Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(21): e2112724119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35576464

RESUMEN

SignificanceIncense has been linked to ceremonies, religions, medicines, and cosmetics worldwide for thousands of years. While Chinese texts in the Tang dynasty (618 to 907 CE) indicate that numerous exotic aromatic substances were already being introduced into China through the land and maritime Silk Road, this has been rarely demonstrated archaeologically. This study identifies three types of incense associated with the sacred sarira of Sakyamuni Budda from the underground palace of Famen Royal Temple in central China, providing direct evidence of aromatics including elemi, agarwood, and frankincense as well as their composite product, namely Hexiang (blending of aromatics), in Buddhist activities, which may have promoted the spread of incense and the development of aromatic knowledge systems in medieval China.

2.
Molecules ; 29(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38792158

RESUMEN

This work is focused on the characterization of the composition of a CO2 supercritical fluid extract of Aquilaria sinensis (Chinese agarwood) collected in the Dongguan area (China) and infected by mechanical methods. The constituents of this extract were analyzed by gas chromatography-mass spectrometry (GC-MS) and quantified accurately by gas chromatography with a flame ionization detector (GC-FID), using an internal reference and predicted response factors. Since a significant number of components of this extract remained non-identified after the initial GC-MS analysis of the whole extract, its fractionation by chromatography on silica gel helped to characterize several additional constituents by isolation and structural analysis by NMR spectroscopy. The main components are the classical agarwood chromones (Flindersia chromone and its mono-, di-, and trimethoxylated analogues (respectively, 11.01% and 0.11-4.02%) along with sesquiterpenic constituents typically found in agarwood essential oils, like baimuxinal (1.90%) and kusunol (1.24%), as well as less common selinane dialdehydes (1.58-2.27%) recently described in the literature. Moreover, the structure and stereochemistry of a new sesquiterpenic alcohol, 14ß,15ß-dimethyl-7αH-eremophila-9,11-dien-8ß-ol (0.67%), was determined unambiguously by the combination of structural analysis (NMR, MS), hemisynthesis, and total synthesis, leading to dihydrokaranone and a neopetasane epimer.


Asunto(s)
Dióxido de Carbono , Cromatografía con Fluido Supercrítico , Cromatografía de Gases y Espectrometría de Masas , Thymelaeaceae , Dióxido de Carbono/química , Cromatografía con Fluido Supercrítico/métodos , Espectroscopía de Resonancia Magnética/métodos , Estructura Molecular , Aceites Volátiles/química , Aceites Volátiles/análisis , Extractos Vegetales/química , Thymelaeaceae/química , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química
3.
Molecules ; 29(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38257381

RESUMEN

Agarwood (Aquilaria malaccensis Lam.) is a resinous material from different geographical locations. The current evaluation of agarwood quality is usually based on its physical properties and chemical compounds, yet only a few studies have linked agarwood quality with its anxiolytic effect, as indicated by characteristic compounds. In this study, using solid-phase microextraction/gas chromatography-time-of-flight mass spectrometry (SPME/GC-TOFMS) and multivariate analysis, we found 116 significantly different compounds in agarwood samples from four locations in Southeast Asia with regard to their quality. Brunei and Nha Trang agarwood had abundant sesquiterpenoids, exhibiting notable pharmacological efficacy in relieving anxiety. Malaysian and Irian agarwood had abundant alcohols and aldehydes, qualifying them as high-quality spices. Compound-target-disease network and pathway enrichment analysis were further employed to predict 79 gene targets and 20 pathways associated with the anxiolytic effects based on the 62 sesquiterpenoids. The correlated relationships among the sesquiterpenoids and targets suggest that agarwood treats anxiety via multiple compounds acting on multiple targets. Varying levels of sesquiterpenes across agarwood groups might lead to differences in the anxiolytic effects via signaling pathways, such as neurotransmitter- and hormone-regulated pathways. Our study originally evaluates agarwood quality and its anxiolytic effect by linking the characteristic compounds to potential gene targets and pathways.


Asunto(s)
Ansiolíticos , Sesquiterpenos , Humanos , Ansiolíticos/farmacología , Farmacología en Red , Microextracción en Fase Sólida , Trastornos de Ansiedad , Cromatografía de Gases y Espectrometría de Masas , Sesquiterpenos/farmacología
4.
Molecules ; 29(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38675648

RESUMEN

Currently, the planting of 'Qi-Nan' is continuously increasing, yet a substantial amount of 'Qi-Nan' leaves have not been properly exploited. To improve the 'Qi-Nan' tree 's utilization value, 'Qi-Nan' leaves were used as a raw material. An ultrasound-assisted method was performed to obtain the flavonoids from the 'Qi-Nan' leaves, followed by optimization of the extraction factors using a one-way and response surface methodology to enhance the extraction of flavonoids. Subsequently, the composition of the flavonoids, as well as their bioactive abilities, were analyzed by ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) and in vitro activity testing methods. The findings demonstrated that a 1:50 material-to-liquid ratio, 60% ethanol concentration, and ultrasound-assisted extraction time of 30 min were the ideal procedures for extracting flavonoids (flavonoid content: 6.68%). Meanwhile, the 'Qi-Nan' leaves possessed the antioxidant and medicinal potential to prevent diabetes and Alzheimer 's disease, as evidenced by the semi-inhibitory concentrations (IC50 values) of flavonoid extracts for scavenging DPPH• free radicals, scavenging ABTS•+ free radicals, inhibiting acetylcholinesterase, and inhibiting α-glucosidase, which were 12.64 µg/mL, 66.58 µg/mL, 102.31 µg/mL, and 38.76 µg/mL, respectively, which indicated that the 'Qi-Nan' leaves possessed the properties of antioxidant and medicinal potential for the prevention of Alzheimer 's disease and diabetes.


Asunto(s)
Antioxidantes , Flavonoides , Extractos Vegetales , Hojas de la Planta , Flavonoides/análisis , Flavonoides/química , Flavonoides/aislamiento & purificación , Hojas de la Planta/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Cromatografía Líquida de Alta Presión , Thymelaeaceae/química
5.
Bioorg Chem ; 133: 106396, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36758274

RESUMEN

Six previously unprecedented 2-(2-phenylethyl)chromone-sesquiterpene hybrids, aquisinenins A-F (1 - 6), were isolated from the resinous wood of Aquilaria sinensis by a LC-MS-guided fractionation procedure. Their structures were determined by extensive spectroscopic analysis (1D and 2D NMR, UV, IR, and HRMS) and experimental and computed ECD data. Compounds 1 - 6 were rare dimeric 2-(2-phenylethyl)chromone-sesquiterpene derivatives featuring 5,6,7,8-tetrahydro-2-(2-phenylethyl)chromone hybridized with different sesquiterpene (eudesmane/guaiane type) moieties via ester bond. Furthermore, all the isolated compounds were evaluated for their protective effects on taurocholic acid (TCA)-induced GES-1 cell injury. The most effective aquisinenin F (6) was used to elucidate the involved mechanism on protection against TCA-induced gastric mucosal damage. Our results indicated that 6 protected against gastric mucosal cell insult by downregulation of the ER stress triggered by TCA.


Asunto(s)
Sesquiterpenos , Thymelaeaceae , Cromonas , Madera/química , Flavonoides/química , Thymelaeaceae/química , Resinas de Plantas , Estructura Molecular
6.
Environ Res ; 235: 116633, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37459949

RESUMEN

Current artificial agarwood-inducing techniques yield low quality and quantities of agarwood. On account of unclear agarwood formation mechanism there's still no high-efficiency agarwood inducing method globally spread. In this study, a complete agarwood column was taken out of the live tree trunk at 6 months post-treatment by a novel agarwood-inducing method (Agar-Bit) in cultivated Aquilaria sinensis trees, and was first divided into 8 parts (A1-4, B1-4) involving agarwood layer (A part) and brown inner layer (B part) according to its color and length for analysis. These eight parts were analyzed microscope observation, 6 chromones' contents and characteristic chromatograms by HPLC (high performance liquid chromatography), GC-MS (gas chromatography-mass spectrometer) with to determine chemical changes. Other quality characteristics, TLC (thin-layer chromatography) and alcohol soluble extraction content, were also determined. Our results showed that resin changed with A to B part and microstructure changed with length. Six chromones in the eight parts varied with layers. Result of characteristic chromatograms showed that both A and B parts contained six characteristic peaks. Volatile component distributed mainly in A part, but important chromones were also detected in B parts. Results from TLC and alcohol soluble extraction content also showed that B part contained characteristic compounds of agarwood. In addition, some compounds in the essential oil detected by GC-MS in A part produced by Agar-Bit were similar to that found in natural agarwood, compounds in B parts were similar to BC agarwood, as were the results for the TLC and alcohol soluble extraction content. In conclusion, the chemical distribution obtained here from Agar-Bit could provide some clues to optimize high production and high efficiency stimulating method for whole tree full of resin in Aquilaria sinensis and to reveal the subtle agarwood formation mechanism throughout a whole trunk.


Asunto(s)
Cromonas , Thymelaeaceae , Agar/análisis , Cromonas/análisis , Cromatografía de Gases y Espectrometría de Masas , Thymelaeaceae/química , Madera/química
7.
Biosci Biotechnol Biochem ; 87(4): 371-377, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36702511

RESUMEN

A concise synthesis of (±)-karanone, an important aroma compound of agarwood, was achieved from a commercially available 3-methylcyclohex-2-enol in 3.5% yield in 11 steps. The two contiguous stereocenters at C4 and C5 were constructed via Ireland-Claisen rearrangement. The allylic oxidation at C8 was successfully performed with the mixture of tert-butyl hydroperoxide (TBHP) and CuI. A precursor of ring-closing metathesis to construct a bicyclic dienone was efficiently synthesized from iodoenone by 1,4-addition and nucleophilic substitution of the vinyl group in one pot.


Asunto(s)
Odorantes , Estereoisomerismo , Oxidación-Reducción , terc-Butilhidroperóxido
8.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38139213

RESUMEN

NAC is a class of plant-specific transcription factors that are widely involved in the growth, development and (a)biotic stress response of plants. However, their molecular evolution has not been extensively studied in Malvales, especially in Aquilaria sinensis, a commercial and horticultural crop that produces an aromatic resin named agarwood. In this study, 1502 members of the NAC gene family were identified from the genomes of nine species from Malvales and three model plants. The macroevolutionary analysis revealed that whole genome duplication (WGD) and dispersed duplication (DSD) have shaped the current architectural structure of NAC gene families in Malvales plants. Then, 111 NAC genes were systemically characterized in A. sinensis. The phylogenetic analysis suggests that NAC genes in A. sinensis can be classified into 16 known clusters and four new subfamilies, with each subfamily presenting similar gene structures and conserved motifs. RNA-seq analysis showed that AsNACs presents a broad transcriptional response to the agarwood inducer. The expression patterns of 15 AsNACs in A. sinensis after injury treatment indicated that AsNAC019 and AsNAC098 were positively correlated with the expression patterns of four polyketide synthase (PKS) genes. Additionally, AsNAC019 and AsNAC098 were also found to bind with the AsPKS07 promoter and activate its transcription. This comprehensive analysis provides valuable insights into the molecular evolution of the NAC gene family in Malvales plants and highlights the potential mechanisms of AsNACs for regulating secondary metabolite biosynthesis in A. sinensis, especially for the biosynthesis of 2-(2-phenyl) chromones in agarwood.


Asunto(s)
Malvales , Thymelaeaceae , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Filogenia , Thymelaeaceae/genética , Thymelaeaceae/química , Genes de Plantas
9.
Molecules ; 28(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37049682

RESUMEN

Continuous innovation in artificially-induced agarwood technology is increasing the amount of agarwood and substantially alleviating shortages. Agarwood is widely utilized in perfumes and fragrances; however, it is unclear whether the overall pharmacological activity of induced agarwood can replace wild agarwood for medicinal use. In this study, the volatile components, total chromone content, and the differences in the overall activities of wild agarwood and induced agarwood, including the antioxidant, anti-acetylcholinesterase, and anti-glucosidase activity were all determined. The results indicated that both induced and wild agarwood's chemical makeup contains sesquiterpenes and 2-(2-phenylethyl)chromones. The total chromone content in generated agarwood can reach 82.96% of that in wild agarwood. Induced agarwood scavenged 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) radicals and inhibited acetylcholinesterase activity and α-glucosidase activity with IC50 values of 0.1873 mg/mL, 0.0602 mg/mL, 0.0493 mg/mL, and 0.2119 mg/mL, respectively, reaching 80.89%, 93.52%, 93.52%, and 69.47% of that of wild agarwood, respectively. Accordingly, the results distinguished that induced agarwood has the potential to replace wild agarwood in future for use in medicine because it has a similar chemical makeup to wild agarwood and has comparable antioxidant, anti-acetylcholinesterase, and anti-glucosidase capabilities.


Asunto(s)
Perfumes , Sesquiterpenos , Thymelaeaceae , Antioxidantes/farmacología , Antioxidantes/química , Thymelaeaceae/química , Cromonas/química , Sesquiterpenos/farmacología , Sesquiterpenos/química , Flavonoides/farmacología , Flavonoides/química , Estructura Molecular
10.
Molecules ; 28(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36677694

RESUMEN

OBJECTIVE: To study the extraction process of agarwood active ingredients (AA) and investigate the safety and effectiveness of AA in the treatment of insomnia rats by nasal administration. METHOD: A ß-cyclodextrin (ß-CD) inclusion compound (a-ß-CD) was prepared from agarwood essential oil (AEO), and the preparation process was optimized and characterized. The safety of AA in nasal mucosa was evaluated through Bufo gargarizans maxillary mucosa and rat nasal mucosa models. Insomnia animal models were replicated by injecting p-chlorophenylalanine (PCPA), conducting behavioral tests, and detecting the expression levels of monoamine neurotransmitters (NE and 5-HT) and amino acids (GABA/Glu) in the rat hypothalamus. RESULTS: The optimum inclusion process conditions of ß-CD were as follows: the feeding ratio was 0.35:1.40 (g:g), the inclusion temperature was 45 °C, the inclusion time was 2 h, and the ICY% and IEO% were 53.78 ± 2.33% and 62.51 ± 3.21%, respectively. The inclusion ratio, temperature, and time are the three factors that have significant effects on the ICY% and IEO% of a-ß-CD. AA presented little damage to the nasal mucosa. AA increased the sleep rate, shortened the sleep latency, and prolonged the sleep time of the rats. The behavioral test results showed that AA could ameliorate depression in insomnia rats to a certain extent. The effect on the expression of monoamine neurotransmitters and amino acids in the hypothalamus of rats showed that AA could significantly reduce NE levels and increase the 5-HT level and GABA/Glu ratio in the hypothalamus of insomnia rats. CONCLUSION: The preparation of a-ß-CD from AEO can reduce its irritation, improve its stability, increase its curative effect, and facilitate its storage and transport. AA have certain therapeutic effects on insomnia. The mechanism of their effect on rat sleep may involve regulating the expression levels of monoamine neurotransmitters and amino acids in the hypothalamus.


Asunto(s)
Ciclodextrinas , Aceites Volátiles , Trastornos del Inicio y del Mantenimiento del Sueño , Animales , Ratas , Fenclonina/farmacología , Ácido gamma-Aminobutírico/metabolismo , Neurotransmisores , Aceites Volátiles/farmacología , Aceites Volátiles/química , Serotonina , Trastornos del Inicio y del Mantenimiento del Sueño/inducido químicamente , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico
11.
Molecules ; 28(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37175310

RESUMEN

As a result of its unique fragrance and wider role in traditional medicine, agarwood produced in Aquilaria spp. and certain other trees has been harvested to near extinction as a natural phenomenon. Artificially induced agarwood production in Aquilaria plantations has sated some of the demand although the product quality is variable. Synthetic chemistry may have a role to play in providing sustainable routes to many of the fragrant components identified in agarwood and its smoke when burnt as incense. In this work, we report efforts towards a total synthesis of the guaiane sesquiterpene α-bulnesene, which is found, along with its more fragrant oxidised derivatives, in agarwood. Following the ring-expansion of (R)-carvone using reported procedures, α-butenylation gave a substrate for samarium diiodide mediated reductive cyclisation, the two butenyl epimers of the substrate each leading to a single bicyclic alcohol (24 and 25). Overall homoconjugate hydride reduction of one of these alcohols was achieved by Lewis acid-mediated ionisation and then hydride transfer from triethylsilane to complete an overall seven-step synthesis of 5-epi-α-bulnesene. This new synthesis paves the way for short routes to both α-bulnesene enantiomers and a study of their aerial and enzymatic oxidation products.


Asunto(s)
Sesquiterpenos , Thymelaeaceae , Medicina Tradicional , Sesquiterpenos de Guayano , Oxidación-Reducción
12.
Molecules ; 28(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36838655

RESUMEN

Agarwood, a highly valuable resin/wood combination with diverse pharmacological activities but scarce supply, has a long history of being used as a medicine in several medical systems. Grafted Kynam agarwood (GKA) has been cultivated successfully recently and has the qualities meeting the definition of premium Kynam agarwood. However, there are few comprehensive comparisons between GKA and normal agarwood in terms of traits, global composition, and activity, and some key issues for GKA to be adopted into the traditional Chinese medical (TCM) system have not been elaborated. The two types of agarwood samples were evaluated in terms of trait characteristics, physicochemical indicators, key component groups, and global compositional profile. Furthermore, a molecular docking was performed to investigate the active ingredients. In vitro activity assays were performed to evaluate the activation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) by GKA and normal agarwood. The results revealed that, overall, the traits, microscopic characteristics, chemical composition types, and bioactivity between GKA and normal agarwood were similar. The main differences were the content of resin (ethanolic extract content), the content of key component groups, and the composition of the different parent structural groups of 2-(2-phenethyl) chromones (PECs). The contents of total PEC and ethanol extract content of GKA were significantly higher than those of normal agarwood. The MS-based high-throughput analysis revealed that GKA has higher concentrations of sesquiterpenes and flindersia-type 2-(2-phenylethyl) chromones (FTPECs) (m/z 250-312) than normal agarwood. Molecular docking revealed that parent structural groups of FTPECs activated multiple signaling pathways, including the AMPK pathway, suggesting that FTPECs are major active components in GKA. The aim of this paper is to describe the intrinsic reasons for GKA as a high-quality agarwood and a potential source for novel drug development. We combined high-throughput mass spectrometry and multivariate statistical analysis to infer the different components of the two types of agarwood. Then we combined virtual screening and in vitro activity to construct a component/pharmacodynamic relationship to explore the causes of the activity differences between agarwood with different levels of quality and to identify potentially valuable lead compounds. This strategy can also be used for the comprehensive study of other TCMs with different qualities.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Thymelaeaceae , Simulación del Acoplamiento Molecular , Thymelaeaceae/química , Cromonas/química , Madera/química , Resinas de Plantas/análisis , Extractos Vegetales/química , Flavonoides/química
13.
Zhongguo Zhong Yao Za Zhi ; 48(4): 1023-1031, 2023 Feb.
Artículo en Zh | MEDLINE | ID: mdl-36872273

RESUMEN

This study used m-chloropheniperazine(MCPP) and chronic unforeseeable mild stress(CUMS) to induce the rat models of anxiety and depression, respectively. The behaviors of rats were observed by the open field test(OFT), light-dark exploration test(LDE), tail suspension test(TST), and forced swimming test(FST), and the antidepressant and anxiolytic effects of agarwood essential oil(AEO), agarwood fragrant powder(AFP), and agarwood line incense(ALI) were explored. The enzyme-linked immunosorbent assay(ELISA) was used to determine the levels of 5-hydroxytryptamine(5-HT), glutamic acid(Glu), and γ-aminobutyric acid(GABA_A) in the hippocampal area. The Western blot assay was used to determine the protein expression levels of glutamate receptor 1(GluR1) and vesicular glutamate transporter type 1(VGluT1), exploring the anxiolytic and antidepressant mechanism of agarwood inhalation. The results showed that compared with the anxiety model group, the AEO, AFP, and ALI groups decreased the total distance(P<0.05), decreased the velocity of movements(P<0.05), prolonged the immobile time(P<0.05), and reduced the distance and velocity of the rat model of anxiety in the dark box(P<0.05). Compared with the depression model group, the AEO, AFP, and ALI groups increased the total distance and average velocity(P<0.05), reduced the immobile time(P<0.05), and reduced the forced swimming and tail suspension time(P<0.05). In terms of transmitter regulation, the AEO, AFP, and ALI groups decreased the level of Glu in the rat model of anxiety(P<0.05) and increased the levels of GABA_A and 5-HT(P<0.05), while the AEO, AFP, and ALI groups all increased the level of 5-HT in the rat model of depression(P<0.05) and decreased the levels of GABA_A and Glu(P<0.05). At the same time, the AEO, AFP, and ALI groups all increased the protein expression levels of GluR1 and VGluT1 in the hippocampus of the rat models of anxiety and depression(P<0.05). In conclusion, AEO, AFP, and ALI exert anxiolytic and antidepressant effects, and the mechanism might be related to the regulation of the neurotransmitter and the protein expression of GluR1 and VGluT1 in the hippocampus.


Asunto(s)
Ansiolíticos , Animales , Ratas , Serotonina , alfa-Fetoproteínas , Antidepresivos , Ácido Glutámico , Ácido gamma-Aminobutírico
14.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5531-5539, 2023 Oct.
Artículo en Zh | MEDLINE | ID: mdl-38114145

RESUMEN

"Tangjie" leaves of cultivated Qinan agarwood were used to obtain the complete chloroplast genome using high-throughput sequencing technology. Combined with 12 chloroplast genomes of Aquilaria species downloaded from NCBI, bioinformatics method was employed to determine the chloroplast genome characteristics and phylogenetic relationships. The results showed that the chloroplast genome sequence length of cultivated Qinan agarwood "Tangjie" leaves was 174 909 bp with a GC content of 36.7%. A total of 136 genes were annotated, including 90 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. Sequence repeat analysis detected 80 simple sequence repeats(SSRs) and 124 long sequence repeats, with most SSRs composed of A and T bases. Codon preference analysis revealed that AUU was the most frequently used codon, and codons with A and U endings were preferred. Comparative analysis of Aquilaria chloroplast genomes showed relative conservation of the IR region boundaries and identified five highly variable regions: trnD-trnY, trnT-trnL, trnF-ndhJ, petA-cemA, and rpl32, which could serve as potential DNA barcodes specific to the Aquilaria genus. Selection pressure analysis indicated positive selection in the rbcL, rps11, and rpl32 genes. Phylogenetic analysis revealed that cultivated Qinan agarwood "Tangjie" and Aquilaria agallocha clustered together(100% support), supporting the Chinese origin of Qinan agarwood from Aquilaria agallocha. The chloroplast genome data obtained in this study provide a foundation for studying the genetic diversity of cultivated Qinan agarwood and molecular identification of the Aquilaria genus.


Asunto(s)
Genoma del Cloroplasto , Thymelaeaceae , Filogenia , Codón , Anotación de Secuencia Molecular , Thymelaeaceae/genética
15.
Beilstein J Org Chem ; 19: 998-1007, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404799

RESUMEN

Five new eudesmane-type sesquiterpenoids (aquisinenoids F-J (1-5)) and five known compounds (6-10) were isolated from the agarwood of Aquilaria sinensis. Their structures, including absolute configurations, were identified by comprehensive spectroscopic analyses and computational methods. Inspired by our previous study on the same kinds of skeletons, we speculated that the new compounds have anticancer and anti-inflammatory activities. The results did not show any activity, but they revealed the structure-activity relationships (SAR).

16.
BMC Plant Biol ; 22(1): 464, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36171555

RESUMEN

BACKGROUND: Agarwood is a valuable Chinese medicinal herb and spice that is produced from wounded Aquilaria spp., is widely used in Southeast Asia and is highly traded on the market. The lack of highly responsive Aquilaria lines has seriously restricted agarwood yield and the development of its industry. In this article, a comparative transcriptome analysis was carried out between ordinary A. sinensis and Chi-Nan germplasm, which is a kind of A. sinensis tree with high agarwood-producing capacity in response to wounding stress, to elucidate the molecular mechanism underlying wounding stress in different A. sinensis germplasm resources and to help identify and breed high agarwood-producing strains. RESULTS: A total of 2427 and 1153 differentially expressed genes (DEGs) were detected in wounded ordinary A. sinensis and Chi-Nan germplasm compared with the control groups, respectively. KEGG enrichment analysis revealed that genes participating in starch metabolism, secondary metabolism and plant hormone signal transduction might play major roles in the early regulation of wound stress. 86 DEGs related to oxygen metabolism, JA pathway and sesquiterpene biosynthesis were identified. The majority of the expression of these genes was differentially induced between two germplasm resources under wounding stress. 13 candidate genes related to defence and sesquiterpene biosynthesis were obtained by WGCNA. Furthermore, the expression pattern of genes were verified by qRT-PCR. The candidate genes expression levels were higher in Chi-Nan germplasm than that in ordinary A. sinensis during early stage of wounding stress, which may play important roles in regulating high agarwood-producing capacity in Chi-Nan germplasm. CONCLUSIONS: Compared with A. sinensis, Chi-Nan germplasm invoked different biological processes in response to wounding stress. The genes related to defence signals and sesquiterepene biosynthesis pathway were induced to expression differentially between two germplasm resources. A total of 13 candidate genes were identified, which may correlate with high agarwood-producting capacity in Chi-Nan germplasm during the early stage of wounding stress. These genes will contribute to the development of functional molecular markers and the rapid breeding highly of responsive Aquilaria lines.


Asunto(s)
Sesquiterpenos , Thymelaeaceae , Perfilación de la Expresión Génica , Oxígeno/metabolismo , Fitomejoramiento , Reguladores del Crecimiento de las Plantas/metabolismo , Sesquiterpenos/metabolismo , Almidón/metabolismo , Thymelaeaceae/genética , Thymelaeaceae/metabolismo
17.
Chem Biodivers ; 19(12): e202200490, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36266258

RESUMEN

2-(2-Phenylethyl)chromone derivatives are regarded as key components in agarwood. An oxygen-containing heterocycle with a benzoannelated γ-pyrone moiety form the bioactive core of 2-(2-phenylethyl)chromones. With different substituents and positions, 2-(2-phenylethyl)chromone derivatives exhibit diverse biological properties, such as antioxidant, antimicrobial, neuroprotective, anti-inflammatory, and acetylcholinesterase inhibitory activities. In this review, we summarized the studies (from January 1976 to September 2021) on phytochemistry, bioactivity and quality control of 2-(2-phenylethyl)chromones. These studies aimed to clarify the chemical specificity, diversity and structure-activity relationship of 2-(2-phenylethyl)chromones. In addition, we assumed that diverse factors such as tree species, induction methods and formation time contribute to the chemical diversity of 2-(2-phenylethyl)chromones. Furthermore, this review contends that different types of 2-(2-phenylethyl)chromones should be utilized in the quality control methods of agarwood.


Asunto(s)
Cromonas , Thymelaeaceae , Cromonas/química , Acetilcolinesterasa , Thymelaeaceae/química , Flavonoides/farmacología , Flavonoides/química , Estructura Molecular
18.
J Asian Nat Prod Res ; 24(11): 1033-1040, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34958625

RESUMEN

Two new dimeric 2-(2-phenylethyl)chromones, aquilasinenones L and M (1 and 2), and one new monomer analogue, 5S, 6 R, 7S, 8 R-tetrahydroxy-[2-(3-methoxy-4-hydroxyphenyl)ethyl]- 5,6,7,8-tetrahydrochromone (3), together with two known compounds, were isolated from the artificial agarwood originating from Aquilaria sinensis. Compound 1 was the first structure found with C8-O-C4"' linkage among 2-(2-phenylethyl)chromone dimers. Their structures were unambiguously elucidated based on 1 D and 2 D NMR spectroscopy, as well as by comparison with the literature. The absolute configuration was determined by ECD calculation. None of the compounds exhibited acetylcholinesterase inhibitory activity.


Asunto(s)
Cromonas , Thymelaeaceae , Cromonas/química , Acetilcolinesterasa , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Estructura Molecular , Thymelaeaceae/química , Flavonoides/química
19.
Molecules ; 27(9)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35566388

RESUMEN

The inflammatory response is a central aspect of the human immune system that acts as a defense mechanism to protect the body against infections and injuries. A dysregulated inflammatory response is a major health concern, as it can disrupt homeostasis and lead to a plethora of chronic inflammatory conditions. These chronic inflammatory diseases are one of the major causes of morbidity and mortality worldwide and the need for them to be managed in the long term has become a crucial task to alleviate symptoms and improve patients' overall quality of life. Although various synthetic anti-inflammatory agents have been developed to date, these medications are associated with several adverse effects that have led to poor therapeutic outcomes. The hunt for novel alternatives to modulate underlying chronic inflammatory processes has unveiled nature to be a plentiful source. One such example is agarwood, which is a valuable resinous wood from the trees of Aquilaria spp. Agarwood has been widely utilized for medicinal purposes since ancient times due to its ability to relieve pain, asthmatic symptoms, and arrest vomiting. In terms of inflammation, the major constituent of agarwood, agarwood oil, has been shown to possess multiple bioactive compounds that can regulate molecular mechanisms of chronic inflammation, thereby producing a multitude of pharmacological functions for treating various inflammatory disorders. As such, agarwood oil presents great potential to be developed as a novel anti-inflammatory therapeutic to overcome the drawbacks of existing therapies and improve treatment outcomes. In this review, we have summarized the current literature on agarwood and its bioactive components and have highlighted the potential roles of agarwood oil in treating various chronic inflammatory diseases.


Asunto(s)
Calidad de Vida , Thymelaeaceae , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Madera
20.
Molecules ; 27(11)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35684324

RESUMEN

Agarwood, popularly known as oudh or gaharu, is a fragrant resinous wood of high commercial value, traded worldwide and primarily used for its distinctive fragrance in incense, perfumes, and medicine. This fragrant wood is created when Aquilaria trees are wounded and infected by fungi, producing resin as a defense mechanism. The depletion of natural agarwood caused by overharvesting amidst increasing demand has caused this fragrant defensive resin of endangered Aquilaria to become a rare and valuable commodity. Given that instances of natural infection are quite low, artificial induction, including biological inoculation, is being conducted to induce agarwood formation. A long-term investigation could unravel insights contributing toward Aquilaria being sustainably cultivated. This review will look at the different methods of induction, including physical, chemical, and biological, and compare the production, yield, and quality of such treatments with naturally formed agarwood. Pharmaceutical properties and medicinal benefits of fragrance-associated compounds such as chromones and terpenoids are also discussed.


Asunto(s)
Perfumes , Thymelaeaceae , Odorantes , Perfumes/análisis , Resinas de Plantas/análisis , Thymelaeaceae/química , Árboles , Madera/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA