Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.015
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Cell ; 78(1): 152-167.e11, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32053778

RESUMEN

Eukaryotic transcription factors (TFs) form complexes with various partner proteins to recognize their genomic target sites. Yet, how the DNA sequence determines which TF complex forms at any given site is poorly understood. Here, we demonstrate that high-throughput in vitro DNA binding assays coupled with unbiased computational analysis provide unprecedented insight into how different DNA sequences select distinct compositions and configurations of homeodomain TF complexes. Using inferred knowledge about minor groove width readout, we design targeted protein mutations that destabilize homeodomain binding both in vitro and in vivo in a complex-specific manner. By performing parallel systematic evolution of ligands by exponential enrichment sequencing (SELEX-seq), chromatin immunoprecipitation sequencing (ChIP-seq), RNA sequencing (RNA-seq), and Hi-C assays, we not only classify the majority of in vivo binding events in terms of complex composition but also infer complex-specific functions by perturbing the gene regulatory network controlled by a single complex.


Asunto(s)
ADN/química , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , ADN/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Factores de Transcripción/química , Factores de Transcripción/genética
2.
Proc Natl Acad Sci U S A ; 121(11): e2300886121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38408213

RESUMEN

Flight was a key innovation in the adaptive radiation of insects. However, it is a complex trait influenced by a large number of interacting biotic and abiotic factors, making it difficult to unravel the evolutionary drivers. We investigate flight patterns in neotropical heliconiine butterflies, well known for mimicry of their aposematic wing color patterns. We quantify the flight patterns (wing beat frequency and wing angles) of 351 individuals representing 29 heliconiine and 9 ithomiine species belonging to ten color pattern mimicry groupings. For wing beat frequency and up wing angles, we show that heliconiine species group by color pattern mimicry affiliation. Convergence of down wing angles to mimicry groupings is less pronounced, indicating that distinct components of flight are under different selection pressures and constraints. The flight characteristics of the Tiger mimicry group are particularly divergent due to convergence with distantly related ithomiine species. Predator-driven selection for mimicry also explained variation in flight among subspecies, indicating that this convergence can occur over relatively short evolutionary timescales. Our results suggest that the flight convergence is driven by aposematic signaling rather than shared habitat between comimics. We demonstrate that behavioral mimicry can occur between lineages that have separated over evolutionary timescales ranging from <0.5 to 70 My.


Asunto(s)
Mimetismo Biológico , Mariposas Diurnas , Animales , Evolución Biológica , Alas de Animales
3.
Proc Natl Acad Sci U S A ; 121(3): e2315341121, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38190519

RESUMEN

Wing dimorphism of insect vectors is a determining factor for viral long-distance dispersal and large-area epidemics. Although plant viruses affect the wing plasticity of insect vectors, the potential underlying molecular mechanisms have seldom been investigated. Here, we found that a planthopper-vectored rice virus, rice stripe virus (RSV), specifically induces a long-winged morph in male insects. The analysis of field populations demonstrated that the long-winged ratios of male insects are closely associated with RSV infection regardless of viral titers. A planthopper-specific and testis-highly expressed gene, Encounter, was fortuitously found to play a key role in the RSV-induced long-winged morph. Encounter resembles malate dehydrogenase in the sequence, but it does not have corresponding enzymatic activity. Encounter is upregulated to affect male wing dimorphism at early larval stages. Encounter is closely connected with the insulin/insulin-like growth factor signaling pathway as a downstream factor of Akt, of which the transcriptional level is activated in response to RSV infection, resulting in the elevated expression of Encounter. In addition, an RSV-derived small interfering RNA directly targets Encounter to enhance its expression. Our study reveals an unreported mechanism underlying the direct regulation by a plant virus of wing dimorphism in its insect vectors, providing the potential way for interrupting viral dispersal.


Asunto(s)
Epidemias , Virus de Plantas , Infecciones por Virus Sincitial Respiratorio , Tenuivirus , Masculino , Animales , Virus de Plantas/genética , Tenuivirus/genética , Insectos Vectores , Péptidos Similares a la Insulina
4.
Development ; 150(18)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37702007

RESUMEN

A fundamental goal of developmental biology is to understand how cell and tissue fates are specified. The imaginal discs of Drosophila are excellent model systems for addressing this paradigm as their fate can be redirected when discs regenerate after injury or when key selector genes are misregulated. Here, we show that when Polycomb expression is reduced, the wing selector gene vestigial is ectopically activated. This leads to the inappropriate formation of the Vestigial-Scalloped complex, which forces the eye to transform into a wing. We further demonstrate that disrupting this complex does not simply block wing formation or restore eye development. Instead, immunohistochemistry and high-throughput genomic analysis show that the eye-antennal disc unexpectedly undergoes hyperplastic growth with multiple domains being organized into other imaginal discs and tissues. These findings provide insight into the complex developmental landscape that tissues must navigate before adopting their final fate.


Asunto(s)
Proteínas de Drosophila , Discos Imaginales , Animales , Proteínas de Drosophila/genética , Drosophila , Genómica , Hiperplasia , Proteínas del Grupo Polycomb/genética
5.
Development ; 150(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37830145

RESUMEN

Recent work shows that the developmental potential of progenitor cells in the HH10 chick brain changes rapidly, accompanied by subtle changes in morphology. This demands increased temporal resolution for studies of the brain at this stage, necessitating precise and unbiased staging. Here, we investigated whether we could train a deep convolutional neural network to sub-stage HH10 chick brains using a small dataset of 151 expertly labelled images. By augmenting our images with biologically informed transformations and data-driven preprocessing steps, we successfully trained a classifier to sub-stage HH10 brains to 87.1% test accuracy. To determine whether our classifier could be generally applied, we re-trained it using images (269) of randomised control and experimental chick wings, and obtained similarly high test accuracy (86.1%). Saliency analyses revealed that biologically relevant features are used for classification. Our strategy enables training of image classifiers for various applications in developmental biology with limited microscopy data.


Asunto(s)
Aprendizaje Profundo , Animales , Redes Neurales de la Computación , Encéfalo , Microscopía , Alas de Animales
6.
Development ; 150(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37602496

RESUMEN

Butterfly color patterns provide visible and biodiverse phenotypic readouts of the patterning processes. Although the secreted ligand WntA has been shown to instruct the color pattern formation in butterflies, its mode of reception remains elusive. Butterfly genomes encode four homologs of the Frizzled-family of Wnt receptors. Here, we show that CRISPR mosaic knockouts of frizzled2 (fz2) phenocopy the color pattern effects of WntA loss of function in multiple nymphalids. Whereas WntA mosaic clones result in intermediate patterns of reduced size, fz2 clones are cell-autonomous, consistent with a morphogen function. Shifts in expression of WntA and fz2 in WntA crispant pupae show that they are under positive and negative feedback, respectively. Fz1 is required for Wnt-independent planar cell polarity in the wing epithelium. Fz3 and Fz4 show phenotypes consistent with Wnt competitive-antagonist functions in vein formation (Fz3 and Fz4), wing margin specification (Fz3), and color patterning in the Discalis and Marginal Band Systems (Fz4). Overall, these data show that the WntA/Frizzled2 morphogen-receptor pair forms a signaling axis that instructs butterfly color patterning and shed light on the functional diversity of insect Frizzled receptors.


Asunto(s)
Mariposas Diurnas , Pigmentación , Animales , Pigmentación/genética , Mariposas Diurnas/genética , Mariposas Diurnas/metabolismo , Transducción de Señal/genética , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Alas de Animales/metabolismo
7.
Proc Natl Acad Sci U S A ; 120(37): e2303060120, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37669385

RESUMEN

Ecological interactions can promote phenotypic diversification in sympatric species. While competition can enhance trait divergence, other ecological interactions may promote convergence in sympatric species. Within butterflies, evolutionary convergences in wing color patterns have been reported between distantly related species, especially in females of palatable species, where mimetic color patterns are promoted by predator communities shared with defended species living in sympatry. Wing color patterns are also often involved in species recognition in butterflies, and divergence in this trait has been reported in closely related species living in sympatry as a result of reproductive character displacement. Here, we investigate the effect of sympatry between species on the convergence vs. divergence of their wing color patterns in relation to phylogenetic distance, focusing on the iconic swallowtail butterflies (family Papilionidae). We developed an unsupervised machine learning-based method to estimate phenotypic distances among wing color patterns of 337 species, enabling us to finely quantify morphological diversity at the global scale among species and allowing us to compute pairwise phenotypic distances between sympatric and allopatric species pairs. We found phenotypic convergence in sympatry, stronger among distantly related species, while divergence was weaker and restricted to closely related males. The convergence was stronger among females than males, suggesting that differential selective pressures acting on the two sexes drove sexual dimorphism. Our results highlight the significant effect of ecological interactions driven by predation pressures on trait diversification in Papilionidae and provide evidence for the interaction between phylogenetic proximity and ecological interactions in sympatry, acting on macroevolutionary patterns of phenotypic diversification.


Asunto(s)
Mariposas Diurnas , Animales , Femenino , Masculino , Evolución Biológica , Filogenia , Simpatría
8.
Proc Natl Acad Sci U S A ; 120(25): e2301525120, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37307469

RESUMEN

Genetic-based methods offer environmentally friendly species-specific approaches for control of insect pests. One method, CRISPR homing gene drive that target genes essential for development, could provide very efficient and cost-effective control. While significant progress has been made in developing homing gene drives for mosquito disease vectors, little progress has been made with agricultural insect pests. Here, we report the development and evaluation of split homing drives that target the doublesex (dsx) gene in Drosophila suzukii, an invasive pest of soft-skinned fruits. The drive component, consisting of dsx single guide RNA and DsRed genes, was introduced into the female-specific exon of dsx, which is essential for function in females but not males. However, in most strains, hemizygous females were sterile and produced the male dsx transcript. With a modified homing drive that included an optimal splice acceptor site, hemizygous females from each of the four independent lines were fertile. High transmission rates of the DsRed gene (94 to 99%) were observed with a line that expressed Cas9 with two nuclear localization sequences from the D. suzukii nanos promoter. Mutant alleles of dsx with small in-frame deletions near the Cas9 cut site were not functional and thus would not provide resistance to drive. Finally, mathematical modeling showed that the strains could be used for suppression of lab cage populations of D. suzukii with repeated releases at relatively low release ratios (1:4). Our results indicate that the split CRISPR homing gene drive strains could potentially provide an effective means for control of D. suzukii populations.


Asunto(s)
Sistemas CRISPR-Cas , Tecnología de Genética Dirigida , Femenino , Animales , Frutas , Marcación de Gen , Drosophila
9.
Development ; 149(2)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35088829

RESUMEN

A long-standing view in the field of evo-devo is that insect forewings develop without any Hox gene input. The Hox gene Antennapedia (Antp), despite being expressed in the thoracic segments of insects, has no effect on wing development. This view has been obtained from studies in two main model species: Drosophila and Tribolium. Here, we show that partial loss of function of Antp resulted in reduced and malformed adult wings in Bombyx, Drosophila and Tribolium. Antp mediates wing growth in Bombyx by directly regulating the ecdysteriod biosynthesis enzyme gene (shade) in the wing tissue, which leads to local production of the growth hormone 20-hydroxyecdysone. Additional targets of Antp are wing cuticular protein genes CPG24, CPH28 and CPG9, which are essential for wing development. We propose, therefore, that insect wing development occurs in an Antp-dependent manner. This article has an associated 'The people behind the papers' interview.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Proteínas de Insectos/metabolismo , Alas de Animales/embriología , Animales , Bombyx , Drosophila , Ecdisterona/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Insectos/genética , Mutación con Pérdida de Función , Morfogénesis , Tribolium , Alas de Animales/metabolismo
10.
Bioessays ; 45(9): e2200218, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37452394

RESUMEN

Secreted signaling molecules act as morphogens to control patterning and growth in many developing tissues. Since locally produced morphogens spread to form a concentration gradient in the surrounding tissue, spreading is generally thought to be the key step in the non-autonomous actions. Here, we review recent advances in tool development to investigate morphogen function using the role of decapentaplegic (Dpp)/bone morphogenetic protein (BMP)-type ligand in the Drosophila wing disc as an example. By applying protein binder tools to distinguish between the roles of Dpp spreading and local Dpp signaling, we found that Dpp signaling in the source cells is important for wing patterning and growth but Dpp spreading from this source cells is not as strictly required as previously thought. Given recent studies showing unexpected requirements of long-range action of different morphogens, manipulating endogenous morphogen gradients by synthetic protein binder tools could shed more light on how morphogens act in developing tissues.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Tipificación del Cuerpo/genética , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica
11.
Proc Natl Acad Sci U S A ; 119(45): e2211861119, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322770

RESUMEN

Insect wings are deformable airfoils, in which deformations are mostly achieved by complicated interactions between their structural components. Due to the complexity of the wing design and technical challenges associated with testing the delicate wings, we know little about the properties of their components and how they determine wing response to flight forces. Here, we report an unusual structure from the hind-wing membrane of the beetle Pachnoda marginata. The structure, a transverse section of the claval flexion line, consists of two distinguishable layers: a bell-shaped upper layer and a straight lower layer. Our computational simulations showed that this is an effective one-way hinge, which is stiff in tension and upward bending but flexible in compression and downward bending. By systematically varying its design parameters in a computational model, we showed that the properties of the double-layer membrane hinge can be tuned over a wide range. This enabled us to develop a broad design space, which we later used for model selection. We used selected models in three distinct applications, which proved that the double-layer hinge represents a simple yet effective design strategy for controlling the mechanical response of structures using a single material and with no extra mass. The insect-inspired, one-way hinge is particularly useful for developing structures with asymmetric behavior, exhibiting different responses to the same load in two opposite directions. This multidisciplinary study not only advances our understanding of the biomechanics of complicated insect wings but also informs the design of easily tunable engineering hinges.


Asunto(s)
Escarabajos , Alas de Animales , Animales , Alas de Animales/fisiología , Insectos , Fenómenos Biomecánicos , Membranas , Vuelo Animal/fisiología , Modelos Biológicos
12.
BMC Biol ; 22(1): 98, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38679694

RESUMEN

BACKGROUND: The ability of animals to regenerate damaged tissue is a complex process that involves various cellular mechanisms. As animals age, they lose their regenerative abilities, making it essential to understand the underlying mechanisms that limit regenerative ability during aging. Drosophila melanogaster wing imaginal discs are epithelial structures that can regenerate after tissue injury. While significant research has focused on investigating regenerative responses during larval stages our comprehension of the regenerative potential of pupal wings and the underlying mechanisms contributing to the decline of regenerative responses remains limited. RESULTS: Here, we explore the temporal dynamics during pupal development of the proliferative response triggered by the induction of cell death, a typical regenerative response. Our results indicate that the apoptosis-induced proliferative response can continue until 34 h after puparium formation (APF), beyond this point cell death alone is not sufficient to induce a regenerative response. Under normal circumstances, cell proliferation ceases around 24 h APF. Interestingly, the failure of reinitiating the cell cycle beyond this time point is not attributed to an incapacity to activate the JNK pathway. Instead, our results suggest that the function of the ecdysone-responsive transcription factor E93 is involved in limiting the apoptosis-induced proliferative response during pupal development. CONCLUSIONS: Our study shows that apoptosis can prolong the proliferative period of cells in the wing during pupal development as late as 34 h APF, at least 10 h longer than during normal development. After this time point, the regenerative response is diminished, a process mediated in part by the ecdysone-responsive transcription factor E93.


Asunto(s)
Apoptosis , Proliferación Celular , Proteínas de Drosophila , Drosophila melanogaster , Pupa , Regeneración , Factores de Transcripción , Alas de Animales , Animales , Alas de Animales/crecimiento & desarrollo , Alas de Animales/fisiología , Drosophila melanogaster/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Pupa/crecimiento & desarrollo , Pupa/fisiología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Regeneración/fisiología
13.
Genesis ; 62(1): e23561, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37830148

RESUMEN

Hox genes encode transcription factors that play an important role in establishing the basic body plan of animals. In Drosophila, Antennapedia is one of the five genes that make up the Antennapedia complex (ANT-C). Antennapedia determines the identity of the second thoracic segment, known as the mesothorax. Misexpression of Antennapedia at different developmental stages changes the identity of the mesothorax, including the muscles, nervous system, and cuticle. In Drosophila, Antennapedia has two distinct promoters highly regulated throughout development by several transcription factors. Antennapedia proteins are found with other transcription factors in different ANTENNAPEDIA transcriptional complexes to regulate multiple subsets of target genes. In this review, we describe the different mechanisms that regulate the expression and function of Antennapedia and the role of this Hox gene in the development of Drosophila.


Asunto(s)
Proteínas de Drosophila , Factores de Transcripción , Animales , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/genética
14.
Dev Biol ; 498: 61-76, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37015290

RESUMEN

Cell division and cytoskeleton organization are fundamental processes participating in the development of Drosophila imaginal discs. In this manuscript we describe the phenotypes in the adult fly wing generated by knockdowns of 85% of Drosophila genes encoding proteins likely related to the regulation of cell division and cytoskeleton organization. We also compile a molecular classification of these proteins into classes that describe their expected or known main biochemical characteristics, as well as mRNA expression in the wing disc and likely protein subcellular localization for a subset of these genes. Finally, we analyze in more detail one protein family of cytoskeleton genes (Arp2/3 complex), and define the consequences of interfering with cell division for wing growth and patterning.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Interferencia de ARN , Regulación del Desarrollo de la Expresión Génica/genética , División Celular/genética , Citoesqueleto/genética , Citoesqueleto/metabolismo , Alas de Animales , Drosophila melanogaster/metabolismo
15.
Development ; 148(20)2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34532737

RESUMEN

Cell-cell junctions are dynamic structures that maintain cell cohesion and shape in epithelial tissues. During development, junctions undergo extensive rearrangements to drive the epithelial remodelling required for morphogenesis. This is particularly evident during axis elongation, where neighbour exchanges, cell-cell rearrangements and oriented cell divisions lead to large-scale alterations in tissue shape. Polarised vesicle trafficking of junctional components by the exocyst complex has been proposed to promote junctional rearrangements during epithelial remodelling, but the receptors that allow exocyst docking to the target membranes remain poorly understood. Here, we show that the adherens junction component Ras Association domain family 8 (RASSF8) is required for the epithelial re-ordering that occurs during Drosophila pupal wing proximo-distal elongation. We identify the exocyst component Sec15 as a RASSF8 interactor. Loss of RASSF8 elicits cytoplasmic accumulation of Sec15 and Rab11-containing vesicles. These vesicles also contain the nectin-like homophilic adhesion molecule Echinoid, the depletion of which phenocopies the wing elongation and epithelial packing defects observed in RASSF8 mutants. Thus, our results suggest that RASSF8 promotes exocyst-dependent docking of Echinoid-containing vesicles during morphogenesis.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Epitelio/metabolismo , Proteínas Represoras/metabolismo , Alas de Animales/metabolismo , Uniones Adherentes/metabolismo , Animales , Proteínas Portadoras , Citoplasma/metabolismo , Morfogénesis/fisiología , Pupa/metabolismo
16.
Proc Biol Sci ; 291(2025): 20240317, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38920055

RESUMEN

An insect's wingbeat frequency is a critical determinant of its flight performance and varies by multiple orders of magnitude across Insecta. Despite potential energetic benefits for an insect that matches its wingbeat frequency to its resonant frequency, recent work has shown that moths may operate off their resonant peak. We hypothesized that across species, wingbeat frequency scales with resonance frequency to maintain favourable energetics, but with an offset in species that use frequency modulation as a means of flight control. The moth superfamily Bombycoidea is ideal for testing this hypothesis because their wingbeat frequencies vary across species by an order of magnitude, despite similar morphology and actuation. We used materials testing, high-speed videography and a model of resonant aerodynamics to determine how components of an insect's flight apparatus (stiffness, wing inertia, muscle strain and aerodynamics) vary with wingbeat frequency. We find that the resonant frequency of a moth correlates with wingbeat frequency, but resonance curve shape (described by the Weis-Fogh number) and peak location vary within the clade in a way that corresponds to frequency-dependent biomechanical demands. Our results demonstrate that a suite of adaptations in muscle, exoskeleton and wing drive variation in resonant mechanics, reflecting potential constraints on matching wingbeat and resonant frequencies.


Asunto(s)
Vuelo Animal , Mariposas Nocturnas , Alas de Animales , Animales , Alas de Animales/fisiología , Mariposas Nocturnas/fisiología , Fenómenos Biomecánicos
17.
Proc Biol Sci ; 291(2023): 20240172, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38772418

RESUMEN

Tests for the role of species' relative dispersal abilities in ecological and biogeographical models rely heavily on dispersal proxies, which are seldom substantiated by empirical measures of actual dispersal. This is exemplified by tests of dispersal-range size relationships and by metacommunity research that often features invertebrates, particularly freshwater insects. Using rare and unique empirical data on dispersal abilities of caddisflies, we tested whether actual dispersal abilities were associated with commonly used dispersal proxies (metrics of wing size and shape; expert opinion). Across 59 species in 12 families, wing morphology was not associated with actual dispersal. Within some families, individual wing metrics captured some dispersal differences among species, although useful metrics varied among families and predictive power was typically low. Dispersal abilities assigned by experts were either no better than random or actually poorer than random. Our results cast considerable doubt on research underpinned by dispersal proxies and scrutiny of previous research results may be warranted. Greater progress may lie in employing innovative survey and experimental design to measure actual dispersal in the field.


Asunto(s)
Distribución Animal , Insectos , Alas de Animales , Animales , Alas de Animales/anatomía & histología , Alas de Animales/fisiología , Insectos/fisiología
18.
Proc Biol Sci ; 291(2024): 20240311, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38864337

RESUMEN

Halteres are multifunctional mechanosensory organs unique to the true flies (Diptera). A set of reduced hindwings, the halteres beat at the same frequency as the lift-generating forewings and sense inertial forces via mechanosensory campaniform sensilla. Though haltere ablation makes stable flight impossible, the specific role of wing-synchronous input has not been established. Using small iron filings attached to the halteres of tethered flies and an alternating electromagnetic field, we experimentally decoupled the wings and halteres of flying Drosophila and observed the resulting changes in wingbeat amplitude and head orientation. We find that asynchronous haltere input results in fast amplitude changes in the wing (hitches), but does not appreciably move the head. In multi-modal experiments, we find that wing and gaze optomotor responses are disrupted differently by asynchronous input. These effects of wing-asynchronous haltere input suggest that specific sensory information is necessary for maintaining wing amplitude stability and adaptive gaze control.


Asunto(s)
Drosophila melanogaster , Vuelo Animal , Alas de Animales , Animales , Alas de Animales/fisiología , Alas de Animales/anatomía & histología , Drosophila melanogaster/fisiología , Cabeza/fisiología , Cabeza/anatomía & histología , Mecanorreceptores/fisiología , Movimientos de la Cabeza/fisiología , Sensilos/fisiología , Fenómenos Biomecánicos
19.
J Evol Biol ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39044333

RESUMEN

Prey often rely on multiple defences against predators, such as flight speed, attack deflection from vital body parts, or unpleasant taste, but our understanding on how often and why they are co-exhibited remains limited. Eudaminae skipper butterflies use fast flight and mechanical defences (hindwing tails), but whether they use other defences like unpalatability (consumption deterrence), and how these defences interact, has not been assessed. We tested the palatability of 12 abundant Eudaminae species in Peru, using training and feeding experiments with domestic chicks. Further, we approximated the difficulty of capture explained by flight speed and quantified by wing loading. We performed phylogenetic regressions to find any association between multiple defences, body size, and habitat preference. We found a broad range of palatability in Eudaminae, within and among species. Contrary to current understanding, palatability was negatively correlated with wing loading, suggesting that faster butterflies tend to have lower palatability. The relative length of hind wing tails did not explain the level of butterfly palatability, showing that attack deflection and consumption deterrence are not mutually exclusive. Habitat preference (open or forested environments) did not explain the level of palatability either, although butterflies with high wing loading tended to occupy semi-closed or closed habitats. Finally, the level of unpalatability in Eudaminae is size dependent. Larger butterflies are less palatable, perhaps because of higher detectability/preference by predators. Altogether, our findings shed light on the contexts favouring the prevalence of single vs. multiple defensive strategies in prey.

20.
J Evol Biol ; 37(6): 717-731, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38757509

RESUMEN

Phenotypic plasticity helps animals to buffer the effects of increasing thermal and nutritional stress created by climate change. Plastic responses to single and combined stressors can vary among genetically diverged populations. However, less is known about how plasticity in response to combined stress varies among individuals within a population or whether such variation changes across life-history traits. This is important because individual variation within populations shapes population-level responses to environmental change. Here, we used isogenic lines of Drosophila melanogaster to assess the plasticity of egg-to-adult viability and sex-specific body size for combinations of 2 temperatures (25 °C or 28 °C) and 3 diets (standard diet, low caloric diet, or low protein:carbohydrate ratio diet). Our results reveal substantial within-population genetic variation in plasticity for egg-to-adult viability and wing size in response to combined thermal-nutritional stress. This genetic variation in plasticity was a result of cross-environment genetic correlations that were often < 1 for both traits, as well as changes in the expression of genetic variation across environments for egg-to-adult viability. Cross-sex genetic correlations for body size were weaker when the sexes were reared in different conditions, suggesting that the genetic basis of traits may change with the environment. Furthermore, our results suggest that plasticity in egg-to-adult viability is genetically independent from plasticity in body size. Importantly, plasticity in response to diet and temperature individually differed from plastic shifts in response to diet and temperature in combination. By quantifying plasticity and the expression of genetic variance in response to combined stress across traits, our study reveals the complexity of animal responses to environmental change, and the need for a more nuanced understanding of the potential for populations to adapt to ongoing climate change.


Asunto(s)
Drosophila melanogaster , Animales , Femenino , Masculino , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Estrés Fisiológico , Tamaño Corporal , Cambio Climático , Variación Genética , Dieta , Temperatura , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA