Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
Más filtros

Intervalo de año de publicación
1.
Appl Environ Microbiol ; : e0150824, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39382293

RESUMEN

The Gram-negative marine bacterium Vibrio anguillarum is able to cause vibriosis with hemorrhagic septicemia in many fish species, and iron acquisition is a critical step for virulence. Despite the fact that genes specific to certain processes of iron transport have been studied, the iron-regulated circuits of the V. anguillarum strains remain poorly understood. In this study, we showed that in V. anguillarum strain 775, iron could affect the expression of a number of critical metabolic pathways and virulence factors. The global iron uptake regulator VaFur is the major actor to control these processes for the bacterium to respond to different iron conditions. A VaFur binding motif was identified to distinguish directly and indirectly regulated targets. The absence of VaFur resulted in the aberrant expression of most iron acquisition determinants under rich-iron conditions. A similar regulation pattern was also observed in the transcription of genes coding for the type VI secretion system. The expression of peroxidase genes is positively controlled by VaFur to prevent iron toxicity, and the deletion of Vafur caused impaired growth in the presence of iron and H2O2. VaFur also upregulates some virulence factors under limited-iron conditions, including metalloprotease EmpA and motility, which are likely critical for the high virulence of V. anguillarum 775. The deletion of VaFur led to reduced swimming motility and decreased extracellular protease activity under limited-iron conditions, thereby leading to attenuated pathogenicity. Our study provides more evidence to better understand the VaFur regulon and its role in the pathogenesis of V. anguillarum.IMPORTANCEVibriosis, the most common disease caused by marine bacteria belonging to the genus Vibrio, leads to massive mortality of economical aquatic organisms in Asia. Iron is one of the most important trace elements, and its acquisition is a critical battle occurring between the host and the pathogen. However, excess iron is harmful to cells, so iron utilization needs to be strictly controlled to adapt to different conditions. This process is mediated by the global iron uptake regulator Fur, which acts as a repressor when iron is replete. On the other hand, free iron in the host is limited, so the reduced virulence of the Δfur mutant should not be directly caused by abnormally regulated iron uptake. The significance of this work lies in uncovering the mechanism by which the deletion of Fur causes reduced virulence in Vibrio anguillarum and identifying the critical virulence factors that function under limited-iron conditions.

2.
Microb Pathog ; 189: 106597, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38395316

RESUMEN

Vibrio anguillarum is one of the major pathogens responsible for bacterial infections in marine environments, causing significant impacts on the aquaculture industry. The misuse of antibiotics leads to bacteria developing multiple drug resistances, which is detrimental to the development of the fisheries industry. In contrast, live attenuated vaccines are gradually gaining acceptance and widespread recognition. In this study, we constructed a double-knockout attenuated strain, V. anguillarum ΔspeA-aroC, to assess its potential for preparing a live attenuated vaccine. The research results indicate a significant downregulation of virulence-related genes, including Type VI secretion system, Type II secretion system, biofilm synthesis, iron uptake system, and other related genes, in the mutant strain. Furthermore, the strain lacking the genes exhibited a 67.47% reduction in biofilm formation ability and increased sensitivity to antibiotics. The mutant strain exhibited significantly reduced capability in evading host immune system defenses and causing in vivo infections in spotted sea bass (Lateolabrax maculatus), with an LD50 that was 13.93 times higher than that of the wild-type V. anguillarum. Additionally, RT-qPCR analysis of immune-related gene expression in spotted sea bass head kidney and spleen showed a weakened immune response triggered by the knockout strain. Compared to the wild-type V. anguillarum, the mutant strain caused reduced levels of tissue damage. The results demonstrate that the deletion of speA and aroC significantly reduces the biosynthesis of biofilms in V. anguillarum, leading to a decrease in its pathogenicity. This suggests a crucial role of biofilms in the survival and invasive capabilities of V. anguillarum.


Asunto(s)
Lubina , Enfermedades de los Peces , Vibriosis , Vibrio , Animales , Vibriosis/microbiología , Lubina/microbiología , Virulencia/genética , Vibrio/genética , Antibacterianos , Enfermedades de los Peces/microbiología
3.
Microb Pathog ; 190: 106611, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38467165

RESUMEN

Vibrio anguillarum is an important fish pathogen in mariculture, which can infect fish with great economic losses. In this study, a Vibrio anguillarum isolated from Sebastes schlegelii was named VA1 and was identified and characterized from aspects of morphology, physiological and biochemical characteristics, 16SRNA, virulence genes, drug sensitivity, and extracellular enzyme activity. At the same time, The VA1 was investigated at the genomic level. The results showed that a Gram-negative was isolated from the diseased fish. The VA1 was characterized with uneven surface and visible flagella wrapped in a sheath and microbubble structures. The VA1 was identified as Vibrio anguillarum based on the 16S RNA sequence and physiological and biochemical characteristics. The VA1 carried most of the virulence genes (24/29) and was resistant to penicillin, oxacillin, ampicillin, cefradine, neomycin, pipemidic acid, ofloxacin, and norfloxacin. The pathogenicity of the isolated strain was confirmed by an experimental analysis, and its LD50 was 6.43 × 106 CFU/ml. The VA1 had the ability to secrete gelatinase, protease, and amylase, and it had α-hemolysis. The whole genome size of the VA1 was 4232328bp and the G + C content was 44.95 %, consisting of two circular chromosomes, Chromosome1 and Chromosome2, with no plasmid. There were 1006 predicted protein coding sequences (CDSs). A total of 526 genes were predicted as virulence-related genes which could be classified as type IV pili, flagella, hemolysin, siderophore, and type VI secretion system. Virulence genes and correlation data were supported with the histopathological examination of the affected organs and tissues. 194 genes were predicted as antibiotic resistance genes, including fluoroquinolone antibiotic, aminoglycoside antibiotic, and beta-lactam resistant genes, which agreed with the results of the above drug sensitivity, indicating VA1 to be a multidrug-resistant bacterium. This study provided a theoretical basis for a better understanding of pathogenicity and antibiotic resistance, which might contribute to the prevention of V. anguillarum in the future.


Asunto(s)
Antibacterianos , Enfermedades de los Peces , Genoma Bacteriano , Filogenia , Vibriosis , Vibrio , Factores de Virulencia , Secuenciación Completa del Genoma , Vibrio/genética , Vibrio/patogenicidad , Vibrio/aislamiento & purificación , Vibrio/clasificación , Vibrio/efectos de los fármacos , Enfermedades de los Peces/microbiología , Animales , Factores de Virulencia/genética , Vibriosis/microbiología , Vibriosis/veterinaria , Antibacterianos/farmacología , ARN Ribosómico 16S/genética , Pruebas de Sensibilidad Microbiana , Virulencia/genética , Peces/microbiología , Composición de Base
4.
Fish Shellfish Immunol ; 147: 109431, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38346567

RESUMEN

Paracentrotus lividus is the most abundant echinoid species in the North East Atlantic Ocean and Mediterranean Sea. Although there is abundant genomic information of the species, there is no deep characterisation of the genes involved in the immune response. Here, a reference transcriptome of male and female coelomocytes was produced. The generated P. lividus transcriptome assembly has 203,511 transcripts, N50 transcript length of 1079 bp, and more than 90% estimated gene completeness in Eukaryota and Metazoa BUSCO databases, respectively. Differential gene expression analyses showed 54 and 55 up-regulated genes in P. lividus female and male coelomocyte tissues, respectively. These results suggest a similar immune gene repertoire between sexes. To examine the immune response, P. lividus was challenged with Vibrio anguillarum, one of the candidate pathogens for bald disease. Immune parameters were evaluated at cell and humoral levels, as well as the expression analysis of immune related genes at an early response stage. No differences were found at cellular and humoral levels with the exception of the increase of nitric oxide in perivisceral fluid of challenged animals. At the gene expression level, a total of 2721 genes were upregulated in challenged animals, 13.6 times higher expression than control group. Our analysis revealed that four major KEGG pathways were enriched in challenged animals: Autophagy (KEGG:04140), Endocytosis (KEGG:04144), Phagosome (KEGG:04145) and Protein processing in endoplasmic reticulum (KEGG:04141). Several toll-like receptors (TLR), scavenger receptors cysteine-rich (SRCR) or nucleotide-binding oligomerisation domain like receptors (NLR) were identified as major family genes for pathogen recognition and immune defence. This study provides a valuable transcriptomic resource and unfolds the molecular basis of immune response to V. anguillarum exposure. Overall, our findings contribute to the conservation effort of the P. lividus populations, as well as its sustainable exploitation in an aquaculture context.


Asunto(s)
Paracentrotus , Vibrio , Femenino , Masculino , Animales , Vibrio/fisiología , Fagocitosis , Receptores Toll-Like
5.
Fish Shellfish Immunol ; 152: 109749, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002557

RESUMEN

Chinese seabass (Lateolabrax maculatus) stands out as one of the most sought-after and economically significant species in aquaculture within China. Diseases of L. maculatus occur frequently due to the degradation of the germplasm, the aggravation of environmental pollution of water, and the reproduction of pathogenic microorganisms, inflicting considerable economic losses on the Chinese seabass industry. The Myxovirus resistance (Mx) gene plays pivotal roles in the antiviral immune response ranging from mammals to fish. However, the function of the Mx gene in L. maculatus is still unknown. Firstly, the origin and evolutionary history of Mx proteins was elucidated in this study. Subsequently, an Mx gene from L. maculatus (designed as LmMxA gene) was identified, and its functions in combating antiviral and antibacterial threats were investigated. Remarkably, our findings suggested that while Mx group genes were present in chordates, DYN group genes were present in everything from single-celled animals to humans. Furthermore, our investigation revealed that the LmMxA mRNA level increased in the kidney, spleen and liver subsequent to Vibrio anguillarum and poly(I:C) challenged. Immunofluorescence analysis indicated that LmMxA is predominantly localization in the nucleus and the cytoplasm. Notably, the expression of MAVS, IFN1 and Mx1 increased when LmMxA was overexpression within the EPC cells. Moreover, through assessment via cytopathic effect (CPE), virus titer, and antibacterial activity, it becomes evident that LmMxA exerts a dual role in bolstering both antiviral and antibacterial immune responses. These compelling findings laid the foundation for further exploring the mechanism of LmMxA in response to innate immunity of L. maculatus.


Asunto(s)
Enfermedades de los Peces , Proteínas de Peces , Inmunidad Innata , Proteínas de Resistencia a Mixovirus , Filogenia , Animales , Proteínas de Resistencia a Mixovirus/genética , Proteínas de Resistencia a Mixovirus/metabolismo , Proteínas de Resistencia a Mixovirus/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/química , Inmunidad Innata/genética , Regulación de la Expresión Génica/inmunología , Vibriosis/inmunología , Vibriosis/veterinaria , Vibrio/fisiología , Secuencia de Aminoácidos , Alineación de Secuencia/veterinaria , Poli I-C/farmacología , Lubina/inmunología , Lubina/genética , Perfilación de la Expresión Génica/veterinaria , Evolución Molecular
6.
Fish Shellfish Immunol ; 144: 109275, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38081443

RESUMEN

MicroRNAs play crucial roles in various biological processes, including but not limited to differentiation, development, disease, and immunity. However, their immunoregulatory roles in half-smooth tongue sole are lacking. Our previous studies indicated that miR-722 could target C5aR1 to modulate the complement pathway to alleviate inflammatory response and even affect the mortality after the bacterial infection with Vibrio anguillarum. Driven by the purpose of revealing the underlying mechanisms, in this study, we investigated the effects of miR-722 on the gene expression and alternative splicing (AS) in the liver of half-smooth tongue sole after Vibrio anguillarum infection, with the approach of miR-722 overexpression/silencing and subsequent RNA-seq. Among the different comparisons, the I group (miR-722 inhibitor and V. anguillarum) versus blank control (PBS) exhibited the highest number of differentially expressed genes (DEGs), suggesting that the immune response was overactivated after inhibiting the miR-722. In addition, enrichment analyses were performed to reveal the functions of DEGs and differential AS (DAS) genes, reflecting the enrichment of RNA splicing and immune-related pathways including NF-κB and T cell receptor signaling pathway. Comparing the M group (miR-722 mimic and V. anguillarum) with the negative control (random sequence and V. anguillarum), two immune-related genes, cd48 and mapk8, were differentially expressed, of which mapk8 was also differentially spliced, indicating their importance in the immune response. Furthermore, representative gene analysis was performed, suggesting their corresponding functional changes due to AS. To verify the RNA-seq data, quantitative real-time PCR was employed with twenty pairs of primers for DEGs and DAS events. Overall, our results demonstrated that miR-722 could mediate the transcriptome-wide changes of gene expression and AS in half-smooth tongue sole, and provided insights into the regulatory role of miR-722 in immune responses, laying the foundation for further functional analyses and practical applications in aquaculture.


Asunto(s)
Enfermedades de los Peces , Peces Planos , MicroARNs , Vibriosis , Vibrio , Animales , Empalme Alternativo , Vibrio/fisiología , Transcriptoma , Hígado/metabolismo , Peces/genética , MicroARNs/genética , MicroARNs/metabolismo , Perfilación de la Expresión Génica/veterinaria
7.
Fish Shellfish Immunol ; 151: 109706, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38897310

RESUMEN

The complement component 5a/complement component 5 receptor 1 (C5a/C5aR1) pathway plays a crucial role in the onset and development of inflammation, but relevant studies in fish are lacking. In this study, we successfully characterized the relationship between half-smooth tongue sole (Cynoglossus semilaevis) C5aR1 (CsC5aR1) and bacterial inflammation. First, we showed that the overexpression of CsC5aR1 significantly increased bacterial pathological damage in the liver and intestine, whereas inhibition attenuated the damage. The in vitro experiments suggested that CsC5aR1 was able to positively regulate the phagocytic activity and respiratory burst of tongue sole macrophages. In terms of both transcriptional and translational levels, overexpression/inhibition of CsC5aR1 was followed by a highly consistent up-regulation/decrease of its downstream canonical inflammatory factor interleukin-6 (CsIL-6). Furthermore, we stimulated macrophages by lipopolysaccharide (LPS) and lipoteichoic acid (LTA) and found a broad-spectrum response to bacterial infections by the C5a/C5aR1 complement pathway together with the downstream inflammatory factor CsIL-6. Subsequently, we directly elucidated that CsIL-6 is an indicator of C5a/C5aR1-mediated inflammation at different infection concentrations, different infectious bacteria (Vibrio anguillarum and Mycobacterium marinum), and different detection levels. These results might provide a new inflammation bio-marker for early warning of bacteria-induced hyperinflammation leading to fish mortality and a promising target for the treatment of bacterial inflammation in teleost.


Asunto(s)
Enfermedades de los Peces , Proteínas de Peces , Peces Planos , Interleucina-6 , Receptor de Anafilatoxina C5a , Animales , Peces Planos/inmunología , Peces Planos/genética , Receptor de Anafilatoxina C5a/genética , Receptor de Anafilatoxina C5a/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Interleucina-6/metabolismo , Vibriosis/veterinaria , Vibriosis/inmunología , Vibrio/fisiología , Inflamación/inmunología , Inflamación/veterinaria , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética
8.
Mol Biol Rep ; 51(1): 709, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824265

RESUMEN

BACKGROUND: Cystatin is a protease inhibitor that also regulates genes expression linked to inflammation and plays a role in defense and regulation. METHODS AND RESULTS: Cystatin 10 (Smcys10) was cloned from Scophthalmus maximus and encodes a 145 amino acid polypeptide. The results of qRT-PCR showed that Smcys10 exhibited tissue-specific expression patterns, and its expression was significantly higher in the skin than in other tissues. The expression level of Smcys10 was significantly different in the skin, gill, head kidney, spleen and macrophages after Vibrio anguillarum infection, indicating that Smcys10 may play an important role in resistance to V. anguillarum infection. The recombinant Smcys10 protein showed binding and agglutinating activity in a Ca2+-dependent manner against bacteria. rSmcys10 treatment upregulated the expression of IL-10, TNF-α and TGF-ß in macrophages of turbot and hindered the release of lactate dehydrogenase (LDH) from macrophages after V. anguillarum infection, which confirmed that rSmcys10 reduced the damage to macrophages by V. anguillarum. The NF-κB pathway was suppressed by Smcys10, as demonstrated by dual-luciferase analysis. CONCLUSIONS: These results indicated that Smcys10 is involved in the host antibacterial immune response.


Asunto(s)
Cistatinas , Enfermedades de los Peces , Proteínas de Peces , Peces Planos , Macrófagos , Vibrio , Animales , Peces Planos/inmunología , Peces Planos/genética , Peces Planos/metabolismo , Vibrio/patogenicidad , Cistatinas/genética , Cistatinas/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Proteínas de Peces/inmunología , Macrófagos/metabolismo , Macrófagos/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/genética , Enfermedades de los Peces/microbiología , Vibriosis/inmunología , Vibriosis/veterinaria , Vibriosis/genética , FN-kappa B/metabolismo , Clonación Molecular/métodos , Regulación de la Expresión Génica
9.
Microb Pathog ; 181: 106174, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37244489

RESUMEN

Exosomes are a class of extracellular vesicles released by bacteria and contain diverse biomolecules. In this study, we isolated exosomes from Vibrio harveyi and Vibrio anguillarum, which are both serious pathogens in mariculture, using a supercentrifugation method, and the proteins in the exosomes of these two vibrios were analyzed by LC-MS/MS proteomics. Exosome proteins released by V. harveyi and V. anguillarum were different; they not only contained virulence factors (such as lipase and phospholipase in V. harveyi, metalloprotease and hemolysin in V. anguillarum), but also participated in the important life activities of bacteria (such as fatty acid biosynthesis, biosynthesis of antibiotics, carbon metabolism). Subsequently, to verify whether the exosomes participated in bacterial toxicity, after Ruditapes philippinarum was challenged with V. harveyi and V. anguillarum, the corresponding genes of virulence factors from exosomes screened by proteomics were tested by quantitative real-time PCR. All the genes detected were upregulated which suggested that exosomes were involved in vibrio toxicity. The results could provide an effective proteome database for decoding the pathogenic mechanism of vibrios from the exosome perspective.


Asunto(s)
Exosomas , Vibrio , Cromatografía Liquida , Proteómica , Espectrometría de Masas en Tándem , Vibrio/genética , Factores de Virulencia/genética
10.
Microb Pathog ; 174: 105955, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36538965

RESUMEN

Infectious diseases in aquaculture could be associated with high mortalities and morbidity rates, resulting in negative impacts to fish farming industry, consumers, and the environment. Octopods are reared near marine fish farming areas, and this may represent a major risk since fish pathogens may cause pathologies to octopods. Up to date cephalopods immune defense and pathologies, are incompletely understood. Therefore, the aim of this study was to determine the effect of water temperature and challenge route on hemocyte phagocytosis in vitro after experimental challenge of common octopus with Photobacterium damselae subsp. damselae or Vibrio anguillarum O1. Hemolymph was withdrawn at various time-points post-challenge and the number of circulating hemocytes, and phagocytosis ability were determined. No mortalities were recorded irrespective of pathogen, route of challenge and temperature employed. Great variation was observed in the number of circulating hemocytes of both control and challenged specimens in both experiments (1.04 × 105 to 22.33 × 105 hemocytes/ml for the Photobacterium damselae subsp. damselae challenge and 1.35 × 105 to 24.63 × 105 hemocytes/ml for the Vibrio anguillarum O1 and at both studied temperatures). No correlation was found between circulating hemocytes and baseline control specimens body weight. Probably, the number of circulating hemocytes is affected by many extrinsic, and intrinsic factors such as size, age, maturity stage, natural fluctuations and temperature, as indicated in the literature. The hemocyte foreign particles binding ability observed in Photobacterium damselae subsp. damselae experiments, at 21 ± 0.5 °C and 24 ± 0.5 °C, was (mean ± SD) 2.26 ± 2.96 and 11.72 ± 12.36 yeast cells/hemocyte for baseline specimens and 7.84 ± 8.88 and 8.56 ± 9.89 yeast cells/hemocyte for control and challenged specimens, respectively. The corresponding values for Vibrio anguillarum O1 experiments were (mean ± SD) 6.68 ± 9.26 and 7.00 ± 8.11 yeast cells/hemocyte for baseline specimens and 8.82 ± 9.75 and 6.04 ± 7.64 yeast cells/hemocyte for control and challenged specimens, respectively. Hemocytes of the Photobacterium damselae subsp. damselae and Vibrio anguillarum O1 challenged specimens, were more activated at lower temperature. Apparently, temperature is an important factor in hemocyte activation. In addition, our results indicated that time post challenge, route of challenge and pathogen may influence phagocytosis ability.


Asunto(s)
Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Octopodiformes , Animales , Hemocitos , Temperatura , Saccharomyces cerevisiae , Photobacterium , Fagocitosis , Peces , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/microbiología
11.
Fish Shellfish Immunol ; 135: 108643, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36871630

RESUMEN

Rainbow trout (Oncorhynchus mykiss), an important economic cold-water fish worldwide, is severely threatened by viruses and bacteria in the farming industry. The vibriosis outbreak has caused a significant setback to aquaculture. Vibrio anguillarum, one of the common disease-causing vibriosis associated with severe lethal vibriosis in aquaculture, infects fish mainly by adsorption and invasion of the skin, gills, lateral line and intestine. To investigate the defense mechanism of rainbow trout against the pathogen after infection with Vibrio anguillarum, trout were intraperitoneally injected by Vibrio anguillarum and divided into symptomatic group (SG) and asymptomatic group (AG) according to the phenotype. RNA-Seq technology was used to evaluate the transcriptional signatures of liver, gill and intestine of trout injected with Vibrio anguillarum (SG and AG) and corresponding control groups (CG(A) and CG(B)). The GO and KEGG enrichment analyses were used to investigate the mechanisms underlying the differences in susceptibility to Vibrio anguillarum. Results showed that in SG, immunomodulatory genes in the cytokine network were activated and tissue function-related genes were down-regulated, while apoptosis mechanisms were activated. However, AG responded to Vibrio anguillarum infection by activating complement related immune defenses, while metabolism and function related genes were up-regulated. Conclusively, a rapid and effective immune and inflammatory response can successfully defend Vibrio anguillarum infection. However, a sustained inflammatory response can lead to tissue and organ damage and cause death. Our results may provide a theoretical basis for breeding rainbow trout for disease resistance.


Asunto(s)
Enfermedades de los Peces , Oncorhynchus mykiss , Vibriosis , Vibrio , Animales , Branquias , Vibrio/fisiología , Perfilación de la Expresión Génica/veterinaria , Hígado , Intestinos
12.
Fish Shellfish Immunol ; 141: 109043, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37673387

RESUMEN

Frequently occurred bacterial diseases have seriously affected the aquaculture industry of half-smooth tongue sole (Cynoglossus semilaevis). Notably, vibriosis, with Vibrio anguillarum as one of the causative pathogens, is the most severe bacterial disease with severe inflammatory response of the host, leading to high mortality rates. In the present study, we explored the relationship between bacterial concentrations and host mortality, inflammatory reaction, and immune response in half-smooth tongue sole after infection with V. anguillarum at different concentrations (Treatment 1, 6.4 × 105 CFU/mL; Treatment 2, 6.4 × 106 CFU/mL). The mortality of Treatment 2 (77.5%) was significantly higher than that of Treatment 1 (10%), corresponding with bacterial concentrations. Although the number of deaths varies, intensive deaths were observed within 24 h post infection (hpi) in both bacterial concentration groups. Histopathological analyses revealed that fish tissues were most severely damaged at 24 or 48 hpi, and Treatment 2 was more severe than Treatment 1. A qRT-PCR-based detection method with virulence factor gene empA was established to quantify the bacterial loads in various tissues, and the bacterial loads were the highest at 24 hpi in Treatment 2, and at 48 hpi in Treatment 1. Additionally, the expression levels of complement genes (C5a, C3, C5, and C6), inflammatory factors (IL-1ß, TNF-α, and IL-10), and other immune-related genes (jak2, NF-κB1, stat3, and tlr3) were increased in various tissues after infection in both treatment groups, with most genes being most expressed at 24 or 48 hpi, and expression levels of inflammatory factors in Treatment 2 were higher than those in Treatment 1. Moreover, the expression of C5a was positively correlated with that of proinflammatory cytokines in both bacterial concentration groups. According to the results of this study, 24-48 hpi was a key node for early vibriosis detection and intervention. Compared with the low mortality of Treatment 1, the mass death of fish in Treatment 2 was suggested to be caused by uncontrolled excessive inflammatory reaction induced by the overactivation of complement system, especially C5a. We believe these results could provide theoretical basis for prevention, evaluation, and treatment of vibrio disease in tongue sole aquaculture, and lay a solid foundation for future functional analyses.

13.
Fish Shellfish Immunol ; 135: 108675, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36906048

RESUMEN

The tumor necrosis factor receptor-related factor (TRAF) family has been reported to be involved in many immune pathways, such as TNFR, TLR, NLR, and RLR in animals. However, little is known about the roles of TRAF genes in the innate immune of Argopecten scallops. In this study, we first identified five TRAF genes, including TRAF2, TRAF3, TRAF4, TRAF6 and TRAF7, but not TRAF1 and TRAF5, from both the bay scallop A. irradians (Air) and the Peruvian scallop A. purpuratus (Apu). The phylogenetic analysis showed that the TRAF genes in Argopecten scallops (AiTRAF) belong to the branch of molluscan TRAF family, which lacks TRAF1 and TRAF5. Since TRAF6 is a key bridge factor in the tumor necrosis factor superfamily and plays an important role in innate and adaptive immunity, we cloned the ORFs of the TRAF6 gene in both A. irradians and A. purpuratus, as well as in two reciprocal hybrids (Aip for the hybrid Air × Apu and Api for the hybrid Apu × Air). Differences in conformational and post-translational modification resulted from the variation in amino acid sequences may cause differences in activity among them. Analysis of conserved motifs and protein structural domains revealed that AiTRAF contains typical structural domains similar to those of other mollusks and has the same conserved motifs. Tissue expression of TRAF in Argopecten scallops challenged by Vibrio anguillarum was examined by qRT-PCR. The results showed that AiTRAF were higher in gill and hepatopancreas. When challenged by Vibrio anguillarum, the expression of AiTRAF was significantly increased compared with the control group, indicating that AiTRAF may play an important role in the immunity of scallops. In addition, the expression of TRAF was higher in Api and Aip than in Air when challenged by Vibrio anguillarum, suggesting that TRAF may have contributed to the high resistance of Api and Aip to Vibrio anguillarum. The results of this study may provide new insights into the evolution and function of TRAF genes in bivalves and ultimately benefit scallop breeding.


Asunto(s)
Pectinidae , Vibrio , Animales , Filogenia , Vibrio/fisiología , Secuencia de Aminoácidos , Pectinidae/genética
14.
Fish Shellfish Immunol ; 133: 108568, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36717065

RESUMEN

The current study was designed to examine the impacts of dietary mannan-oligosaccharides (MOS) on growth, hemato-biochemical changes, digestive-antioxidant enzyme activity, immune response, and disease resistance of milkfish (Chanos chanos) fed diets contained MOS i.e. 1g, 2g, and 3g MOS. The growth parameters were significantly influence in milkfish fed all MOS diets, whereas the feed conversion ratio (FCR) and protein efficiency ratio (PER) were significantly influence with 2g or 3g MOS diets. The total protein (TP), globulin (GB), and glucose (GLU) levels, amylase, protease, liver enzymes were found significantly high in fish fed 2g or 3g MOS diets; but, lipase, trypsin, and alkaline phosphatase (ALP) enzymes were increased significantly at 3g MOS diet. All MOS inclusion levels were significantly increased total and Lactobacillus intestinal microflora population. The oxidative enzymes activity as superoxide desmutase (SOD) and catalyze (CAT) were progressively increased with all MOS supplementation diet, but the glutathione peroxidase (GPx) and lactate dehydrogenase (LDH) content were found significantly high in fish fed 2g or 3g MOS diets. Similarly, the reduced glutathione (GSH) and glutathione reductase (GR) contents were observed significantly high level in fish fed 3g MOS diet. The phagocytic (PC) and lysozyme (LYZ) activities were found gradually increase in fish fed increasing level of MOS diets, while the respiratory burst (RB) and malondialdehyde (MDA) activities were seen significant in fish fed 2g and 3g MOS diets. The current research work confirmed that C. chanos fed diets contained 3g kg-1 MOS recorded better growth performance, digestive-antioxidant, immune response, and disease resistance.


Asunto(s)
Antioxidantes , Mananos , Animales , Antioxidantes/metabolismo , Mananos/metabolismo , Resistencia a la Enfermedad , Dieta/veterinaria , Peces , Suplementos Dietéticos , Oligosacáridos/metabolismo , Alimentación Animal/análisis
15.
Fish Shellfish Immunol ; 134: 108619, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36803778

RESUMEN

The inhibitor of nuclear factor-κB (IκB) kinase (IKK) is involved in a variety of intracellular cell signaling pathways and is an important component of the NF-κB signaling pathway. IKK genes have been suggested to play important roles in the innate immune response to pathogen infection in both vertebrates and invertebrates. However, little information is available about IKK genes in turbot (Scophthalmus maximus). In this study, six IKK genes were identified including SmIKKα, SmIKKα2, SmIKKß, SmIKKε, SmIKKγ, and SmTBK1. The IKK genes of turbot showed the highest identity and similarity with Cynoglossus semilaevis. Then, phylogenetic analysis showed that the IKK genes of turbot were most closely related to C. semilaevis. In addition, IKK genes were widely expressed in all the examined tissues. Meanwhile, the expression patterns of IKK genes were investigated by QRT-PCR after Vibrio anguillarum and Aeromonas salmonicida infection. The results showed that IKK genes had varying expression patterns in mucosal tissues after bacteria infection, indicating that they may play key roles in maintaining the integrity of the mucosal barrier. Subsequently, protein and protein interaction (PPI) network analysis showed that most proteins interacting with IKK genes were located in the NF-κB signaling pathway. Finally, the double luciferase report and overexpression experiments showed that SmIKKα/SmIKKα2/SmIKKß involved in the activation of NF-κB in turbot. In summary, our results suggested that IKK genes of turbot played important roles in the innate immune response of teleost, and provide valuable information for further study of the function of IKK genes.


Asunto(s)
Enfermedades de los Peces , Peces Planos , Infecciones Estreptocócicas , Vibriosis , Vibrio , Animales , Vibrio/fisiología , FN-kappa B/metabolismo , Regulación de la Expresión Génica , Filogenia , Proteínas de Peces/genética , Perfilación de la Expresión Génica
16.
Fish Shellfish Immunol ; 135: 108702, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36948367

RESUMEN

Vibrio bacteria are often fatal to aquatic organisms and selection of Vibrio-resistant strains is warranted for aquaculture animals. In this study, we found that hybrids between bay scallops and Peruvian scallops exhibited significantly higher resistance to Vibrio challenge, but little is available on its mechanism. Interferon induced protein 44 (IFI44), a member of the type I interferon (IFN) family, plays an important role in the IFN immune response in invertebrates, which may also participate in the resistance to Vibrio in scallops. To explore the roles of IFI44 genes in the resistance to Vibrio, they were identified and characterized in the bay scallop (designated as AiIFI44), the Peruvian scallop (designated as ApIFI44), and their reciprocal hybrids (designated as AipIFI44 and ApiIFI44, respectively). Their open reading frame (ORF) sequences were all 1434 bp, encoding 477 amino acids, but with large variations among the four genes. The AipIFI44 and ApiIFI44 exhibited higher similarity with ApIFI44 than with AiIFI44. All four genes have a TLDc structural domain with significant variations in sequences among them. Predicted differences in conformation and posttranslational modifications may lead to altered protein activity. We further demonstrated that the AiIFI44, AipIFI44 and ApiIFI44 expressed in all the tested tissues, with the highest expression in the gills and hepatopancreas. In response to Vibrio anguillarum challenge, the profile of mRNA expression of IFI44 gene differed among the bay scallops and the two hybrids. In the bay scallops, it increased at 6 h but dramatically decreased after 12-48 h. However, the mRNA expression of both AipIFI44 and ApiIFI44 decreased at 6 h but continuously increased thereafter and reached the highest value at 48 h. The results in the present study suggest the immune responds of IFI44 in scallops and it may be related to the higher resistance to Vibrio bacterial in hybrids.


Asunto(s)
Pectinidae , Vibrio , Animales , Interferones/genética , Vibrio/fisiología , ARN Mensajero , Filogenia
17.
Fish Shellfish Immunol ; 136: 108733, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37028690

RESUMEN

Amphioctopus fangsiao was a representative economic species in cephalopods, which was vulnerable to marine bacteria. Vibrio anguillarum was a highly infectious pathogen that have recently been found to infect A. fangsiao and inhibit its growth and development. There were significant differences in the immune response mechanisms between egg-protected and egg-unprotected larvae. To explore larval immunity under different egg-protecting behaviors, we infected A. fangsiao larvae with V. anguillarum for 24 h and analyzed the transcriptome data about egg-protected and egg-unprotected larvae infected with 0, 4, 12, and 24 h using weighted gene co-expression networks (WGCNA) and protein-protein interaction (PPI) networks. Network analyses revealed a series of immune response processes after infection, and identified six key modules and multiple immune-related hub genes. Meanwhile, we found that ZNF family, such as ZNF32, ZNF160, ZNF271, ZNF479, and ZNF493 might play significant roles in A. fangsiao immune response processes. We first creatively combined WGCNA and PPI network analysis to deeply explore the immune response mechanisms of A. fangsiao larvae with different egg-protecting behaviors. Our results provided further insights into the immunity of V. anguillarum infected invertebrates, and laid the foundation for exploring the immune differences among cephalopods with different egg protecting behaviors.


Asunto(s)
Octopodiformes , Vibriosis , Vibrio , Animales , Redes Reguladoras de Genes , Larva/genética , Larva/microbiología , Invertebrados/genética , Octopodiformes/genética , Inmunidad , Perfilación de la Expresión Génica/veterinaria , Vibrio/fisiología
18.
Anim Biotechnol ; 34(3): 529-537, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34559037

RESUMEN

Accurate and rapid determination of bacterial disease agents of fish is an important step for sustainable and efficient aquaculture production. In general, biochemical and molecular methods are used for pathogen detection but they are usually time-consuming and required qualified personnel. Recently spectroscopic methods are preferred in clinical and food microbiology and declared as a promising alternative method for pathogens diagnosis with many advantages. In this study, the significant spectra of three important bacterial fish pathogens (Lactococcus garvieae, Vibrio anguillarum and Yersinia ruckeri) were determined by Raman spectroscopy. The first data of the pathogens were obtained and the distinctive differences in polysaccharides, nucleic acids, fatty acids and amino acids were identified. This preliminary study aimed to be pioneer for further studies in aquaculture and veterinary microbiology toward developing an alternative method for routine identification.


Asunto(s)
Enfermedades de los Peces , Animales , Enfermedades de los Peces/diagnóstico , Enfermedades de los Peces/microbiología , Espectrometría Raman
19.
J Biol Inorg Chem ; 27(1): 133-142, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34792655

RESUMEN

Piscibactin (Pcb) is a labile siderophore widespread among Vibrionaceae. Its production is a major virulence factor of some fish pathogens such as Photobacterium damselae subsp. piscicida and Vibrio anguillarum. Although FrpA was previously suggested as the putative outer membrane transporter (OMT) for ferri-piscibactin, its role in piscibactin uptake was never demonstrated. In this work, we generated mutants of V. anguillarum defective in FrpA and analyzed their ability to use piscibactin as iron source. The results showed that inactivation of frpA completely disables piscibactin utilization, and the original phenotype could be restored by gene complementation, confirming that FrpA is the OMT that mediates ferri-Pcb uptake. Additionally, the ability of several Pcb thiazole analogues, with different configurations at positions 9, 10, and 13, to be internalized through FrpA, was evaluated measuring their ability to promote growth under iron deficiency of several indicator strains. The results showed that while those analogues with a thiazole ring maintain almost the same activity as Pcb, the maintenance of the hydroxyl group present in natural piscibactin configuration at position C-13 is crucial for Fe3+ chelation and, in consequence, for the recognition of the ferri-siderophore by the cognate OMT. All these findings allowed us to propose a Pcb analogue as a good candidate to vectorize antimicrobial compounds, through the Trojan horse strategy, to develop novel compounds against bacterial fish diseases.


Asunto(s)
Enfermedades de los Peces , Vibrio , Animales , Enfermedades de los Peces/microbiología , Proteínas de Transporte de Membrana , Sideróforos/química , Vibrio/genética
20.
Fish Shellfish Immunol ; 125: 9-16, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35477098

RESUMEN

The pattern recognition receptors (PRRs) can recognize the conserved molecular structures of pathogens to active the innate immune responses, and subsequently induce the antigen-specific adaptive immune responses for the clearance of infected pathogen. Among the PRRs, Toll-like receptors (TLRs) are the first and best characterized PRRs across all the species. Among the TLR members, TLR7 showed significant conservation across the vertebrates, with the lowest rate of evolution for its LRR domains from primates to fishes. In the current study, one TLR7 (SmTLR7) gene was captured in turbot, with a 3144 bp open reading frame (ORF), that encoding 1047 amino acid residues. Following multiple sequence comparison, SmTLR7 was found to have the highest similarity and identity both to Paralichthys olivaceus with 91.9% and 85.9%, respectively. In phylogenetic analysis, SmTLR7 was firstly clustered with Japanese flounder, and then clustered with fugu, rainbow trout, and zebrafish. In addition, SmTLR7 was widely expressed in all the examined tissues with the highest expression level in spleen, followed by skin, while the lowest expression level was detected in blood. Following both Edwardsiella tarda and Vibrio anguillarum challenge, SmTLR7 was significantly down-regulated in gill and intestine, and up-regulated in skin. Moreover, SmTLR7 was significantly up-regulated in head kidney macrophages following LPS, LTA, PGN and polyI:C stimulation, as well as showed the strongest binding ability to LPS, followed by PGN, LTA, and polyI:C in a dose-dependent manner. Finally, following RNAi of SmTLR7, MyD88 and IL-1ß were slightly up-regulated, while TRAF6 and IL-8 were significantly down-regulated. The characterization of TLR7 can expand our understanding of the PRRs in teleost fishes, and eventually aid the exploration of interactions between host and pathogen.


Asunto(s)
Enfermedades de los Peces , Peces Planos , Lenguado , Vibriosis , Vibrio , Animales , Proteínas de Peces/química , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Inmunidad Innata/genética , Lipopolisacáridos , Filogenia , Receptor Toll-Like 7/genética , Receptor Toll-Like 7/metabolismo , Vibrio/fisiología , Vibriosis/genética , Vibriosis/veterinaria , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA