Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.568
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Neurosci ; 43: 31-54, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31874068

RESUMEN

Many animals use an internal sense of direction to guide their movements through the world. Neurons selective to head direction are thought to support this directional sense and have been found in a diverse range of species, from insects to primates, highlighting their evolutionary importance. Across species, most head-direction networks share four key properties: a unique representation of direction at all times, persistent activity in the absence of movement, integration of angular velocity to update the representation, and the use of directional cues to correct drift. The dynamics of theorized network structures called ring attractors elegantly account for these properties, but their relationship to brain circuits is unclear. Here, we review experiments in rodents and flies that offer insights into potential neural implementations of ring attractor networks. We suggest that a theory-guided search across model systems for biological mechanisms that enable such dynamics would uncover general principles underlying head-direction circuit function.


Asunto(s)
Cabeza/fisiología , Neuronas/fisiología , Orientación/fisiología , Percepción Espacial/fisiología , Potenciales de Acción/fisiología , Animales , Humanos , Modelos Neurológicos
2.
Proc Natl Acad Sci U S A ; 121(34): e2401540121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39150785

RESUMEN

Recent advances in single-cell sequencing technology have revolutionized our ability to acquire whole transcriptome data. However, uncovering the underlying transcriptional drivers and nonequilibrium driving forces of cell function directly from these data remains challenging. We address this by learning cell state vector fields from discrete single-cell RNA velocity to quantify the single-cell global nonequilibrium driving forces as landscape and flux. From single-cell data, we quantified the Waddington landscape, showing that optimal paths for differentiation and reprogramming deviate from the naively expected landscape gradient paths and may not pass through landscape saddles at finite fluctuations, challenging conventional transition state estimation of kinetic rate for cell fate decisions due to the presence of the flux. A key insight from our study is that stem/progenitor cells necessitate greater energy dissipation for rapid cell cycles and self-renewal, maintaining pluripotency. We predict optimal developmental pathways and elucidate the nucleation mechanism of cell fate decisions, with transition states as nucleation sites and pioneer genes as nucleation seeds. The concept of loop flux quantifies the contributions of each cycle flux to cell state transitions, facilitating the understanding of cell dynamics and thermodynamic cost, and providing insights into optimizing biological functions. We also infer cell-cell interactions and cell-type-specific gene regulatory networks, encompassing feedback mechanisms and interaction intensities, predicting genetic perturbation effects on cell fate decisions from single-cell omics data. Essentially, our methodology validates the landscape and flux theory, along with its associated quantifications, offering a framework for exploring the physical principles underlying cellular differentiation and reprogramming and broader biological processes through high-throughput single-cell sequencing experiments.


Asunto(s)
Diferenciación Celular , Reprogramación Celular , Análisis de la Célula Individual , Transcriptoma , Análisis de la Célula Individual/métodos , Reprogramación Celular/genética , Animales , Humanos , Perfilación de la Expresión Génica/métodos
3.
Proc Natl Acad Sci U S A ; 121(35): e2406386121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39163332

RESUMEN

Seismological studies have exposed numerous ultralow velocity zones (ULVZs) exhibiting extraordinary physical attributes at Earth's core-mantle boundary, yet their compositions and origins remain controversial. Water-iron reaction can generate unique phases under lowermost-mantle conditions and likely plays a crucial role in forming ULVZs. Through first-principles molecular dynamic simulations with machine learning techniques, we determine that iron hydride, the product of water-iron reaction, is stable as a superionic phase at the core-mantle boundary. This superionic iron hydride has much slower velocities and a higher density than the ambient mantle under lowermost-mantle conditions. Accumulation of iron hydride, created through either a chemical reaction between subducted water and iron or solidification of core material entrained in the lower mantle by convection, can explain the seismic observations of ULVZs particularly those associated with subduction. This work suggests that water may have a substantial role in creating seismic heterogeneities at the core-mantle boundary.

4.
Proc Natl Acad Sci U S A ; 121(12): e2317809121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38466842

RESUMEN

Magmatism in the Quaternary Clear Lake volcanic field (CLVF), with its youngest eruption having only occurred c. 10 ka ago, is commonly invoked as the heat source for the world's largest commercial geothermal reservoir, The Geysers, in northern California. A shallow silicic magma reservoir in the upper-middle crust has been discovered for some time, but the location and mechanism of a potential deep mafic magma reservoir have remained elusive. Here, we present a seismic tomographic model that images the entire crustal column, clearly revealing a multilevel transcrustal magmatic system beneath the Geysers-Clear Lake area. Upwelling melts from the mantle traverse across the crust-mantle boundary and accumulate in the lower crust underneath the southeastern part of Clear Lake, resulting in a hot Moho in between. Mafic melts primarily ascend westward due to the extensional regime in the west and physical barrier effect from the overlying rigid ophiolite fragment, ultimately forming a shallow silicic magma reservoir underlying and heating The Geysers geothermal field. In addition, this study also links compositionally diverse volcanism in a continental setting to differentiation in a multilevel transcrustal magmatic system.

5.
Proc Natl Acad Sci U S A ; 121(4): e2315401121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38232280

RESUMEN

Biomacromolecular folding kinetics involves fast folding events and broad timescales. Current techniques face limitations in either the required time resolution or the observation window. In this study, we developed the TeZla micromixer, integrating Tesla and Zigzag microstructures with a multistage velocity descending strategy. TeZla achieves a significant short mixing dead time (40 µs) and a wide time window covering four orders of magnitude (up to 300 ms). Using this unique micromixer, we explored the folding landscape of c-Myc G4 and its noncanonical-G4 derivatives with different loop lengths or G-vacancy sites. Our findings revealed that c-Myc can bypass folding intermediates and directly adopt a G4 structure in the cation-deficient buffer. Moreover, we found that the loop length and specific G-vacancy site could affect the folding pathway and significantly slow down the folding rates. These results were also cross-validated with real-time NMR and circular dichroism. In conclusion, TeZla represents a versatile tool for studying biomolecular folding kinetics, and our findings may ultimately contribute to the design of drugs targeting G4 structures.


Asunto(s)
G-Cuádruplex , Cinética , Física
6.
Proc Natl Acad Sci U S A ; 121(18): e2306901121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38669186

RESUMEN

RNA velocity estimation is a potentially powerful tool to reveal the directionality of transcriptional changes in single-cell RNA-sequencing data, but it lacks accuracy, absent advanced metabolic labeling techniques. We developed an approach, TopicVelo, that disentangles simultaneous, yet distinct, dynamics by using a probabilistic topic model, a highly interpretable form of latent space factorization, to infer cells and genes associated with individual processes, thereby capturing cellular pluripotency or multifaceted functionality. Focusing on process-associated cells and genes enables accurate estimation of process-specific velocities via a master equation for a transcriptional burst model accounting for intrinsic stochasticity. The method obtains a global transition matrix by leveraging cell topic weights to integrate process-specific signals. In challenging systems, this method accurately recovers complex transitions and terminal states, while our use of first-passage time analysis provides insights into transient transitions. These results expand the limits of RNA velocity, empowering future studies of cell fate and functional responses.


Asunto(s)
Diferenciación Celular , Análisis de Clases Latentes , Análisis de Expresión Génica de una Sola Célula , Transcripción Genética , Animales , Humanos , Ratones , Diferenciación Celular/genética , Conjuntos de Datos como Asunto , Biología Evolutiva , Hematopoyesis/genética , Inmunidad Innata/genética , Inflamación/genética , Linfocitos/citología , Linfocitos/inmunología , Probabilidad , Reproducibilidad de los Resultados , Análisis de Expresión Génica de una Sola Célula/métodos , Piel/inmunología , Piel/patología , Procesos Estocásticos , Factores de Tiempo
7.
Hum Mol Genet ; 33(11): 981-990, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38483351

RESUMEN

Most genetic variants associated with adult height have been identified through large genome-wide association studies (GWASs) in European-ancestry cohorts. However, it is unclear how these variants influence linear growth during adolescence. This study uses anthropometric and genotypic data from a longitudinal study conducted in an American Indian community in Arizona between 1965-2007. Growth parameters (i.e. height, velocity, and timing of growth spurt) were derived from the Preece-Baines growth model, a parametric growth curve fitted to longitudinal height data, in 787 participants with height measurements spanning the whole period of growth. Heritability estimates suggested that genetic factors could explain 25% to 71% of the variance of pubertal growth traits. We performed a GWAS of growth parameters, testing their associations with 5 077 595 imputed or directly genotyped variants. Six variants associated with height at peak velocity (P < 5 × 10-8, adjusted for sex, birth year and principal components). Implicated genes include NUDT3, previously associated with adult height, and PACSIN1. Two novel variants associated with duration of growth spurt (P < 5 × 10-8) in LOC105375344, an uncharacterized gene with unknown function. We finally examined the association of growth parameters with a polygenic score for height derived from 9557 single nucleotide polymorphisms (SNPs) identified in the GIANT meta-analysis for which genotypic data were available for the American Indian study population. Height polygenic score was correlated with the magnitude and velocity of height growth that occurred before and at the peak of the adolescent growth spurt, indicating overlapping genetic architecture, with no influence on the timing of adolescent growth.


Asunto(s)
Estatura , Estudio de Asociación del Genoma Completo , Indígenas Norteamericanos , Herencia Multifactorial , Polimorfismo de Nucleótido Simple , Pubertad , Humanos , Estatura/genética , Masculino , Femenino , Adolescente , Herencia Multifactorial/genética , Indígenas Norteamericanos/genética , Pubertad/genética , Arizona , Estudios Longitudinales , Niño , Genotipo
8.
Semin Cell Dev Biol ; 140: 54-62, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35927121

RESUMEN

The concept of spatial confinement is the basis of cell positioning and guidance in in vitro studies. In vivo, it reflects many situations faced during embryonic development. In vitro, spatial confinement of neurons is achieved using different technological approaches: adhesive patterning, topographical structuring, microfluidics and the use of hydrogels. The notion of chemical or physical frontiers is particularly central to the behaviors of growth cones and neuronal processes under confinement. They encompass phenomena of cell spreading, boundary crossing, and path finding on surfaces with different adhesive properties. However, the most universal phenomenon related to confinement, regardless of how it is implemented, is the acceleration of neuronal growth. Overall, a bi-directional causal link emerges between the shape of the growth cone and neuronal elongation dynamics, both in vivo and in vitro. The sensing of adhesion discontinuities by filopodia and the subsequent spatial redistribution and size adaptation of these actin-rich filaments seem critical for the growth rate in conditions in which adhesive contacts and actin-associated clutching forces dominate. On the other hand, the involvement of microtubules, specifically demonstrated in 3D hydrogel environments and leading to ameboid-like locomotion, could be relevant in a wider range of growth situations. This review brings together a literature collected in distinct scientific fields such as development, mechanobiology and bioengineering that highlight the consequences of confinement and raise new questions at different cellular scales. Its ambition is to stimulate new research that could lead to a better understanding of what gives neurons their ability to establish and regulate their exceptional size.


Asunto(s)
Actinas , Neuronas , Actinas/metabolismo , Neuronas/metabolismo , Conos de Crecimiento/metabolismo , Neuritas/metabolismo , Microtúbulos/metabolismo
9.
J Neurosci ; 43(9): 1530-1539, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36669887

RESUMEN

The velocity-storage circuit participates in the vestibulopostural reflex, but its role in the postural reflex requires further elucidation. The velocity-storage circuit differentiates gravitoinertial information into gravitational and inertial cues using rotational cues. This implies that a false rotational cue can cause an erroneous estimation of gravity and inertial cues. We hypothesized the velocity-storage circuit is a common gateway for all vestibular reflex pathways and tested that hypothesis by measuring the postural and perceptual responses from a false inertial cue estimated in the velocity-storage circuit. Twenty healthy human participants (40.5 ± 8.2 years old, 6 men) underwent two different sessions of earth-vertical axis rotations at 120°/s for 60 s. During each session, the participants were rotated clockwise and then counterclockwise with two different starting head positions (head-down and head-up). During the first (control) session, the participants kept a steady head position at the end of rotation. During the second (test) session, the participants changed their head position at the end of rotation, from head-down to head-up or vice versa. The head position and inertial motion perception at the end of rotation were aligned with the inertia direction anticipated by the velocity-storage model. The participants showed a significant correlation between postural and perceptual responses. The velocity-storage circuit appears to be a shared neural integrator for the vestibulopostural reflex and vestibular perception. Because the postural responses depended on the inertial direction, the postural instability in vestibular disorders may be the consequence of the vestibulopostural reflex responding to centrally estimated false vestibular cues.SIGNIFICANCE STATEMENT The velocity-storage circuit appears to participate in the vestibulopostural reflex, which stabilizes the head and body position in space. However, it is still unclear whether the velocity-storage circuit for the postural reflex is in common with that involved in eye movement and perception. We evaluated the postural and perceptual responses to a false inertial cue estimated by the velocity-storage circuit. The postural and perceptual responses were consistent with the inertia direction predicted in the velocity-storage model and were correlated closely with each other. These results show that the velocity-storage circuit is a shared neural integrator for vestibular-driven responses and suggest that the vestibulopostural response to a false vestibular cue is the pathomechanism of postural instability clinically observed in vestibular disorders.


Asunto(s)
Señales (Psicología) , Percepción de Movimiento , Masculino , Humanos , Adulto , Persona de Mediana Edad , Movimientos Oculares , Postura/fisiología , Reflejo , Percepción de Movimiento/fisiología , Reflejo Vestibuloocular/fisiología
10.
J Neurosci ; 43(49): 8403-8424, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-37871964

RESUMEN

The sense of orientation of an animal is derived from the head direction (HD) system found in several limbic structures and depends on an intact vestibular labyrinth. However, how the vestibular system influences the generation and updating of the HD signal remains poorly understood. Anatomical and lesion studies point toward three key brainstem nuclei as key components for generating the HD signal-nucleus prepositus hypoglossi, supragenual nucleus, and dorsal paragigantocellularis reticular nuclei. Collectively, these nuclei are situated between the vestibular nuclei and the dorsal tegmental and lateral mammillary nuclei, which are thought to serve as the origin of the HD signal. To determine the types of information these brain areas convey to the HD network, we recorded neurons from these regions while female rats actively foraged in a cylindrical enclosure or were restrained and rotated passively. During foraging, a large subset of cells in all three nuclei exhibited activity that correlated with the angular head velocity (AHV) of the rat. Two fundamental types of AHV cells were observed; (1) symmetrical AHV cells increased or decreased their firing with increases in AHV regardless of the direction of rotation, and (2) asymmetrical AHV cells responded differentially to clockwise and counterclockwise head rotations. When rats were passively rotated, some AHV cells remained sensitive to AHV, whereas firing was attenuated in other cells. In addition, a large number of AHV cells were modulated by linear head velocity. These results indicate the types of information conveyed from the vestibular nuclei that are responsible for generating the HD signal.SIGNIFICANCE STATEMENT Extracellular recording of brainstem nuclei (nucleus prepositus hypoglossi, supragenual nucleus, and dorsal paragigantocellularis reticular nucleus) that project to the head direction circuit identified different types of AHV cells while rats freely foraged in a cylindrical environment. The firing of many cells was also modulated by linear velocity. When rats were restrained and passively rotated, some cells remained sensitive to AHV, whereas others had attenuated firing. These brainstem nuclei provide critical information about the rotational movement of the head of the rat in the azimuthal plane.


Asunto(s)
Movimiento , Neuronas , Ratas , Femenino , Animales , Movimiento/fisiología , Neuronas/fisiología , Núcleos Vestibulares , Núcleo Celular , Movimientos de la Cabeza/fisiología , Cabeza/fisiología
11.
J Mol Cell Cardiol ; 186: 71-80, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37956903

RESUMEN

Gap junction and ion channel remodeling occur early in Arrhythmogenic Cardiomyopathy (ACM), but their pathogenic consequences have not been elucidated. Here, we identified the arrhythmogenic substrate, consisting of propagation slowing and conduction block, in ACM models expressing two different desmosomal gene variants. Neonatal rat ventricular myocytes were transduced to express variants in genes encoding desmosomal proteins plakoglobin or plakophilin-2. Studies were performed in engineered cells and anisotropic tissues to quantify changes in conduction velocity, formation of unidirectional propagation, cell-cell electrical coupling, and ion currents. Conduction velocity decreased by 71% and 63% in the two ACM models. SB216763, an inhibitor of glycogen synthase kinase-3 beta, restored conduction velocity to near normal levels. Compared to control, both ACM models showed greater propensity for unidirectional conduction block, which increased further at greater stimulation frequencies. Cell-cell electrical conductance measured in cell pairs was reduced by 86% and 87% in the two ACM models. Computer modeling showed close correspondence between simulated and experimentally determined changes in conduction velocity. The simulation identified that reduced cell-cell electrical coupling was the dominant factor leading to slow conduction, while the combination of reduced cell-cell electrical coupling, reduced sodium current and inward rectifier potassium current explained the development of unidirectional block. Expression of two different ACM variants markedly reduced cell-cell electrical coupling and conduction velocity, and greatly increased the likelihood of developing unidirectional block - both key features of arrhythmogenesis. This study provides the first quantitative analysis of cellular electrophysiological changes leading to the substrate of reentrant arrhythmias in early stage ACM.


Asunto(s)
Cardiomiopatías , Miocitos Cardíacos , Ratas , Animales , Miocitos Cardíacos/metabolismo , Arritmias Cardíacas/metabolismo , Uniones Comunicantes/metabolismo , Canales Iónicos/metabolismo , Cardiomiopatías/metabolismo
12.
J Cell Mol Med ; 28(14): e18547, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39044238

RESUMEN

Arterial stiffness, a prominent hallmark of ageing arteries, is a predictor of all-cause mortality. Strategies for promoting healthy vascular ageing are encouraged. Here we conducted a pilot study to evaluate the potential effects of low-dose Terazosin on arterial stiffness. We enrolled patients aged over 40 with elevated arterial stiffness, defined as a brachial-ankle pulse wave velocity (baPWV) ≥1400 cm/s, who were administered Terazosin (0.5 and 1.0 mg/day) from December 2020 to June 2023. Treatment responses were assessed every 3 months. Linear regression analysis was used to characterise the improvement. We matched cases who took Terazosin for 1 year with Terazosin-free controls using propensity score matching (PSM). Our findings demonstrate that Terazosin administration significantly affected arterial stiffness. (1) Arterial stiffness significantly improved (at least a 5% reduction in baPWV) in 50.0% of patients at 3 months, 48.6% at 6 months, 59.3% at 9 months, and 54.4% at 12 months, respectively. (2) Those with higher baseline baPWV and hypertension exhibited a significantly reduced risk of non-response. (3) Terazosin was associated with a reduction of baPWV at 1-year follow-up (linear regression: ß = -165.16, p < 0.001). This pilot study offers valuable insights into the potential significance of Terazosin in improving arterial stiffness and paves the way for future randomised clinical trials in combating vascular ageing.


Asunto(s)
Prazosina , Análisis de la Onda del Pulso , Rigidez Vascular , Humanos , Rigidez Vascular/efectos de los fármacos , Proyectos Piloto , Masculino , Femenino , Anciano , Prazosina/análogos & derivados , Prazosina/farmacología , Prazosina/administración & dosificación , Prazosina/uso terapéutico , Persona de Mediana Edad , Hipertensión/tratamiento farmacológico , Hipertensión/fisiopatología , Índice Tobillo Braquial
13.
J Physiol ; 602(6): 1105-1126, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38400808

RESUMEN

Skeletal muscle has a broad range of biomechanical functions, including power generation and energy absorption. These roles are underpinned by the force-velocity relationship, which comprises two distinct components: a concentric and an eccentric force-velocity relationship. The concentric component has been extensively studied across a wide range of muscles with different muscle properties. However, to date, little progress has been made in accurately characterising the eccentric force-velocity relationship in mammalian muscle with varying muscle properties. Consequently, mathematical models of this muscle behaviour are based on a poorly understood phenomenon. Here, we present a comprehensive assessment of the concentric force-velocity and eccentric force-velocity relationships of four mammalian muscles (soleus, extensor digitorum longus, diaphragm and digastric) with varying biomechanical functions, spanning three orders of magnitude in body mass (mouse, rat and rabbits). The force-velocity relationship was characterised using a hyperbolic-linear equation for the concentric component a hyperbolic equation for the eccentric component, at the same time as measuring the rate of force development in the two phases of force development in relation to eccentric lengthening velocity. We demonstrate that, despite differences in the curvature and plateau height of the eccentric force-velocity relationship, the rates of relative force development were consistent for the two phases of the force-time response during isovelocity lengthening ramps, in relation to lengthening velocity, in the four muscles studied. Our data support the hypothesis that this relationship depends on cross-bridge and titin activation. Hill-type musculoskeletal models of the eccentric force-velocity relationship for mammalian muscles should incorporate this biphasic force response. KEY POINTS: The capacity of skeletal muscle to generate mechanical work and absorb energy is underpinned by the force-velocity relationship. Despite identification of the lengthening (eccentric) force-velocity relationship over 80 years ago, no comprehensive study has been undertaken to characterise this relationship in skeletal muscle. We show that the biphasic force response seen during active muscle lengthening is conserved over three orders of magnitude of mammalian skeletal muscle mass. Using mice with a small deletion in titin, we show that part of this biphasic force profile in response to muscle lengthening is reliant on normal titin activation. The rate of force development during muscle stretch may be a more reliable way to describe the forces experienced during eccentric muscle contractions compared to the traditional hyperbolic curve fitting, and functions as a novel predictor of force-velocity characteristics that may be used to better inform hill-type musculoskeletal models and assess pathophysiological remodelling.


Asunto(s)
Contracción Muscular , Músculo Esquelético , Humanos , Ratas , Ratones , Animales , Conejos , Conectina , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Terapia por Ejercicio , Diafragma , Mamíferos
14.
J Physiol ; 602(7): 1297-1311, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38493355

RESUMEN

The wide variation in muscle fibre type distribution across individuals, along with the very different energy consumption rates in slow versus fast muscle fibres, suggests that muscle fibre typology contributes to inter-individual differences in metabolic rate during exercise. However, this has been hard to demonstrate due to the gap between a single muscle fibre and full-body exercises. We investigated the isolated effect of triceps surae muscle contraction velocity on whole-body metabolic rate during cyclic contractions in individuals a priori selected for their predominantly slow (n = 11) or fast (n = 10) muscle fibre typology by means of proton magnetic resonance spectroscopy (1H-MRS). Subsequently, we examined their whole-body metabolic rate during walking and running at 2 m/s, exercises with comparable metabolic rates but distinct triceps surae muscle force and velocity demands (walking: low force, high velocity; running: high force, low velocity). Increasing triceps surae contraction velocity during cyclic contractions elevated net whole-body metabolic rate for both typology groups. However, the slow group consumed substantially less net metabolic energy at the slowest contraction velocity, but the metabolic difference between groups diminished at faster velocities. Consistent with the more economic force production during slow contractions, the slow group exhibited lower metabolic rates than the fast group while running, whereas metabolic rates were similar during walking. These findings provide important insights into the influence of muscle fibre typology on whole-body metabolic rate and emphasize the importance of considering muscle mechanical demands to understand muscle fibre typology related differences in whole-body metabolic rates. KEY POINTS: Muscle fibre typology is often suggested to affect whole-body metabolic rate, yet convincing in vivo evidence is lacking. Using isolated plantar flexor muscle contractions in individuals a priori selected for their predominantly slow or fast muscle fibre typology, we demonstrated that having predominantly slow muscle fibres provides a metabolic advantage during slow muscle contractions, but this benefit disappeared at faster contractions. We extended these results to full-body exercises, where we demonstrated that higher proportions of slow fibres associated with better economy during running but not when walking. These findings provide important insights into the influence of muscle fibre typology on whole-body metabolic rate and emphasize the importance of considering muscle mechanical demands to understand muscle fibre typology related differences in whole-body metabolic rate.


Asunto(s)
Contracción Muscular , Carrera , Humanos , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Fibras Musculares Esqueléticas , Pierna , Carrera/fisiología
15.
J Physiol ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38345865

RESUMEN

Androgenic anabolic steroids (AAS) are commonly abused by young men. Male sex and increased AAS levels are associated with earlier and more severe manifestation of common cardiac conditions, such as atrial fibrillation, and rare ones, such as arrhythmogenic right ventricular cardiomyopathy (ARVC). Clinical observations suggest a potential atrial involvement in ARVC. Arrhythmogenic right ventricular cardiomyopathy is caused by desmosomal gene defects, including reduced plakoglobin expression. Here, we analysed clinical records from 146 ARVC patients to identify that ARVC is more common in males than females. Patients with ARVC also had an increased incidence of atrial arrhythmias and P wave changes. To study desmosomal vulnerability and the effects of AAS on the atria, young adult male mice, heterozygously deficient for plakoglobin (Plako+/- ), and wild type (WT) littermates were chronically exposed to 5α-dihydrotestosterone (DHT) or placebo. The DHT increased atrial expression of pro-hypertrophic, fibrotic and inflammatory transcripts. In mice with reduced plakoglobin, DHT exaggerated P wave abnormalities, atrial conduction slowing, sodium current depletion, action potential amplitude reduction and the fall in action potential depolarization rate. Super-resolution microscopy revealed a decrease in NaV 1.5 membrane clustering in Plako+/- atrial cardiomyocytes after DHT exposure. In summary, AAS combined with plakoglobin deficiency cause pathological atrial electrical remodelling in young male hearts. Male sex is likely to increase the risk of atrial arrhythmia, particularly in those with desmosomal gene variants. This risk is likely to be exaggerated further by AAS use. KEY POINTS: Androgenic male sex hormones, such as testosterone, might increase the risk of atrial fibrillation in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), which is often caused by desmosomal gene defects (e.g. reduced plakoglobin expression). In this study, we observed a significantly higher proportion of males who had ARVC compared with females, and atrial arrhythmias and P wave changes represented a common observation in advanced ARVC stages. In mice with reduced plakoglobin expression, chronic administration of 5α-dihydrotestosterone led to P wave abnormalities, atrial conduction slowing, sodium current depletion and a decrease in membrane-localized NaV 1.5 clusters. 5α-Dihydrotestosterone, therefore, represents a stimulus aggravating the pro-arrhythmic phenotype in carriers of desmosomal mutations and can affect atrial electrical function.

16.
J Biol Chem ; 299(2): 102790, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36509143

RESUMEN

3-Chymotrypsin-like protease (3CLpro) is a promising drug target for coronavirus disease 2019 and related coronavirus diseases because of the essential role of this protease in processing viral polyproteins after infection. Understanding the detailed catalytic mechanism of 3CLpro is essential for designing effective inhibitors of infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Molecular dynamics studies have suggested pH-dependent conformational changes of 3CLpro, but experimental pH profiles of SARS-CoV-2 3CLpro and analyses of the conserved active-site histidine residues have not been reported. In this work, pH-dependence studies of the kinetic parameters of SARS-CoV-2 3CLpro revealed a bell-shaped pH profile with 2 pKa values (6.9 ± 0.1 and 9.4 ± 0.1) attributable to ionization of the catalytic dyad His41 and Cys145, respectively. Our investigation of the roles of conserved active-site histidines showed that different amino acid substitutions of His163 produced inactive enzymes, indicating a key role of His163 in maintaining catalytically active SARS-CoV-2 3CLpro. By contrast, the H164A and H172A mutants retained 75% and 26% of the activity of WT, respectively. The alternative amino acid substitutions H172K and H172R did not recover the enzymatic activity, whereas H172Y restored activity to a level similar to that of the WT enzyme. The pH profiles of H164A, H172A, and H172Y were similar to those of the WT enzyme, with comparable pKa values for the catalytic dyad. Taken together, the experimental data support a general base mechanism of SARS-CoV-2 3CLpro and indicate that the neutral states of the catalytic dyad and active-site histidine residues are required for maximum enzyme activity.


Asunto(s)
Biocatálisis , Proteasas 3C de Coronavirus , Histidina , SARS-CoV-2 , Humanos , Histidina/genética , Histidina/metabolismo , Concentración de Iones de Hidrógeno , SARS-CoV-2/enzimología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/genética , Proteasas 3C de Coronavirus/metabolismo , Dominio Catalítico , Cinética , Sustitución de Aminoácidos
17.
J Neurophysiol ; 131(6): 1143-1155, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38658179

RESUMEN

Although perceptual thresholds have been widely studied, vestibuloocular reflex (VOR) thresholds have received less attention, so the relationship between VOR and perceptual thresholds remains unclear. We compared the frequency dependence of human VOR thresholds to human perceptual thresholds for yaw head rotation in both upright ("yaw rotation") and supine ("yaw tilt") positions, using the same human subjects and motion device. VOR thresholds were generally a little smaller than perceptual thresholds. We also found that horizontal VOR thresholds for both yaw rotation about an Earth-vertical axis and yaw tilt (yaw rotation about an Earth-horizontal axis) were relatively constant across four frequencies (0.2, 0.5, 1, and 2 Hz), with little difference between yaw rotation and yaw tilt VOR thresholds. For yaw tilt stimuli, perceptual thresholds were slightly lower at the lowest frequency and nearly constant at all other (higher) frequencies. However, for yaw rotation, perceptual thresholds increased significantly at the lowest frequency (0.2 Hz). We conclude 1) that VOR thresholds were relatively constant across frequency for both yaw rotation and yaw tilt, 2) that the known contributions of velocity storage to the VOR likely yielded these VOR thresholds that were similar for yaw rotation and yaw tilt for all frequencies tested, and 3) that the integration of otolith and horizontal canal signals during yaw tilt when supine contributes to stable perceptual thresholds, especially relative to the low-frequency perceptual thresholds recorded during yaw rotation.NEW & NOTEWORTHY We describe for the first time that human VOR thresholds differ from human forced-choice perceptual thresholds, with the difference especially evident at frequencies below 0.5 Hz. We also report that VOR thresholds are relatively constant across frequency for both yaw rotation and yaw tilt. These findings are consistent with the idea that high-pass filtering in cortical pathways impacts cognitive decision-making.


Asunto(s)
Reflejo Vestibuloocular , Umbral Sensorial , Humanos , Reflejo Vestibuloocular/fisiología , Masculino , Femenino , Adulto , Rotación , Umbral Sensorial/fisiología , Movimientos de la Cabeza/fisiología , Adulto Joven
18.
Am J Physiol Heart Circ Physiol ; 326(5): H1138-H1145, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38426867

RESUMEN

Daylight saving time (DST) is a Western biannual time transition, setting the clock back 1 h in the fall and forward 1 h in the spring. There is an epidemiological link between DST and acute myocardial infarction risk in the first week following the spring shift; however, the mechanisms underlying the effect of DST on cardiovascular function remain unclear. The purpose of this study was to explore the short-term cardiovascular changes induced by fall and spring shifts in DST in a convenience sample of healthy adults. We hypothesized that spring, but not fall, DST shifts would acutely increase central pulse wave velocity, the gold standard measurement of central arterial stiffness. Twenty-one individuals (fall: n = 10; spring: n = 11) participated in four visits, occurring 1 wk before and at +1, +3, and +5 days after spring and fall time transitions. Central, brachial, and radial pulse wave velocity as well as carotid augmentation index were assessed with applanation tonometry. Sleep quality and memory function were assessed via questionnaire and the Mnemonic Similarities Task, respectively. Neither fall or spring transition resulted in changes to cardiovascular variables (carotid-femoral pulse wave velocity, carotid-brachial pulse wave velocity, carotid-radial pulse wave velocity, heart rate, mean arterial pressure, or augmentation index), sleep quality, or cognitive function (all P > 0.05). Our findings do not provide evidence that DST shifts influence cardiovascular outcomes in healthy adults. This study emphasizes the need for further research to determine the mechanisms of increased cardiovascular disease risk with DST that help explain epidemiological trends.NEW & NOTEWORTHY The debate of whether to abolish daylight savings time (DST) is, in part, motivated by the population-level increase in all-cause mortality and incidence of cardiovascular events following DST; however, there is an absence of data to support a physiological basis for risk. We found no changes in pulse wave velocity or augmentation index during the subacute window of DST. Large multisite trials are necessary to address the small, but meaningful, effects brought on by a societal event.


Asunto(s)
Infarto del Miocardio , Rigidez Vascular , Adulto , Humanos , Análisis de la Onda del Pulso , Presión Arterial/fisiología , Arterias Carótidas/fisiología , Arteria Braquial/fisiología , Rigidez Vascular/fisiología , Presión Sanguínea/fisiología
19.
Am J Physiol Heart Circ Physiol ; 326(2): H346-H356, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38038715

RESUMEN

The function of micro- and macrovessels within the peripheral vasculature has been identified as a target for the investigation of potential cardiovascular-based promoters of cognitive decline. However, little remains known regarding the interaction of the micro- and macrovasculature as it relates to cognitive function, especially in cognitively healthy individuals. Therefore, our purpose was to unravel peripheral factors that contribute to the association between age and processing speed. Ninety-nine individuals (51 men, 48 women) across the adult life span (19-81 yr) were used for analysis. Arterial stiffness was quantified as carotid-femoral pulse-wave velocity (cfPWV) and near-infrared spectroscopy assessed maximal tissue oxygenation (Sto2max) following a period of ischemia. Processing speed was evaluated with Trail Making Test (TMT) Parts A and B. Measures of central (cPP) and peripheral pulse pressure (pPP) were also collected. Moderated mediation analyses were conducted to determine contributions to the age and processing speed relation, and first-order partial correlations were used to assess associations while controlling for the linear effects of age. A P ≤ 0.05 was considered statistically significant. At low levels of Sto2max, there was a significant positive (b = 1.92; P = 0.005) effect of cfPWV on time to completion on TMT part A. In addition, cPP (P = 0.028) and pPP (P = 0.027) remained significantly related to part A when controlling for age. These results suggested that the peripheral microvasculature may be a valuable target for delaying cognitive decline, especially in currently cognitively healthy individuals. Furthermore, we reinforced current evidence that pulse pressure is a key endpoint for trials aimed at preventing or delaying the onset of cognitive decline.NEW & NOTEWORTHY Arterial stiffness partially mediates the association between age and processing speed in the presence of low microvascular function, as demarcated by maximum tissue oxygenation following ischemia. Central and peripheral pulse pressure remained associated with processing speed even after controlling for age. Our findings were derived from a sample that was determined to be cognitively healthy, which highlights the potential for these outcomes to be considered during trials aimed at the prevention of cognitive decline.


Asunto(s)
Longevidad , Rigidez Vascular , Masculino , Adulto , Humanos , Femenino , Velocidad de Procesamiento , Análisis de la Onda del Pulso , Presión Sanguínea , Isquemia
20.
Am J Physiol Heart Circ Physiol ; 326(4): H923-H928, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38334969

RESUMEN

It is known that electrical muscle stimulation (EMS) can enhance physical function, but its impact on cognition and cerebral hemodynamics is not well understood. Thus, the purpose of this study was to investigate the effects of one EMS session on cerebrovascular function and cognitive performance. The 17 recruited young healthy participants undertook a 25-min session of EMS and a resting control session (Ctrl group) in a random order. Cerebral blood flow velocity (CBFv) in the middle and posterior cerebral arteries (right MCAv and left PCAv, respectively), cerebral oxygenation, cardiac output, and heart rate were measured throughout the sessions, whereas cognitive function was assessed before and after each experimental condition. MCAv, cardiac output, heart rate, and cerebral oxygenation were increased throughout the EMS session, whereas PCAv remained unchanged. In addition, EMS led to improved scores at the Rey auditory verbal learning test-part B and congruent Stroop task versus Ctrl. The present study demonstrates that a single session of EMS may improve cognitive performance and concomitantly increase CBFv and cerebral oxygenation. Therefore, EMS appears to be a valuable surrogate for voluntary exercise and could therefore be advantageously used in populations with severe physical limitations who would not be able to perform physical exercise otherwise.NEW & NOTEWORTHY This study is the first to demonstrate that one session of EMS applied to the quadriceps increases cerebral blood flow velocity and cerebral oxygenation, which are pivotal factors for brain health. Thus, EMS has the potential to be used as an interesting option in rehabilitation to increase cerebral perfusion and defend if not improve cognitive function sustainably for people with severe physical limitations who would not be able to perform physical exercise voluntarily.


Asunto(s)
Circulación Cerebrovascular , Hemodinámica , Humanos , Encéfalo/irrigación sanguínea , Circulación Cerebrovascular/fisiología , Cognición , Hemodinámica/fisiología , Músculo Cuádriceps
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA