Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Eur J Oral Sci ; 131(5-6): e12951, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37641165

RESUMEN

The aim of this study was to evaluate load-bearing capacity and wear performance of experimental short fiber-reinforced composite (SFRC) and conventional lithium-disilicate CAD/CAM fabricated fixed partial dentures (FPDs). Two groups (n = 12/group) of three-unit CAD/CAM fabricated posterior FPDs were made. The first group used experimental SFRC blocks, and the second group fabricated from lithium-disilicate (IPS e.max CAD). All FPDs were luted on a zirconia testing jig with dual-curing resin cement. Half of FPDs per group were quasi-statically loaded until fracture. The other half experienced cyclic fatigue aging (100.000 cycles, Fmax = 500 N) before loading quasi-statically until fracture. Fracture mode was examined using SEM. Wear test was performed using 15,000 loading cycles. Both material type and aging had a significant effect on the load-bearing capacity of FPDs. Experimental SFRC CAD without fatigue aging had significantly the highest load-bearing capacity (2096 ± 149N). Cyclic fatigue aging decreased the load-bearing capacity of the SFRC group (1709 ± 188N) but increased it for the lithium-disilicate group (1546 ± 155N). Wear depth values of SFRC CAD (29.3µm) were significantly lower compared to lithium-disilicate (54.2µm). Experimental SFRC CAD demonstrated the highest load-bearing capacity before and after cyclic fatigue aging, and superior wear behavior compared to the control material.


Asunto(s)
Cerámica , Litio , Porcelana Dental , Soporte de Peso , Diseño Asistido por Computadora , Dentadura Parcial Fija , Ensayo de Materiales , Análisis del Estrés Dental , Fracaso de la Restauración Dental
2.
Sensors (Basel) ; 23(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37050462

RESUMEN

The abnormal wear of a rolling element bearing caused by early failures, such as pitting and spalling, will deteriorate the running state and reduce the life. This paper demonstrates the importance of oil debris monitoring and its effective feature extraction for bearing health assessment. In this paper, a rolling bearing-rotor test rig with forced lubrication is set up and the nonferrous contaminants with higher hardness were introduced artificially to accelerate the occurrence of pitting and spalling. The early failure and abnormal wear of rolling bearings cannot be effectively detected only through the vibration signal; the temperature and oil debris monitoring data are also collected synchronously. Two features regarding the ferrous particle size distribution are extracted and fused with vibration based-features to form a feature set. The sensitive features are extracted from the features set using the Neighborhood Component Analysis method to avoid feature redundancy. Finally, the importance of the oil debris based-features for the diagnosis of abnormal bearing wear is analyzed with different machine learning algorithms. Taking SVM classifier as an example, the experiment results show that the introduction of oil debris based-features increases the diagnostic accuracy by 15.7%.

3.
Philos Trans A Math Phys Eng Sci ; 380(2232): 20210341, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-35909362

RESUMEN

Mechanical transformation of rough diamonds into brilliant ones is usually achieved by polishing using microsized abrasive diamond particles. It is shown that in addition to formation of periodic pattern of 'partial' Hertzian cone cracks on the diamond surface, nano-sized domains (50-150 nm in diameter) of crumbled material are observed. Because these domains are located in the centres of the regions (250-500 nm in diameter) partially surrounded by the Hertzian cone cracks, where the stresses are close to the stress field of hydrostatic compression, the material removal cannot be explained by creation of tensile or shear cracks. It is argued that the creation of these domains of crumbled material is due to adhesive interactions between sliding diamond particles and the diamond surface. Employing a two-term law of friction, the scheme of ultimate equilibrium between the particle and the surface is presented. The distributions of contact stresses are calculated for two approaches: (i) the extended Johnson-Kendall-Roberts model and (ii) the 'soft' model of adhesive contact. Thus, adhesion between the sliding diamond particle and the surface leads to creation of periodic pattern of the crumbling domains with the steps 500-1000 nm and adhesive tearing out of the material from the domains. This article is part of the theme issue 'Nanocracks in nature and industry'.

4.
J Therm Spray Technol ; 31(1-2): 315-328, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37520909

RESUMEN

Twin wire arc is a commonly used thermal spray technology for application of steel coatings to cast iron components. Hardness and adhesion strength are critical properties of such coatings, and significant research is available reporting these properties. However, the lamellar structure of the coatings and residual stresses induced during the coating process leads to significantly different behavior in bending applications than in purely tensile applications which are evaluated by the standard adhesion test. In addition, microstructural features that are controlled by certain process parameters during deposition of the coating can have a significant effect on these properties. This work relates the hardness, adhesion strength, and wear resistance to the coating microstructure and assesses the related bending strength and failure mode. Comparisons between bend tests and pull-off adhesion tests show significant differences to consider when designing a twin wire arc coating.

5.
Tribol Lett ; 72(2): 37, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38465257

RESUMEN

Surface roughness is a key factor when it comes to friction and wear, as well as to other physical properties. These phenomena are controlled by mechanisms acting at small scales, in which the topography of apparently flat surfaces is revealed. Roughness in natural surfaces has been reported to conform to self-affine statistics in a wide variety of settings (ranging from earthquake physics to micro-electro-mechanical devices), meaning that the height profile can be described using a spectrum where the amplitude is proportional to its wavelength raised to a constant power, which is related to a statistical parameter named Hurst exponent. We analyze the roughness evolution in atomistic surfaces during molecular dynamics simulations of wear. Both pairs of initially flat and initially rough surfaces in contact are worn by a third body formed by particles trapped between them during relative sliding. During the first sliding stages, the particles trapped between the first bodies scratch the surfaces. Once the former becomes coated with atoms from the latter, the wear process slows down and becomes "adhesive like." The initial particle sizes are consistent with the minimum size to be expected for the debris, but tend to grow by material removal from the surfaces and to agglomerate. We show that, for the particular configurations under consideration, the surface roughness seems to converge to a steady state characterized by Hurst exponent close to 0.8, independently of the initial conditions. Supplementary Information: The online version contains supplementary material available at 10.1007/s11249-024-01833-9.

6.
Materials (Basel) ; 17(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38730901

RESUMEN

This paper presents the results of research conducted in the field of the technology of surface hardening of castings from unalloyed and low-alloy nodular cast iron using the laser remelting method. The range of studies included macro- and microhardness measurements using Rockwell and Vickers methods as well as metallographic microscopic examinations using a scanning electron microscope. Moreover, abrasive wear resistance tests were performed using the pin-on-disk method in the friction pair of nodular cast iron-SiC abrasive paper and the reciprocating method in the friction pair of nodular cast iron-unalloyed steel. Analysis of the test results shows that the casting surface layer remelting by laser for unalloyed nodular cast iron results in a greater improvement in its resistance to abrasive wear in the metal-mineral system, as compared to low-alloy cast iron. Additionally, carrying out the laser hardening treatment of the surface layer made of the tested grades of nodular cast iron is justified only if the tribological system of the cooperating working parts and allowable dimensional changes during their operation are known.

7.
Materials (Basel) ; 17(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38730907

RESUMEN

Martensitic low-alloy steels are widely used in machine construction. Due to their declared weldability, arc welding is most often used to join elements made of this type of steel. However, the high temperature associated with welding causes unfavourable changes in the microstructure, resulting in reduced abrasion resistance. Therefore, it is important to know the tribological properties of the welded joint. This article presents the results of a study on the abrasion wear resistance of a welded joint of an abrasion-resistant steel. This study tested a welded joint of an abrasive-resistant steel produced by the arc welding method. Wear testing of the welded joint was carried out under laboratory conditions by the ball-cratering method in the presence of abrasive slurry on the cross-section of the welded joint. Based on the test results, the change in the abrasive wear rate of the material as a function of the distance from the welded joint axis was determined. It was also found that the thermal processes accompanying welding caused structural changes that increased the wear rate index value. Adverse changes in the tribological properties of a welded material persist up to a distance of approx. 20 mm from the weld centre.

8.
Materials (Basel) ; 17(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38930218

RESUMEN

This article presents the effect of the conditions of abrasive compounds on the wear of samples made by different methods. The 28MnB5 steel was used, which is intended for agricultural components, to which two arc and laser coatings were applied. The study included the analysis of microstructure, microhardness, roughness, and tribological experiments on a dedicated stand. The arc coating was found to significantly improve the tribological properties compared to the samples without the coating. Varied wear results were obtained for the laser coating depending on the parameters of the abrasive compound. Studies of the surface roughness of the samples showed that the concentration and pH of the abrasives have a significant effect on the changes in the surface parameters after the tribological tests. The results of the tribological experiments indicated that wear resistance for some of the abrasive mass conditions was improved by the application of heat-applied coatings. In addition, it was found that the power consumption on the stand was the highest for abrasive mass conditions of a 10% moisture content and a pH of 10. For these test conditions, the mass loss was four times higher than for the parameter with W0% and pH7. The energy consumption of the stand was 60 kWh lower for this variant than for the parameter with W10% and pH10. The results of the study have important practical applications that can help in the selection of materials for agricultural machinery components, depending on the abrasive mass conditions.

9.
Materials (Basel) ; 17(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612012

RESUMEN

Ni60-WC coatings with different WC contents on the bucket tooth substrates were pre- pared using laser cladding technology. Their abrasive wear properties were assessed using the dry sand rubber wheel test system. The substrate and the hard-facing layer were tested for comparison. The results showed that the hardness of the Ni60-WC coatings increased with the increase in WC content. The wear resistance of the bucket tooth substrate was greatly improved by hard-facing and laser cladding Ni60-WC coatings. The wear rate of the hard-facing layer was reduced to 1/6 of that of the tooth substrate. The wear rate of the laser cladding coatings with 20-40 wt.% WC was similar to that of the hard-facing layer. It is worth mentioning that the wear rate of the coatings with 60-80 wt.% WC was only 1/4 of that of the hard-facing layer. Micro-cutting with surface plastic deformation was the main wear mechanism of the substrate to form narrow and deep furrows. The wear mechanism of the hard-facing layer was mainly plastic deformation with a wide groove, and the surface cracks promoted the removal of the material. The removal of the binder phase caused by micro-cutting was the main wear mechanism of the laser cladding Ni60-WC coatings. However, the hard phase of WC hinders micro-cutting and plastic deformation, which improves the wear resistance of the coating.

10.
Materials (Basel) ; 17(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38930254

RESUMEN

Microstructural heterogeneities of an ASTM A128 grade C steel subjected to heat treatments and their effect on abrasive wear behavior were investigated. The heat-treatment process involved different austenization times at 1050 °C and quenching media. To characterize the effects of heat treatment on the material's microstructure and mechanical behavior, two microscopy techniques were used: optical microscopy (OM), and scanning electron microscopy (SEM). The chemical composition of the material was obtained using X-ray fluorescence (XRF) optical emission spectrometry. The variation in carbide composition was evaluated using X-ray Energy Dispersive Spectroscopy (EDS). To characterize the mechanical behavior of the steel, hardness measurements and abrasive wear tests were performed after homogenization annealing and quenching treatments. The results showed that the heat-treated samples developed a heterogeneous microstructure, with the presence of austenitic grains and Martensite around the surface of the samples induced by decarburization in both the protected and unprotected specimens. The specimens with lower decarburization presented less formation of Martensite and precipitated carbides, resulting in lower hardness values and higher abrasion resistance (solution treatment at 1080 °C for 1 h + sand protection + brine quenching).

11.
Materials (Basel) ; 17(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38473693

RESUMEN

Medium-alloy ductile iron with a SiMo ferritic matrix has very good heat resistance. The addition of chromium and aluminum also increases this resistance. This article presents the impact of chromium and aluminum on the structure of SiMo cast iron, especially their impact on the deformation of the spherical graphite precipitates and the formation of M6C and M3C2 carbide phases. These carbides are formed in a ferritic matrix or at the grain boundaries, resulting in increased hardness and a drastic reduction in impact strength. The article presents the influence of heat treatment on the material's microstructure and resistance to abrasive wear. Chromium and aluminum additions can also indirectly reduce the abrasive wear resistance of SiMo cast iron. The presented research shows the possibility of doubling the abrasive wear resistance of SiMo cast iron.

12.
Materials (Basel) ; 17(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39063752

RESUMEN

This article presents the results of abrasion wear resistance tests of wear-resistant steel and surfacing under laboratory conditions and natural operation. Abrasion wear resistance determined on the basis of the study by determining geometrical characteristics of the alloying additives using computer image analysis methods, as well as examining the changes occurring on the surface of the workpieces and their wear intensity. Based on the results obtained from laboratory tests, it was noted that AR steel exhibited 14 times greater wear than the padding weld. This wear is affected by alloy additives, which, for the padding weld, are chromium additives. The microstructure image shows that soil mass had a destructive effect mainly on the matrix of the material, whereas in the areas with high concentrations of chromium precipitates, this effect was significantly weaker. The operational test results showed that within the area of the tine subjected to hardfacing, the material loss was lower than that for the same area of the tine in the as-delivered state. For the hardfaced tine, a 7% loss of volume was noted in relation to the operating part before testing and following the friction process. However, for the operating part in the as-delivered state, this difference amounted to 12%.

13.
Materials (Basel) ; 17(15)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39124406

RESUMEN

In this paper, enhancing the tribological characteristics of novel cast metallic materials-hybrid multi-component cast irons-by applying a strengthening heat treatment is described. The experimental materials were the cast alloys of a nominal composition (5 wt.% W, 5 wt.% Mo, 5 wt.% V, 10 wt.% Cr, 2.5 wt.% Ti, Fe is a balance) supplemented with 0.3-1.1 wt.% C and 1.5-2.5 wt.% B (total of nine alloys). The heat treatment was oil-quenching followed by 200 °C tempering. The quench temperature (QT) varied in the range of 900-1200 °C, with a step of 50 °C (with a 2-h holding at QT). The correlation of the QT with microstructure and properties was estimated using microstructure/worn surface characterization, differential scanning calorimetry, hardness measurement, and three-body-abrasive wear testing (using Al2O3 particles). The as-cast alloys had a multi-phase structure consisting of primary and/or eutectic borocarbide M2(B,C)5, carboborides M(C,B), M7(C,B)3, M3(C,B), and the matrix (ferrite, martensite, pearlite/bainite) in different combinations and volume fractions. Generally, the increase in the quenching temperature resulted in a gradual increase in hardness (maximally to 66-67 HRC) and a decrease in the wear rate in most alloys. This was due to the change in the phase-structure state of the alloys under quenching, namely, the secondary carboboride precipitation, and replacing ferrite and pearlite/bainite with martensite. The wear rate was found to be inversely proportional to bulk hardness. The maximum wear resistance was attributed to QT = 1150-1200 °C, when the wear rate of the alloys was lowered by three to six times as compared to the as-cast state. With the QT increase, the difference in the wear rate of the alloys decreased by three times. The highest abrasive resistance was attributed to the alloys with 1.1 wt.% C, which had a 2.36-3.20 times lower wear rate as compared with that of the reference alloy (13 wt.% Cr cast iron, hardness of 66 HRC). The effects of carbon and boron on hardness and wear behavior are analyzed using the regression models developed according to the factorial design procedure. The wear mechanisms are discussed based on worn surface characterization.

14.
Materials (Basel) ; 17(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38399046

RESUMEN

The rapidly developing mining industry poses the urgent problem of increasing the energy efficiency of the operation of basic equipment, such as semi-autogenous grinding (SAG) mills. For this purpose, a large number of studies have been carried out on the establishment of optimal operating parameters of the mill, the development of the design of lifters, the rational selection of their materials, etc. However, the dependence of operating parameters on the properties of the ore, the design of the linings and the wear of lifters has not been sufficiently studied. This work analyzes the process of grinding rock in SAG mill and the wear of lifters. The discrete element method (DEM) was used to simulate the grinding of apatite-nepheline ore in a mill using different types of linings and determining the process parameters. It was found that the liners operating in cascade mode were subjected to impact-abrasive wear, while the liners with the cascade mode of operation were subjected predominantly to abrasive wear. At the same time, the results showed an average 40-50% reduction in linear wear. On the basis of modelling results, the service life of lifters was calculated. It is concluded that the Archard model makes it possible to reproduce with sufficient accuracy the wear processes occurring in the mills, taking into account the physical and mechanical properties of the specified materials. The control system design for the grinding process for SAG mills with the use of modern variable frequency drives (VFD) was developed. With the use of the proposed approach, the model predictive control (MPC) was developed to provide recommendations for controlling the optimum speed of the mill drum rotation.

15.
Biomimetics (Basel) ; 8(2)2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37218787

RESUMEN

High wear rates during the tillage process often result in significant financial losses and wasted farming seasons. In this paper, a bionic design was used to reduce tillage wear. Inspired by wear-resistant animals with ribbed structures, the bionic ribbed sweep (BRS) was designed by combining a ribbed unit with a conventional sweep (CS). BRSs with different parameters (width φ, height h, angle θ, and interval λ) were simulated and optimized using the DEM and RSM methods at a working depth of 60 mm to evaluate the magnitude and trends of three responses: tillage resistance (TR), number of contacts between the sweep and soil particles (CNSP), and Archard wear value (AW). The results showed that a protective layer could be created on the surface of the sweep with a ribbed structure to reduce abrasive wear. Analysis of variance proved that factors φ, θ, and λ had significant effects on AW, CNSP, and TR, while factor h was insignificant. An optimal solution was obtained using the desirability method, including 8.88 mm φ, 1.05 mm h, 3.01 mm λ, and 34.46° θ. Wear tests and simulations showed that wear loss could be effectively reduced at different speeds by the optimized BRS. It was found to be feasible to create a protective layer to reduce partial wear by optimizing the parameters of the ribbed unit.

16.
Materials (Basel) ; 16(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37109938

RESUMEN

Since it is well known in the literature that transition metals can form extremely hard carbides and effectively strengthen a material's matrix, recently, some of them, such as V, Nb, Cr, Mo, and W, have been simultaneously added to cast iron. In addition, it is common to add Co to cast iron to strengthen the material's matrix. However, the wear resistance of cast iron can also be considerably affected by the addition of C, which is rarely discussed in the literature by the experts. Therefore, the effect of C content (1.0; 1.5; 2.0 wt.%) on the abrasive wear behavior of 5 wt.% V/Nb, Cr, Mo, W, and Co alloys was investigated in this study. An evaluation was conducted using a rubber wheel abrasion testing machine in accordance with ASTM G65 with silica sand (1100 HV; 300 µm) as abrasive particles. The results show that plural carbides (MC, M2C, and M7C3) precipitated on the microstructure of the material, which is not unlike the behavior of other types of carbides as the quantity of C increases. The hardness and wear resistance properties of 5V-5Cr-5Mo-5W-5Co-Fe and 5Nb-5Cr-5Mo-5W-5Co-Fe multicomponent cast alloys increased as the quantity of C increased. However, we observed no significant difference in the hardness between the two materials with the same C additions, while 5Nb presented better wear resistance properties compared to the 5V sample due to the larger size of NbC compared to VC. Therefore, it can be determined that, in this study, the size of the carbide plays a more important role than its volume fraction and hardness.

17.
Materials (Basel) ; 16(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37687529

RESUMEN

Commonly used tool materials for machining wood-based materials are WC-Co carbides. Although they have been known for a long time, there is still much development in the field of sintered tool materials, especially WC-Co carbides and superhard materials. The use of new manufacturing methods (such as FAST-field-assisted sintering technology), which use pulses of electric current for heating, can improve the properties of the materials used for cutting tools, thereby increasing the cost-effectiveness of machining. The ability to increase tool life without the downtime associated with tool wear allows significant cost savings, particularly in mass production. This paper presents the results of a study of the effect of grain size and cobalt content of carbide tool sinters on the tribological properties of the materials studied. The powders used for consolidation were characterised by irregular shape and formed agglomerates of different sizes. Tribological tests were carried out using the T-01 (ball-on-disc) method. In order to determine the wear kinetics, the entire friction path was divided into 15 cycles of 200 m and the weight loss was measured after each stage. In order to determine the mechanism and intensity of wear of the tested materials under technically dry friction conditions, the surface of the tested sinters was observed before the test and after 5, 10, and 15 cycles. The conclusions of the study indicate that the predominant effect of surface cooperation at the friction node is abrasion due to the material chipping that occurs during the process. The results confirm the influence of sintered grain size and cobalt content on durability. In the context of the application of the materials in question for cutting tools, it can be pointed out that sintered WC(0.4)_4 has the highest potential for use in the manufacture of cutting tools.

18.
J Appl Biomater Funct Mater ; 21: 22808000231193524, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37776080

RESUMEN

OBJECTIVE: Wear and surface hardness of resin composites are of relevance from the clinical standpoint. With the incorporation of novel filler system, more studies need to be performed to investigate newly marketed resin composites. The objective of this study was to investigate the abrasive wear and surface hardness of dental restorative with different filler types. METHODS: Nanohybrid filled Harmonize (HM) and Tetric N-Ceram (TNC), microhybrid filled Filtek Z250 (Z250), nanofilled Filtek Z350 (Z350) were included in the study. Twelve cylindrical resin composites specimens with 10 mm in diameter and 6 mm in thickness were prepared for abrasive wear test. Eight hundred cycles under 17 kg load were conducted for final wear by CW3-1 wear machine. The specimen was cleaned with an ultrasonic unit for 3 min followed with drying procedure. After measurement of weight loss and the density of specimens, the specimens were kept for measurement of surface hardness. Surface hardness was measured using a micro-hardness tester with a Vickers diamond indenter after polishing. Three specimens of each material were observed by scanning electron microscopy (SEM) after the abrasion to evaluate the morphology of the surface. Data were analyzed using one-way analysis of variance (ANOVA), followed by Tukey HSD test (α = .05). RESULTS: Z250 performed the least volume wear loss (41.1 ± 2.1 mm3), as well as the hardest value (102.7 ± 2.9 HV). There was no significant difference with the volume wear loss (p = 1.000) and surface hardness (p = 0.874) of HM and TNC. SEM images of nanohybrid filled HM and TNC represented smoother surface compared with other types of resin composites. CONCLUSIONS: Microhybrid Z250 showed the highest wear resistance and surface hardness, nanofilled and nanohybrid resin composites may still face the insufficient of wear and surface hardness quality.

19.
Polymers (Basel) ; 15(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37112004

RESUMEN

Pressure has a significant effect on rubber seal performance in the abrasive environments of drilling. The micro-clastic rocks intruding into the seal interface are prone to fracture, which will change the wear process and mechanism, but this process is not yet known at present. To explore this issue, abrasive wear tests were carried out to compare the failure characteristics of the particles and the variation wear process under high/low pressures. The results show that non-round particles are prone to fracture under different pressures, resulting in different damage patterns and wear loss on the rubber surface. A single particle force model was established at the soft rubber-hard metal interface. Three typical breakage types of particles were analyzed, including ground, partially fractured, and crushed. At high load, more particles were crushed, while at low load, shear failure was more likely to occur at the edges of particles. These different particle fracture characteristics not only change the particle size, but also the state of motion and thus the subsequent friction and wear processes. Therefore, the tribological behavior and wear mechanism of abrasive wear are different at high pressure and low pressure. Higher pressure reduces the invasion of the abrasive particles, but also intensifies the tearing and wear of the rubber. However, no significant differences in damage were found for steel counterpart throughout the wear process under high/low load tests. These results are critical to understanding the abrasive wear of rubber seals in drilling engineering.

20.
Materials (Basel) ; 16(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37959600

RESUMEN

To explore the Co/Cr ratio impact on the high-velocity oxygen fuel (HVOF)-sprayed WC-Co-Cr coatings microstructure and performances, three kinds of WC-Co-Cr coatings, namely WC-4Co-10Cr, WC-7Co-7Cr, and WC-10Co-4Cr, were prepared by using a high-velocity oxygen fuel (HVOF) spraying process. The three coatings' phase composition, microstructure, basic mechanical properties, abrasive wear, and corrosion resistance were investigated. The results show that all three WC-Co-Cr coatings comprise the main phase WC, minor W2C, and amorphous W-Co-Cr phase, besides the WC-4Co-10Cr coating containing a small amount of CrxCy phase. In addition, WC-7Co-7Cr coating exhibited the highest hardness and abrasive wear resistance, followed by WC-10Co-4Cr and WC-4Co-10Cr coatings. The corrosion resistance as a hierarchy was found to be WC-10Co-4Cr > WC-7Co-7Cr > WC-4Co-10Cr.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA