serogrupo , Vacunación , Vacunas Virales/inmunología
12.
Pathogens ; 9(1)2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31963122

RESUMEN

Appropriate vaccine selection is crucial in the control of foot-and-mouth disease (FMD). Vaccination can prevent clinical disease and reduces viral shedding, but there is a lack of cross-protection between the seven serotypes and their sublineages, making the selection of an adequately protective vaccine difficult. Since the exact composition of their vaccines is not consistently disclosed by all manufacturers, incompatibility of the strains used for vaccination with regionally circulating strains can cause vaccination campaigns to fail. Here, we present a deep sequencing approach for polyvalent inactivated FMD vaccines that can identify all component strains by their genome sequences. The genomes of all strains of a commercial pentavalent FMD vaccine were de novo assembled and the vaccine composition determined semi-quantitatively. The genome assembly required high stringency parameters to prevent misassemblies caused by conserved regions of the genome shared by related strains. In contrast, reference-guided assembly is only recommended in cases where the number of strains is previously known and appropriate reference sequences are available. The presented approach can be applied not only to any inactivated whole-virus FMD vaccine but also to vaccine quality testing in general and allows for better decision-making for vaccines with an unknown composition.

13.
J Virol Methods ; 276: 113786, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31765721

RESUMEN

Foot-and-mouth disease virus (FMDV) is a highly variable RNA virus existing as seven different serotypes. The antigenic variability between and within serotypes can limit the cross-reactivity and therefore the in vivo cross-protection of vaccines. Selection of appropriate vaccine strains is crucial in the control of FMD. Determination of indirect relationships (r1-value) between potential vaccine strains and field strains based on antibody responses against both are routinely used for vaccine matching purposes. Aiming at the investigation of the repeatability, reproducibility and comparability of r1-value determination within and between laboratories and serological tests, a small scale vaccine matching ring test for FMDV serotype A was organized. Well-characterized serum pools from cattle vaccinated with a monovalent A24/Cruzeiro/Brazil/55 (A24) FMD vaccine with known in vivo protection status (homologous and heterologous) were distributed to four laboratories to determine r1-values for the heterologous FMD strains A81/Argentina/87, A/Argentina/2000 and A/Argentina/2001 using the virus neutralization tests (VNT) and liquid phase blocking ELISA (LPBE). Within laboratories, the repeatability of r1-value determination was high for both antibody assays. VNT resulted in reproducible and comparable r1-values between laboratories, indicative of a lack of antigenic relatedness between the A24 strain and the heterologous strains tested in this work, thus corresponding to some of the in vivo findings with these strains. Using LPBE, similar trends in r1-values were observed in all laboratories, but the overall reproducibility was lower than with VNT. Inconsistencies between laboratories may at least in part be attributed to differences in LPBE protocols as well as the in preexisting information generated in each laboratory (such as antibody titer-protection correlation curves). To gain more insight in the LPBE-derived r1-values standard bovine control sera were included in the antibody assays performed in each laboratory and a standardization exercise was performed.


Asunto(s)
Fiebre Aftosa/inmunología , Pruebas Serológicas/normas , Pruebas Serológicas/veterinaria , Vacunas Virales/inmunología , Animales , Bovinos , Fiebre Aftosa/prevención & control , Pruebas de Neutralización , Variaciones Dependientes del Observador , Reproducibilidad de los Resultados , Vacunas Virales/administración & dosificación
14.
Vaccine ; 37(35): 5025-5034, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31296377

RESUMEN

Foot-and-mouth-disease (FMD) is a highly contagious transboundary animal disease that has negative consequences on regional and international trade. Vaccination is an important approach for FMD control and an essential consideration is the degree of cross-protection conferred by the vaccine against currently circulating field viruses. The objective of this study was to evaluate a new vaccine matching technique that does not require knowledge concerning the homologous vaccine virus. As a proof of concept, the vaccine-match was assessed for 41 FMD field viruses isolated from southern Africa over a 25-year period. A diverse group of 20 SAT1 and 21 SAT2 FMDV isolates collected from cattle and wildlife during 1991-2015 were selected for this study. Virus neutralization tests were performed against two sets of pooled sera for each serotype: vaccinated cattle sera (4-16 weeks post-vaccination) and convalescent cattle sera (3 weeks post-experimental challenge). Novel r1-values were calculated as the ratio of the titre of the vaccinated sera to the titre for convalescent cattle sera. A validation r1-value was calculated based on an assumption concerning the true homologous vaccine virus. There was a strong positive correlation between r1-values for the novel and the validation methods for SAT1 viruses (Spearman's rho = 0.84, P < 0.01) and a very strong correlation for SAT2 viruses (Spearman's rho = 0.90, P < 0.01). In addition, there was moderate to good agreement between the novel and validation methods for both serotypes based on a r1-value cut-off of 0.3, which is presumed to represent a good vaccine-match. The agreement between methods using prevalence-adjusted and bias-adjusted kappa (PABAK) was 0.67 and 0.84 for SAT1 and SAT2 viruses, respectively. The new r1-value method provides a feasible, alternative vaccine matching approach that could benefit FMD control in southern Africa.


Asunto(s)
Anticuerpos Antivirales/sangre , Antígenos Virales/inmunología , Fiebre Aftosa/prevención & control , Inmunogenicidad Vacunal , Vacunología/métodos , Vacunas Virales/inmunología , África Austral , Animales , Proteínas de la Cápside/inmunología , Bovinos , Enfermedades de los Bovinos/prevención & control , Enfermedades de los Bovinos/virología , Protección Cruzada/inmunología , Virus de la Fiebre Aftosa , Pruebas de Neutralización
15.
Vaccine ; 36(12): 1570-1576, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29472132

RESUMEN

In 2010 serotype O foot-and-mouth disease virus of the Mya98 lineage/SEA topotype spread into most East Asian countries. During 2010-2011 it was responsible for major outbreaks in the Republic of Korea where a monovalent O/Manisa vaccine (belonging to the ME-SA topotype) was applied to help control the outbreaks. Subsequently, all susceptible animals were vaccinated every 6 months with a vaccine containing the O/Manisa antigen. Despite vaccination, the disease re-occurred in 2014 and afterwards almost annually. This study focuses on the in vivo efficacy in pigs of a high quality monovalent commercial O1/Campos vaccine against heterologous challenge with a representative 2015 isolate from the Jincheon Province of the Republic of Korea. Initially, viral characterizations and r1 determinations were performed on six viruses recovered in that region during 2014-2015, centering on their relationship with the well characterized and widely available O1/Campos vaccine strain. Genetic and antigenic analysis indicated a close similarity among 2014-2015 Korean isolates and with the previous 2010 virus, with distinct differences with the O1/Campos strain. Virus neutralisation tests using O1/Campos cattle and pig post vaccination sera and recent Korean outbreak viruses predicted acceptable cross-protection after a single vaccination, as indicated by r1 values, and in pigs, by expectancy of protection. In agreement with the in vitro estimates, in vivo challenge with a selected field isolate indicated that O1/Campos primo vaccinated pigs were protected, resulting in a PD50 value of nearly 10. The results indicated that good quality oil vaccines containing the O1/Campos strain can successfully be used against isolates belonging to the O Mya98/SEA topotype.


Asunto(s)
Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Inmunización , Enfermedades de los Porcinos/prevención & control , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Línea Celular , Protección Cruzada , Virus de la Fiebre Aftosa/clasificación , Virus de la Fiebre Aftosa/genética , Variación Genética , Filogenia , República de Corea , Porcinos
16.
Expert Rev Vaccines ; 17(7): 577-591, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29950121

RESUMEN

INTRODUCTION: Lack of cross protection between foot and mouth disease (FMD) virus (FMDV) serotypes as well as incomplete protection between some subtypes of FMDV affect the application of vaccine in the field. Further, the emergence of new variant FMD viruses periodically makes the existing vaccine inefficient. Consequently, periodical vaccine strain selection either by in vivo methods or in vitro methods become an essential requirement to enable utilization of appropriate and efficient vaccines. AREAS COVERED: Here we describe the cross reactivity of the existing vaccines with the global pool of circulating viruses and the putative selected vaccine strains for targeting protection against the two major circulating serotype O and A FMD viruses for East Africa, the Middle East, South Asia and South East Asia. EXPERT COMMENTARY: Although in vivo cross protection studies are more appropriate methods for vaccine matching and selection than in vitro neutralization test or ELISA, in the face of an outbreak both in vivo and in vitro methods of vaccine matching are not easy, and time consuming. The FMDV capsid contains all the immunogenic epitopes, and therefore vaccine strain prediction models using both capsid sequence and serology data will likely replace existing tools in the future.


Asunto(s)
Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Vacunas Virales/administración & dosificación , Animales , Reacciones Cruzadas , Brotes de Enfermedades/prevención & control , Ensayo de Inmunoadsorción Enzimática , Fiebre Aftosa/epidemiología , Fiebre Aftosa/inmunología , Virus de la Fiebre Aftosa/aislamiento & purificación , Humanos , Pruebas de Neutralización , Serogrupo , Vacunas Virales/inmunología
17.
Vaccine ; 35(18): 2303-2307, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28343779

RESUMEN

Identifying vaccine strains to control outbreaks of foot-and-mouth disease virus that could spread to new regions is essential for contingency plans. This is the first report on the antigenic/immunogenic relationships of the South American O1/Campos vaccine strain with representative isolates of the three currently active Asian type O topotypes. Virus neutralization tests using O1/Campos post-vaccination sera derived from cattle and pigs predicted for both species acceptable cross-protection, even after single vaccination, established by r1 values and by expectancy of protection using monovalent or polyvalent vaccines. The results indicate that effective oil vaccines containing the O1/Campos strain can be used against Asian isolates, expanding the scope of O1/Campos strain included in vaccine banks to control emergencies caused by Asian viruses, even on single-dose vaccination, and to cover the need of effective vaccines in Asia during systematic vaccination.


Asunto(s)
Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/virología , Vacunas Virales/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/sangre , Protección Cruzada , Reacciones Cruzadas , Ratones , Pruebas de Neutralización
18.
Vaccine ; 34(35): 4140-4144, 2016 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-27395565

RESUMEN

Foot-and-Mouth Disease serotype O circulated endemically in Ecuador for many years, with an upsurge occurring in 2009. This manuscript describes retrospectively in vitro and in vivo laboratory studies to predict the field effectiveness of a commercial FMD vaccine to protect against the field strain, and explains the key actions and epidemiological strategies followed by the country to control the disease. The results established that the use of a good quality oil vaccine, manufactured with strains that were isolated long ago: O1 Campos Br/58 and A24 Cruzeiro Br/55; combined with the correct epidemiological strategies, are useful to control field strains when used in periodic biannual vaccination campaigns.


Asunto(s)
Enfermedades de los Bovinos/prevención & control , Fiebre Aftosa/prevención & control , Vacunas Virales/uso terapéutico , Secuencia de Aminoácidos , Animales , Anticuerpos Antivirales/sangre , Proteínas de la Cápside/genética , Bovinos , Enfermedades de los Bovinos/virología , Protección Cruzada , Ecuador , Virus de la Fiebre Aftosa/clasificación , Vacunación/veterinaria , Vacunas Virales/inmunología
19.
Vaccine ; 32(4): 433-6, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24342253

RESUMEN

Foot-and-mouth disease virus (FMDV) antigenic-match between vaccine and field viruses has traditionally been estimated in vitro by computing the r1 value using virus neutralization test (VNT) or ELISA titers. In this study we compared the accuracy in predicting cross-protection between the r1 value estimated by VNT and two recently developed tests that measure IgG subtypes and avidity. Data analyzed consisted of 64 serum samples from FMDV A24/Cruzeiro vaccinated bovines challenged with the heterologous A/Argentina/2001 strain and evaluated for podal generalization. We computed the tests sensitivity (Se), specificity (Sp), and receiving operating characteristics (ROC) curve. The heterologous IgG1/IgG2 ratio was the most accurate test (Se=0.71, Sp=0.98), followed by heterologous IgG1 (Se=0.53, Sp=0.96), VNT (Se=0.47, Sp=1.00), whereas r1 accuracy was substantially low (Se=0.41, Sp=0.81). Because sensitivity of individual tests was limited, we argue that two or more of the tests should be used in combination to produce accurate estimates of protection.


Asunto(s)
Protección Cruzada , Ensayo de Inmunoadsorción Enzimática/veterinaria , Virus de la Fiebre Aftosa/inmunología , Pruebas de Neutralización/veterinaria , Animales , Anticuerpos Antivirales/sangre , Afinidad de Anticuerpos , Formación de Anticuerpos , Bovinos , Enfermedades de los Bovinos/prevención & control , Fiebre Aftosa/prevención & control , Inmunoglobulina G/sangre , Curva ROC , Sensibilidad y Especificidad , Vacunas Virales/administración & dosificación
20.
Vaccine ; 32(21): 2446-51, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24625343

RESUMEN

Foot-and-Mouth Disease Virus serotype O has been circulating regularly throughout most provinces of Ecuador, one of the two South American countries that still remain endemic, although satisfactory vaccination coverage was reported. This study concentrates in the characterization of isolates collected during 2008-2011, focusing particularly on the antigenic and immunogenic relationships of the field viruses with the O1/Campos vaccine strain in use in the region and with an experimental vaccine formulated with a representative strain of the 2010 epidemic. The results established that antigenically divergent variants poorly protected by the vaccine in use emerged and co-circulated in a limited period of time. A monovalent vaccine formulated with the representative 2010 strain elicited high antibody titers and protected against challenge with homologous virus. In addition, cross-reactive antibodies to predominant viruses in the region were established. In overall this study indicates the ability of the virus to diversify under field conditions in which a vaccine strain with poor match is applied, and the potential of the selected 2010 field virus as a vaccine candidate for incorporation into strategic antigen banks and/or for addition to current formulations for systematic vaccination, in order to prevent the emergence of even more divergent isolates in the future.


Asunto(s)
Variación Antigénica , Antígenos Virales/inmunología , Virus de la Fiebre Aftosa/clasificación , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/sangre , Bovinos , Enfermedades de los Bovinos/prevención & control , Ecuador , Fiebre Aftosa/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA