Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
NMR Biomed ; : e5198, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840502

RESUMEN

BACKGROUND: Very low-field MR has emerged as a promising complementary device to high-field MRI scanners, offering several advantages. One of the key benefits is that very low-field scanners are generally more portable and affordable to purchase and maintain, making them an attractive option for medical facilities looking to reduce costs. Very low-field MRI systems also have lower RF power deposition, making them safer and less likely to cause tissue heating or other safety concerns. They are also simpler to maintain, as they do not require cooling agents such as liquid helium. However, these portable MR scanners are impacted by temperature, lower magnetic field strength, and inhomogeneity, resulting in images with lower signal-to-noise ratio (SNR) and higher geometric distortions. It is essential to investigate and tabulate the variations in these parameters to establish bounds so that subsequent in vivo studies and deployment of these portable systems can be well informed. PURPOSE: The aim of this work is to investigate the repeatability of image quality metrics such as SNR and geometrical distortion at 0.05 T over 10 days and three sessions per day. METHODS: We acquired repeatability data over 10 days with three sessions per day. The measurements included temperature, humidity, transmit frequency, off-resonance maps, and 3D turbo spin echo (TSE) images of an in vitro phantom. This resulted in a protocol with 11 sequences. We also acquired a 3 T data set for reference. The image quality metrics included computing SNR and eccentricity (to assess geometrical distortion) to investigate the repeatability of 0.05 T image quality. The image reconstruction included drift correction, k-space filtering, and off-resonance correction. We computed the experimental parameters' coefficient of variation (CV) and the resulting image quality metrics to assess repeatability. We have explored the impact of electromagnetic interference (EMI) on image quality in very low-field MRI. The investigation involved varying both the distance and amplitude of the EMI-producing coil from the signal generator to analyze their effects on image quality. RESULTS: The range of temperature measured during the study was within 1.5 °C. The off-resonance maps acquired before and after the 3D TSE showed similar hotspots and were changed mainly by a global constant. The SNR measurements were highly repeatable across sessions and over the 10 days, quantified by a CV of 6.7%. The magnetic field inhomogeneity effects quantified by eccentricity showed a CV of 13.7%, but less than 5.1% in two of the three sessions over 10 days. The use of conjugate phase reconstruction mitigated geometrical distortion artifacts. Temperature and humidity did not significantly affect SNR or mean frequency drift within the ranges of these environmental factors investigated. The EMI experiment showed that as the amplitude increased the SNR decreased, and concurrently the root mean square of the background increased with a rise in EMI amplitude or a reduction in distance. CONCLUSIONS: We found that humidity and temperature in the range investigated did not impact SNR or frequency. Based on the CV values computed session-wise and for the overall study, our findings indicate high repeatability for SNR and magnetic field homogeneity.

2.
NMR Biomed ; : e5024, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582549

RESUMEN

In the current study, design and manufacturing insights into the development of affordable, state-of-the-art, magnetic resonance imaging (MRI) scanners are provided, and imaging results to demonstrate their viability are presented. Perspectives on affordability and accessibility are given, followed by a set of scanner specifications that, if met, can satisfy these criteria. Next, the architecture of a concept scanner that can satisfy some of these requirements is outlined and explained in detail. Specific insights into the design modifications that can enable reductions in power consumption, weight, and form factors are provided. Scanner performance benchmarking via large American College of Radiology phantom imaging tests is reported. Human volunteer imaging results are shown for the most common clinical contrasts to establish viability and demonstrate body coverage. In summary, a ground-up approach for designing state-of-the-art, yet affordable, MRI scanners is described, along with insights into the future steps that must be taken to ensure genuine accessibility and affordability.

3.
NMR Biomed ; : e4921, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36914280

RESUMEN

Presently, magnetic resonance imaging (MRI) magnets must deliver excellent magnetic field (B0 ) uniformity to achieve optimum image quality. Long magnets can satisfy the homogeneity requirements but require considerable superconducting material. These designs result in large, heavy, and costly systems that aggravate as field strength increases. Furthermore, the tight temperature tolerance of niobium titanium magnets adds instability to the system and requires operation at liquid helium temperature. These issues are crucial factors in the disparity of MR density and field strength use across the globe. Low-income settings show reduced access to MRI, especially to high field strengths. This article summarizes the proposed modifications to MRI superconducting magnet design and their impact on accessibility, including compact, reduced liquid helium, and specialty systems. Reducing the amount of superconductor inevitably entails shrinking the magnet size, resulting in higher field inhomogeneity. This work also reviews the state-of-the-art imaging and reconstruction methods to overcome this issue. Finally, we summarize the current and future challenges and opportunities in the design of accessible MRI.

4.
NMR Biomed ; : e5017, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37654047

RESUMEN

The purpose of this study was to assess the quality of clinical brain imaging in healthy subjects and patients on an FDA-approved commercial 0.55 T MRI scanner, and to provide information about the feasibility of using this scanner in a clinical workflow. In this IRB-approved study, brain examinations on the scanner were prospectively performed in 10 healthy subjects (February-April 2022) and retrospectively derived from 44 patients (February-July 2022). Images collected using the following pulse sequences were available for assessment: axial DWI (diffusion-weighted imaging), apparent diffusion coefficient maps, 2D axial fluid-attenuated inversion recovery images, axial susceptibility-weighted images (both magnitude and phase), sagittal T1 -weighted (T1w) Sampling Perfection with Application Optimized Contrast images, sagittal T1w MPRAGE (magnetization prepared rapid gradient echo) with contrast enhancement, axial T1w turbo spin echo (TSE) with and without contrast enhancement, and axial T2 -weighted TSE. Two readers retrospectively and independently evaluated image quality and specific anatomical features in a blinded fashion on a four-point Likert scale, with a score of 1 being unacceptable and 4 being excellent, and determined the ability to answer the clinical question in patients. For each category of image sequences, the mean, standard deviation, and percentage of unacceptable quality images (<2) were calculated. Acceptable (rating ≥ 2) image quality was achieved at 0.55 T in all sequences for patients and 85% of the sequences for healthy subjects. Radiologists were able to answer the clinical question in all patients scanned. In total, 50% of the sequences used in patients and about 60% of the sequences used in healthy subjects exhibited good (rating ≥ 3) image quality. Based on these findings, we conclude that diagnostic quality clinical brain images can be successfully collected on this commercial 0.55 T scanner, indicating that the routine brain imaging protocol may be deployed on this system in the clinical workflow.

5.
NMR Biomed ; 36(12): e5014, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37539775

RESUMEN

Magnetic resonance imaging (MRI) of the brain has benefited from deep learning (DL) to alleviate the burden on radiologists and MR technologists, and improve throughput. The easy accessibility of DL tools has resulted in a rapid increase of DL models and subsequent peer-reviewed publications. However, the rate of deployment in clinical settings is low. Therefore, this review attempts to bring together the ideas from data collection to deployment in the clinic, building on the guidelines and principles that accreditation agencies have espoused. We introduce the need for and the role of DL to deliver accessible MRI. This is followed by a brief review of DL examples in the context of neuropathologies. Based on these studies and others, we collate the prerequisites to develop and deploy DL models for brain MRI. We then delve into the guiding principles to develop good machine learning practices in the context of neuroimaging, with a focus on explainability. A checklist based on the United States Food and Drug Administration's good machine learning practices is provided as a summary of these guidelines. Finally, we review the current challenges and future opportunities in DL for brain MRI.


Asunto(s)
Aprendizaje Profundo , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Neuroimagen , Espectroscopía de Resonancia Magnética
6.
Magn Reson Med ; 87(2): 614-628, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34480778

RESUMEN

PURPOSE: Point-of-care MRI requires operation outside of Faraday shielded rooms normally used to block image-degrading electromagnetic interference (EMI). To address this, we introduce the EDITER method (External Dynamic InTerference Estimation and Removal), an external sensor-based method to retrospectively remove image artifacts from time-varying external interference sources. THEORY AND METHODS: The method acquires data from multiple EMI detectors (tuned receive coils as well as untuned electrodes placed on the body) simultaneously with the primary MR coil during and between image data acquisition. We calculate impulse response functions dynamically that map the data from the detectors to the time varying artifacts then remove the transformed detected EMI from the MR data. Performance of the EDITER algorithm was assessed in phantom and in vivo imaging experiments in an 80 mT portable brain MRI in a controlled EMI environment and with an open 47.5 mT MRI scanner in an uncontrolled EMI setting. RESULTS: In the controlled setting, the effectiveness of the EDITER technique was demonstrated for specific types of introduced EMI sources with up to a 97% reduction of structured EMI and up to 76% reduction of broadband EMI in phantom experiments. In the uncontrolled EMI experiments, we demonstrate EMI reductions of up to 99% using an electrode and pick-up coil in vivo. We demonstrate up to a nine-fold improvement in image SNR with the method. CONCLUSION: The EDITER technique is a flexible and robust method to improve image quality in portable MRI systems with minimal passive shielding and could reduce the reliance of MRI on shielded rooms and allow for truly portable MRI.


Asunto(s)
Artefactos , Imagen por Resonancia Magnética , Algoritmos , Fantasmas de Imagen , Estudios Retrospectivos
7.
Magn Reson Med ; 86(3): 1271-1283, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33780035

RESUMEN

PURPOSE: The ability to use dual polarity encoded MRI with the missing pulse steady-state free precession (MP-SSFP) sequence is demonstrated to perform robust MRI with low radiofrequency (RF) amplitude, where the field is distorted by embedding metallic screws in an agar phantom. Image-based estimation of the 3D ΔB0 map and image distortion correction is shown to require ~1 minute to perform. THEORY AND METHODS: Dual polarity encoded MP-SSFP was implemented at 1.5T and used to image agar phantoms with one stainless steel and one titanium screw embedded inside. A multispectral fast spin-echo acquisition was performed for comparison. Self-consistent ΔB0 estimation is performed iteratively using a 3D B-spline basis, which is compared to the ΔB0 estimate generated by the multispectral sequence. RESULTS: Dual polarity encoded MP-SSFP yields image quality similar to the multispectral sequence used with substantially less imaging time, provided the MP-SSFP experimental parameters are chosen well. The multispectral sequence appears to visualize modestly closer in proximity to the metallic screws used, despite the spectral bins covering the same bandwidth as the pulses used in MP-SSFP. However, MP-SSFP avoids ripple artifacts characteristic of the multispectral sequence. The ΔB0 estimate generated by MP-SSFP is qualitatively similar to that generated by the multispectral sequence but larger in magnitude. CONCLUSION: Despite longer processing time compared to multispectral imaging, MP-SSFP yields similar image quality with significantly lower acquisition times in the absence of parallel imaging. The work herein demonstrates the ability to perform 3D ΔB0 estimation and image correction within a reasonable amount of time, ~1 minute.


Asunto(s)
Imagen por Resonancia Magnética , Ondas de Radio , Artefactos , Fantasmas de Imagen , Reproducibilidad de los Resultados
8.
J Magn Reson Imaging ; 52(3): 686-696, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31605435

RESUMEN

Research in MRI technology has traditionally expanded diagnostic benefit by developing acquisition techniques and instrumentation to enable MRI scanners to "see more." This typically focuses on improving MRI's sensitivity and spatiotemporal resolution, or expanding its range of biological contrasts and targets. In complement to the clear benefits achieved in this direction, extending the reach of MRI by reducing its cost, siting, and operational burdens also directly benefits healthcare by increasing the number of patients with access to MRI examinations and tilting its cost-benefit equation to allow more frequent and varied use. The introduction of low-cost, and/or truly portable scanners, could also enable new point-of-care and monitoring applications not feasible for today's scanners in centralized settings. While cost and accessibility have always been considered, we have seen tremendous advances in the speed and spatial-temporal capabilities of general-purpose MRI scanners and quantum leaps in patient comfort (such as magnet length and bore diameter), but only modest success in the reduction of cost and siting constraints. The introduction of specialty scanners (eg, extremity, brain-only, or breast-only scanners) have not been commercially successful enough to tilt the balance away from the prevailing model: a general-purpose scanner in a centralized healthcare location. Portable MRI scanners equivalent to their counterparts in ultrasound or even computed tomography have not emerged and MR monitoring devices exist only in research laboratories. Nonetheless, recent advances in hardware and computational technology as well as burgeoning markets for MRI in the developing world has created a resurgence of interest in the topic of low-cost and accessible MRI. This review examines the technical forces and trade-offs that might facilitate a large step forward in the push to "jail-break" MRI from its centralized location in healthcare and allow it to reach larger patient populations and achieve new uses. Level of Evidence: 5 Technical Efficacy Stage: 6 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;52:686-696.


Asunto(s)
Medios de Contraste , Imagen por Resonancia Magnética , Encéfalo , Mama , Humanos , Tomografía Computarizada por Rayos X
9.
Magn Reson Med ; 82(5): 1946-1960, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31231885

RESUMEN

PURPOSE: The size, cost, and siting requirements of conventional MRI systems limit their availability and preclude usage as monitoring or point-of-care devices. To address this, we developed a lightweight MRI for point-of-care brain imaging over a reduced field of view (FOV). METHODS: The B0 magnet was designed with a genetic algorithm optimizing homogeneity over a 3 × 8 × 8 cm FOV and a built-in gradient for slice selection or readout encoding. An external pair of gradient coils enables phase encoding in the other two directions and a radiofrequency (RF) coil provides excitation and detection. The system was demonstrated with high-resolution 1D "depth profiling" and 3D phantom imaging. RESULTS: The lightweight B0 magnet achieved a 64-mT average field over the imaging region at a materials cost of <$450 USD. The weight of the magnet, gradient, and RF coil was 8.3 kg. Depth profiles were obtained at high resolution (0.89 mm) and multislice rapid acquisition with refocused echoes (RARE) images were obtained with a resolution ~2 mm in-plane and ~6-mm slice thickness, each in an imaging time of 11 min. CONCLUSION: The system demonstrates the feasibility of a lightweight brain MRI system capable of 1D to 3D imaging within a reduced FOV. The proposed system is low-cost and small enough to be used in point-of-care applications.


Asunto(s)
Imagen por Resonancia Magnética/instrumentación , Neuroimagen/instrumentación , Sistemas de Atención de Punto , Diseño de Equipo , Humanos , Ondas de Radio
10.
Eur J Radiol ; 175: 111406, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38490129

RESUMEN

PURPOSE: To compare image quality, assess inter-reader variability, and evaluate the diagnostic efficacy of routine clinical lumbar spine sequences at 0.55T compared with those collected at 1.5/3T to assess common spine pathology. METHODS: 665 image series across 70 studies, collected at 0.55T and 1.5/3T, were assessed by two neuroradiology fellows for overall imaging quality (OIQ), artifacts, and accurate visualization of anatomical features (intervertebral discs, neural foramina, spinal cord, bone marrow, and conus / cauda equina nerve roots) using a 4-point Likert scale (1 = non-diagnostic to 4 = excellent). For the 0.55T scans, the most appropriate diagnosis(es) from a picklist of common spine pathologies was selected. The mean ± SD of all scores for all features for each sequence and reader at 0.55T and 1.5/3T were calculated. Paired t-tests (p ≤ 0.05) were used to compare ratings between field strengths. The inter-reader agreement was calculated using linear-weighted Cohen's Kappa coefficient (p ≤ 0.05). Unpaired VCG analysis for OIQ was additionally employed to represent differences between 0.55T and 1.5/3T (95 % CI). RESULTS: All sequences at 0.55T were rated as acceptable (≥2) for diagnostic use by both readers despite significantly lower scores for some compared to those at 1.5/3T. While there was low inter-reader agreement on individual scores, the agreement on the diagnosis was high, demonstrating the potential of this system for detecting routine spine pathology. CONCLUSIONS: Clinical lumbar spine imaging at 0.55T produces diagnostic-quality images demonstrating the feasibility of its use in diagnosing spinal pathology, including osteomyelitis/discitis, post-surgical changes with complications, and metastatic disease.


Asunto(s)
Vértebras Lumbares , Imagen por Resonancia Magnética , Enfermedades de la Columna Vertebral , Humanos , Vértebras Lumbares/diagnóstico por imagen , Enfermedades de la Columna Vertebral/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Masculino , Reproducibilidad de los Resultados , Femenino , Persona de Mediana Edad , Adulto , Variaciones Dependientes del Observador , Artefactos , Sensibilidad y Especificidad , Anciano
11.
Abdom Radiol (NY) ; 46(12): 5772-5780, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34415411

RESUMEN

PURPOSE: To develop a protocol for abdominal imaging on a prototype 0.55 T scanner and to benchmark the image quality against conventional 1.5 T exam. METHODS: In this prospective IRB-approved HIPAA-compliant study, 10 healthy volunteers were recruited and imaged. A commercial MRI system was modified to operate at 0.55 T (LF) with two different gradient performance levels. Each subject underwent non-contrast abdominal examinations on the 0.55 T scanner utilizing higher gradients (LF-High), lower adjusted gradients (LF-Adjusted), and a conventional 1.5 T scanner. The following pulse sequences were optimized: fat-saturated T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and Dixon T1-weighted imaging (T1WI). Three readers independently evaluated image quality in a blinded fashion on a 5-point Likert scale, with a score of 1 being non-diagnostic and 5 being excellent. An exact paired sample Wilcoxon signed-rank test was used to compare the image quality. RESULTS: Diagnostic image quality (overall image quality score ≥ 3) was achieved at LF in all subjects for T2WI, DWI, and T1WI with no more than one unit lower score than 1.5 T. The mean difference in overall image quality score was not significantly different between LF-High and LF-Adjusted for T2WI (95% CI - 0.44 to 0.44; p = 0.98), DWI (95% CI - 0.43 to 0.36; p = 0.92), and for T1 in- and out-of-phase imaging (95%C I - 0.36 to 0.27; p = 0.91) or T1 fat-sat (water only) images (95% CI - 0.24 to 0.18; p = 1.0). CONCLUSION: Diagnostic abdominal MRI can be performed on a prototype 0.55 T scanner, either with conventional or with reduced gradient performance, within an acquisition time of 10 min or less.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Imagen por Resonancia Magnética , Abdomen/diagnóstico por imagen , Humanos , Interpretación de Imagen Asistida por Computador , Estudios Prospectivos
12.
Tomography ; 8(1): 10-21, 2021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-35076600

RESUMEN

The purpose of this work is to evaluate the feasibility of performing magnetic resonance fingerprinting (MRF) on older and lower-performance MRI hardware as a means to bring advanced imaging to the aging MRI install base. Phantom and in vivo experiments were performed on a 1.5T Siemens Aera (installed 2015) and 1.5T Siemens Symphony (installed 2002). A 2D spiral MRF sequence for simultaneous T1/T2/M0 mapping was implemented on both scanners with different gradient trajectories to accommodate system specifications. In phantom, for T1/T2 values in a physiologically relevant range (T1: 195-1539 ms; T2: 20-267 ms), scanners had strong correlation (R2 > 0.999) with average absolute percent difference of 8.1% and 10.1%, respectively. Comparison of the two trajectories on the newer scanner showed differences of 2.6% (T1) and 10.9% (T2), suggesting a partial explanation of the observed inter-scanner bias. Inter-scanner agreement was better when the same trajectory was used, with differences of 6.0% (T1) and 4.0% (T2). Intra-scanner coefficient of variation (CV) of T1 and T2 estimates in phantom were <2.0% and in vivo were ≤3.5%. In vivo inter-scanner white matter CV was 4.8% (T1) and 5.1% (T2). White matter measurements on the aging scanner after two months were consistent, with differences of 1.9% (T1) and 3.9% (T2). In conclusion, MRF is feasible on an aging MRI scanner and required only changes to the gradient trajectory.


Asunto(s)
Imagen por Resonancia Magnética , Estudios de Factibilidad , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Fantasmas de Imagen
13.
Magn Reson Imaging ; 73: 177-185, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32890676

RESUMEN

Access to Magnetic Resonance Imaging (MRI) across developing countries ranges from being prohibitive to scarcely available. For example, eleven countries in Africa have no scanners. One critical limitation is the absence of skilled manpower required for MRI usage. Some of these challenges can be mitigated using autonomous MRI (AMRI) operation. In this work, we demonstrate AMRI to simplify MRI workflow by separating the required intelligence and user interaction from the acquisition hardware. AMRI consists of three components: user node, cloud and scanner. The user node voice interacts with the user and presents the image reconstructions at the end of the AMRI exam. The cloud generates pulse sequences and performs image reconstructions while the scanner acquires the raw data. An AMRI exam is a custom brain screen protocol comprising of one T1-, T2- and T2*-weighted exams. A neural network is trained to incorporate Intelligent Slice Planning (ISP) at the start of the AMRI exam. A Look Up Table was designed to perform intelligent protocolling by optimizing for contrast value while satisfying signal to noise ratio and acquisition time constraints. Data were acquired from four healthy volunteers for three experiments with different acquisition time constraints to demonstrate standard and self-administered AMRI. The source code is available online. AMRI achieved an average SNR of 22.86 ± 0.89 dB across all experiments with similar contrast. Experiment #3 (33.66% shorter table time than experiment #1) yielded a SNR of 21.84 ± 6.36 dB compared to 23.48 ± 7.95 dB for experiment #1. AMRI can potentially enable multiple scenarios to facilitate rapid prototyping and research and streamline radiological workflow. We believe we have demonstrated the first Autonomous MRI of the brain.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Adulto , Encéfalo/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Relación Señal-Ruido , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA