Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Small ; : e2402382, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39118549

RESUMEN

Developing high-performance porous materials to separate ethane from ethylene is an important but challenging task in the chemical industry, given their similar sizes and physicochemical properties. Herein, a new type of ultra-strong C2H6 nano-trap, CuIn(3-ain)4 is presented, which utilizes multiple guest-host interactions to efficiently capture C2H6 molecules and separate mixtures of C2H6 and C2H4. The ultra-strong C2H6 nano-trap exhibits the high C2H6 (2.38 mmol g-1) uptake at 6.25 kPa and 298 K and demonstrates a remarkable selectivity of 3.42 for C2H6/C2H4 (10:90). Additionally, equimolar C2H6/C2H4 exhibited a superior high separation potential ∆Q (2286 mmol L-1) at 298 K. Kinetic adsorption tests demonstrated that CuIn(3-ain)4 has a high adsorption rate for C2H6, establishing it as a new benchmark material for the capture of C2H6 and the separation of C2H6/C2H4. Notably, this exceptional performance is maintained even at a higher temperature of 333 K, a phenomenon not observed before. Theoretical simulations and single-crystal X-ray diffraction provide critical insights into how selective adsorption properties can be tuned by manipulating pore dimensions and geometry. The excellent separation performance of CuIn(3-ain)4 has been confirmed through breakthrough experiments for C2H6/C2H4 gas mixtures.

2.
Bioprocess Biosyst Eng ; 47(7): 1071-1080, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38811469

RESUMEN

This study investigates the immobilization of cellulase on zeolitic imidazolate frameworks (ZIFs) by physical adsorption, specifically the ZIF-8-NH2 and Fe3O4@ZIF-8-NH2, to enhance enzymatic hydrolysis efficiency. The immobilization process was thoroughly analyzed, including optimization of conditions and characterization of ZIF carriers and immobilized enzymes. The impacts on the catalytic activity of cellulase under various temperatures, pH levels, and storage conditions were examined. Additionally, the reusability of the immobilized enzyme was assessed. Results showed the cellulase immobilized on Fe3O4@ZIF-8-NH2 exhibited a high loading capacity of 339.64 mg/g, surpassing previous studies. Its relative enzymatic activity was found to be 71.39%. Additionally, this immobilized enzyme system demonstrates robust reusability, retaining 68.42% of its initial activity even after 10 cycles. These findings underscore the potential of Fe3O4@ZIF-8-NH2 as a highly efficient platform for cellulase immobilization, with promising implications for lignocellulosic biorefinery.


Asunto(s)
Celulasa , Celulosa , Enzimas Inmovilizadas , Zeolitas , Enzimas Inmovilizadas/química , Celulasa/química , Zeolitas/química , Adsorción , Hidrólisis , Celulosa/química , Imidazoles/química , Concentración de Iones de Hidrógeno , Temperatura
3.
Small ; 19(43): e2303775, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37357162

RESUMEN

The compatibility of crystallinity, stability, and functionality in covalent organic frameworks (COFs) is challenging but significant in reticular chemistry and materials science. Herein, it is presented for the first time a strategy to synthesize directly amino-functionalized COF with stable benzodiimidazole linkage by regioselective one-step cyclization and aromatization. Bandrowski's base with two types of amino groups is used as a unique monomer, providing not only construction sites for the material framework through specific region-selective reaction, but also amino active sites for functionality, which is usually difficult to achieve directly in COF synthesis because amino groups are the participants in COF bonding. In addition, the aromatic benzodiimidazole rings and the large conjugated system of the product effectively improve the crystallinity and stability, so that the as-prepared BBCOF remains unchanged in both acid and base solutions, which is obviously better than the conventional imine-linked COF. Impressively, the significantly enhanced conjugation degree by the benzodiimidazole structure also endows BBCOF with an efficient photocatalytic reduction of uranyl ion, with removal rate as high as 96.6% in single-ion system and 95% in multi-ion system. This study is of great importance to the design and synthesis of functional COFs with a commendable trade-off among crystallinity, stability, and functionality.

4.
Angew Chem Int Ed Engl ; 62(17): e202218472, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-36854948

RESUMEN

High-purity H2 production accompanied with a precise decarbonization opens an avenue to approach a carbon-neutral society. Metal-organic framework nanosheet membranes provide great opportunities for an accurate and fast H2 /CO2 separation, CO2 leakage through the membrane interlayer galleries decided the ultimate separation accuracy. Here we introduce low dose amino side groups into the Zn2 (benzimidazolate)4 conformation. Physisorbed CO2 served as interlayer linkers, gently regulated and stabilized the interlayer spacing. These evoked a synergistic effect of CO2 adsorption-assisted molecular sieving and steric hinderance, whilst exquisitely preserving apertures for high-speed H2 transport. The optimized amino membranes set a new record for ultrathin nanosheet membranes in H2 /CO2 separation (mixture separation factor: 1158, H2 permeance: 1417 gas permeation unit). This strategy provides an effective way to customize ultrathin nanosheet membranes with desirable molecular sieving ability.

5.
Environ Res ; 211: 113073, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35283075

RESUMEN

The objectives of the study were to evaluate and compare the efficacy of hexavalent chromium (Cr(VI)) removal by amino-modified (HDA-MPBC) and pristine biochar (MPBC) derived from an invasive plant Mimosa pigra. Prepared biochars were characterized and batch experiments were conducted to check the performance and the mechanisms of Cr(VI) removal. FTIR spectra revealed that the surface of HDA-MPBC is abundant with amino functional groups which was further confirmed by XPS analysis. The highest Cr(VI) removal for both HDA-MPBC (76%) and MPBC (62%) was observed at pH 3.0. The batch sorption data were well fitted to the Freundlich isotherm model and pseudo-second-order kinetic model, suggesting the involvement of both physisorption and chemisorption mechanisms for Cr(VI) removal. X-ray photoelectron spectroscopy studies showed that both Cr(VI) and Cr(III) were presented at the modified biochar surface after adsorption. These results indicated that the electrostatic attraction of Cr(VI) coupled with reduction of Cr(VI) to Cr(III) and complexation of Cr(III) ions with functional groups on HDA-MPBC as the most plausible mechanism for removal of Cr(VI) by modified biochar. Regeneration experiment concluded that adsorbed Cr(VI) onto the surface of HDA-MPBC had the least tendency of being desorbed in basic conditions. HDA-MPBC showed a high performance in adsorptive removal of Cr(VI) compared to pristine biochar signifying the amino modification to enhance adsorption performance of biochar in Cr(VI) removal from wastewater.


Asunto(s)
Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico/química , Cromo/análisis , Cinética , Agua , Contaminantes Químicos del Agua/análisis
6.
Environ Res ; 207: 112156, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34599897

RESUMEN

Herein, it is aimed to develop a high-performance monolithic adsorbent to be utilized in methyl orange (MO) adsorption. Therefore, amino-functionalized three-dimensional graphene networks (3D-GNf) fulfilling the requirements of reusability and high capacity have been fabricated via hydrothermal self-assembly approach followed by a double-crosslinking strategy. The potential utilization of 3D-GNf as an adsorbent for removal MO has been assessed using both batch-adsorption studies and an artificial neural network (ANN) approach. Graphene oxide sheets have been amino-functionalized and cross-linked, by ethylenediamine (EDA) during hydrothermal treatment, following the glutaraldehyde has used as a double-crosslinking agent to facilitate the crosslinking of architecture. The successful fabrication of 3D-GNf has been confirmed by field-emission scanning electron microscopy (FESEM), Fourier transform infrared (FT-IR), Raman and X-ray photoelectron spectroscopy (XPS). Moreover, N2 adsorption/desorption isotherms have revealed the high specific surface area (1015 m2 g-1) with high pore volume (1.054 cm3 g-1) and hierarchical porous structure of 3D-GNf. The effect of initial concentration, contact time, and temperature on adsorption capacity have been thoroughly studied, and the kinetics, isotherms, and thermodynamics of MO adsorption have been modelled. The MO adsorption has been well defined by the pseudo-second-order kinetic model and Langmuir isotherm model with a monolayer adsorption capacity of 270.27 mg g-1 at 25 °C. The thermodynamic findings have revealed MO adsorption has occurred spontaneously with an endothermic process. The Levenberg-Marquardt backpropagation algorithm has been implemented to train the ANN model, which has used the activation functions of tansig and purelin functions at the hidden and output layers, respectively. An optimum ANN model with high-performance metrics (coefficient of determination, R2 = 0.9995; mean squared error, MSE = 0.0008) composed of three hidden layers with 5 neurons in each layer was constructed to forecast MO adsorption. The findings have shown that experimental results are consistent with ANN-based data, implying that the suggested ANN model may be used to forecast cationic dye adsorption.


Asunto(s)
Grafito , Contaminantes Químicos del Agua , Adsorción , Compuestos Azo , Concentración de Iones de Hidrógeno , Cinética , Redes Neurales de la Computación , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica , Contaminantes Químicos del Agua/análisis
7.
J Sep Sci ; 45(10): 1746-1756, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35218314

RESUMEN

An amino-functionalized magnetic covalent organic framework composite TpBD-(NH2 )2 @Fe3 O4 (Tp=Tp1,3,5-triformylphloroglucinol, BD-(NH2 )2 is 3,3',4,4'-biphenyltetramine) was prepared by post-synthesis modification. Due to its abundant benzene rings and amino groups, large specific surface area and porous structure, the prepared TpBD-(NH2 )2 @Fe3 O4 exhibits high extraction efficiency toward sulfonylurea herbicides. Based on this, a new method of magnetic solid-phase extraction with TpBD-(NH2 )2 @Fe3 O4 as the sorbent combined with high-performance liquid chromatography and ultraviolet detection was developed for trace analysis of sulfonylurea herbicides in environmental water, soil and tobacco leaves samples from tobacco land. Under the optimized conditions, the limits of detection within 0.05-0.14 µg/L were achieved with a high enrichment factor of 217-260-fold, and the relative standard deviations were 4.9-7.5% (n = 7, c = 0.5 µg/L). The linear range was around three orders of magnitude with the square of correlation coefficient higher than 0.9936. The method was applied to analyze five sulfonylurea herbicides in the environmental water, soil, and tobacco leave samples collected from tobacco land. No sulfonylurea herbicides were detected in these samples. The recoveries of target sulfonylurea herbicides in spiked environmental water, soil, and tobacco leaf samples were found in the range of 90.7-104, 70.7-99.0, and 59.3-97.8%, respectively. The results illustrate that the established TpBD-(NH2 )2 @Fe3 O4 -magnetic solid-phase extraction- high-performance liquid chromatography-ultraviolet detection method is efficient for the analysis of trace sulfonylurea herbicides in environmental samples.


Asunto(s)
Herbicidas , Estructuras Metalorgánicas , Cromatografía Líquida de Alta Presión/métodos , Herbicidas/análisis , Fenómenos Magnéticos , Estructuras Metalorgánicas/química , Suelo , Extracción en Fase Sólida/métodos , Compuestos de Sulfonilurea , Nicotiana , Agua/análisis
8.
Molecules ; 27(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36144589

RESUMEN

The design of high-efficiency CO2 adsorbents with low cost, high capacity, and easy desorption is of high significance for reducing carbon emissions, which yet remains a great challenge. This work proposes a facile construction strategy of amino-functional dynamic covalent materials for effective CO2 capture from flue gas. Upon the dynamic imine assembly of N-site rich motif and aldehyde-based spacers, nanospheres and hollow nanotubes with spongy pores were constructed spontaneously at room temperature. A commercial amino-functional molecule tetraethylenepentamine could be facilely introduced into the dynamic covalent materials by virtue of the dynamic nature of imine assembly, thus inducing a high CO2 capacity (1.27 mmol·g-1) from simulated flue gas at 75 °C. This dynamic imine assembly strategy endowed the dynamic covalent materials with facile preparation, low cost, excellent CO2 capacity, and outstanding cyclic stability, providing a mild and controllable approach for the development of competitive CO2 adsorbents.

9.
Molecules ; 27(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36431943

RESUMEN

Due to the rapid development of industrialization, various environmental problems such as water resource pollution are gradually emerging, among which heavy metal pollution is harmful to both human beings and the environment. As a result, there are many metal ion detection methods, among which fluorescence detection stands out because of its rapid, sensitive, low cost and non-toxic characteristics. In recent years, graphene quantum dots have been widely used and studied due to their excellent properties such as high stability, low toxicity and water solubility, and have a broad prospect in the field of metal ion detection. A novel high fluorescence Cu2+, Co2+ sensing probe produced by graphene quantum hydrothermal treatment is reported. After heat treatment with hydrazine hydrate, the small-molecule precursor nitronaphthalene synthesized by self-nitrification was transformed from blue fluorescent GQDs to green fluorescent amino-functionalized N-GQDs. Compared with other metal ions, N-GQDs are more sensitive to Cu2+ and Co2+ on the surface, and N-GQDs have much higher selectivity to Cu2+ and Co2+ than GQDs. The strategy proposed here is simple and economical in design.


Asunto(s)
Grafito , Puntos Cuánticos , Humanos , Cobre , Cobalto , Iones , Agua
10.
Angew Chem Int Ed Engl ; 61(41): e202210466, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-35980347

RESUMEN

Covalent organic framework (COF) membranes with tunable ordered channels and free organic groups hold great promise in molecular separations owing to the synergy of physical and chemical microenvironments. Herein, we develop a defect engineering strategy to fabricate COF membranes for efficient CO2 separation. Abundant amino groups are in situ generated on the COF nanosheets arising from the missing-linker defects during the reactive assembly of amine monomer and mixed aldehyde monomers. The COF nanosheets are assembled to fabricate COF membranes. Amino groups, as the CO2 facilitated transport carriers, along with ordered channels endow COF membrane with high CO2 permeances exceeding 300 GPU and excellent separation selectivity of 80 for CO2 /N2 , and 54 for CO2 /CH4 mixed gas under humidified state. Our defect engineering strategy offers a facile approach to generating free organic functional groups in COF membranes and other organic framework membranes for diverse chemical separations.

11.
Angew Chem Int Ed Engl ; 61(48): e202213015, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36202779

RESUMEN

Adsorption technology based on ethane-selective materials is a promising alternative to energy-intensive cryogenic distillation for separating ethane (C2 H6 ) and ethylene (C2 H4 ). We employed a pore engineering strategy to tune the pore environment of a metal-organic framework (MOF) through organic functional groups and boosted the C2 H6 /C2 H4 separation of the MOF. Introduction of amino (-NH2 ) groups into Tb-MOF-76 not only decreased pore sizes but also facilitated multiple guest-host interactions in confined pores. The NH2 -functionalized Tb-MOF-76(NH2 ) has increased C2 H6 and C2 H4 uptakes and C2 H6 /C2 H4 selectivity. The results of experimental and simulated transient breakthroughs reveal that Tb-MOF-76(NH2 ) has significantly improved one-step separation performance for C2 H6 /C2 H4 mixtures with a high C2 H4 (>99.95 %) productivity of 17.66 L kg-1 compared to 7.53 L kg-1 by Tb-MOF-76, resulting from the suitable pore confinement and accessible -NH2 groups on pore surfaces.

12.
Nanotechnology ; 33(7)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34736241

RESUMEN

Understanding the mechanism of the negative differential resistance (NDR) in transition metal dichalcogenides is essential for fundamental science and the development of electronic devices. Here, the NDR of the current-voltage characteristics was observed based on the glutamine-functionalized WS2quantum dots (QDs). The NDR effect can be adjusted by varying the applied voltage range, air pressure, surrounding gases, and relative humidity. A peak-to-valley current ratio as high as 6.3 has been achieved at room temperature. Carrier trapping induced by water molecules was suggested to be responsible for the mechanism of the NDR in the glutamine-functionalized WS2QDs. Investigating the NDR of WS2QDs may promote the development of memory applications and emerging devices.

13.
Environ Res ; 193: 110570, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33275922

RESUMEN

Amino groups are successfully introduced on the surface of BiOBr nanosheets through a facile ammonia functionalization method. The surface morphology of the modified BiOBr hybrids varies on the concentration of applied ammonia solution. The active {001}-facet-exposed feature of nanosheets is well retained after amino-functionalization. With generation of small Bi2O4 nanoparticles on the surface of BiOBr nanosheets, the light adsorption of hybrids gradually shifts to the near infrared range. Compared to pure BiOBr with negligible activity, BOB10 hybrids exhibit superior photocatalytic activity for bacterial inactivation, with 7-log cells reduction in 40 min under LED irradiation. Amino functionalization endows BOB10 hybrids excellent adhesion capability towards surface negatively-charged bacterium Escherichia coli, which can significantly shortened access distance of the predominant •O2- and h+ guaranteeing their inactivation ability on cells membrane, thus leading to remarkable bacterial inactivation performance.


Asunto(s)
Bismuto , Escherichia coli , Catálisis , Luz
14.
J Struct Biol ; 209(2): 107437, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31866389

RESUMEN

Cryo-EM samples prepared using traditional methods often suffer from too few particles, poor particle distribution, strongly biased orientation, or damage from the air-water interface. Here we report that functionalization of graphene oxide (GO) coated grids with amino groups concentrates samples on the grid with improved distribution and orientation. By introducing a PEG spacer, particles are kept away from both the GO surface and the air-water interface, protecting them from potential denaturation.


Asunto(s)
Microscopía por Crioelectrón/métodos , Grafito/química , Imagen Individual de Molécula/métodos , Agua/química , Aminas/química , Polietilenglicoles/química
15.
Mikrochim Acta ; 187(6): 356, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32468175

RESUMEN

The preparation of an amino-functionalized hybrid monolithic column (TEOS-co-AEAPTES) via one-pot co-condensation of tetraethoxysilane (TEOS) and N-(ß-aminoethyl)-γ-aminopropyltriethoxysilane (AEAPTES) in a capillary is descibed. It was used as solid-phase microextraction (SPME) matrix followed by inductively coupled plasma-mass spectrometry (ICP-MS) for determination of trace metals. Under optimum conditions, the amino-functionalized SPME material can simultaneously retain Cu(II), Zn(II), Au(III), and Pb(II) with adsorption capacities of 148, 60, 81, and 64 µg m-1, respectively. Subsequently, these four metal ions can be quantitatively eluted using 1 mol L-1 HNO3 containing 1% thiourea. The retention mechanism of Cu(II), Zn(II), Au(III), and Pb(II) on the amino-functionalized hybrid monolith was explained as the combination of electrostatic and coordination interactions. With a 10-fold enrichment factor, the calibration curves were established in the range 0.5-100 µg L-1 with linear correlation coefficients above 0.9943 and the limits of quantitation were 0.05 µg L-1 for four target analytes. The limits of detection were 0.006, 0.012, 0.004, and 0.007 µg L-1 for Cu(II), Zn(II), Au(III), and Pb(II), respectively. The protocol was validated by analyzing Certified Reference Materials including standard sediment, soil, and nickel ore, and the results were in good agreement with their certified values. The relative standard deviations of the method were in the range 0.22-17.6%. The recoveries of the four metal ions in spiked samples were in the range 88.0-113.8%. Compared to direct ICP-MS determination, the proposed in-tube SPME procedure can effectively eliminate the interference from complex matrix, especially from those ores with very high content of main metal to improve the accuracy of analysis. Therefore the method is suitable for the simultaneous determination of ultra-trace Cu(II), Zn(II), Au(III), and Pb(II) in environmental and mineral samples. Graphical abstract The preparation of the TEOS-co-AEAPTES monolithic column and the SPME procedure of Cu(II), Zn(II), Au(III), and Pb(II).

16.
Molecules ; 25(12)2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32580500

RESUMEN

In industry, silica nanoparticles (NPs) are obtained by the fuming and the precipitation method. Fumed silica NPs are commonly used in the preparation of nanocomposites because they have an extremely low bulk density (160-190 kg/m3), large surface area (50-600 m2/g), and nonporous surface, which promotes strong physical contact between the NPs and the organic phase. Fumed silica has fewer silanol groups (Si-OH) on its surface than the silica prepared by the Stöber method. However, the number of -OH groups on the fumed silica surface can be increased by pretreating them with sodium hydroxide (NaOH) before further surface modification. In this study, the effectiveness of the NaOH pretreatment was evaluated on commercial fumed silica NPs with a surface area of 200 m2/g. The number of surface -OH groups was estimated by potentiometric titration. The pretreated fumed NPs, and the precipitated NPs (prepared by the Stöber method) were modified with 3-aminopropyltriethoxysilane (APTES) to obtain A200S and nSiO2-APTES, respectively. The NPs were characterized using electron dispersive scanning (EDS), scanning electron microscopy (SEM), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), BET (Brunauer-Emmett-Teller) analysis, and ζ-potential. XRD confirmed the presence of the organo-functional group on the surface of both NPs. After the amino-functionalization, the ζ-potential values of the nSiO2 and A200 changed from -35.5 mV and -14.4 mV to +26.2 mV and +11.76 mV, respectively. Consequently, we have successfully synthesized functionalized NPs with interesting, specific surface area and porosity (pore volume and size), which can be attractive materials for chemical and energy industries.


Asunto(s)
Aminas/química , Nanopartículas/química , Nanoestructuras/química , Dióxido de Silicio/química , Dispersión Dinámica de Luz , Nanopartículas/ultraestructura , Nanoestructuras/ultraestructura , Tamaño de la Partícula , Propilaminas/química , Silanos/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
17.
Molecules ; 25(21)2020 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-33114355

RESUMEN

This paper presents an enzyme biocatalytic method for grafting lignin (grafting bioprocess) with aniline, leading to an amino-derivatized polymeric product with modified properties (e.g., conductivity, acidity/basicity, thermostability and amino-functionalization). Peroxidase enzyme was used as a biocatalyst and H2O2 was used as an oxidation reagent, while the oxidative insertion of aniline into the lignin structure followed a radical mechanism specific for the peroxidase enzyme. The grafting bioprocess was tested in different configurations by varying the source of peroxidase, enzyme concentration and type of lignin. Its performance was evaluated in terms of aniline conversion calculated based on UV-vis analysis. The insertion of amine groups was checked by 1H-NMR technique, where NH protons were detected in the range of 5.01-4.99 ppm. The FTIR spectra, collected before and after the grafting bioprocess, gave evidence for the lignin modification. Finally, the abundance of grafted amine groups was correlated with the decrease of the free -OH groups (from 0.030 to 0.009 -OH groups/L for initial and grafted lignin, respectively). Additionally, the grafted lignin was characterized using conductivity measurements, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), temperature-programmed desorption (TPD-NH3/CO2) and scanning electron microscopy (SEM) analyses. The investigated properties of the developed lignopolymer demonstrated its disposability for specific industrial applications of derivatized lignin.


Asunto(s)
Compuestos de Anilina/química , Lignina/química , Peroxidasas/metabolismo , Alcoholes/química , Biocatálisis , Conductividad Eléctrica , Hidrocarburos Aromáticos/química , Peróxido de Hidrógeno/química , Concentración de Iones de Hidrógeno , Peso Molecular , Oxidación-Reducción , Temperatura
18.
Angew Chem Int Ed Engl ; 59(21): 8225-8231, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32003916

RESUMEN

Herein we report the development of a photocatalytic strategy for the divergent preparation of functionalized bicyclo[1.1.1]pentylamines. This approach exploits, for the first time, the ability of nitrogen-radicals to undergo strain-release reaction with [1.1.1]propellane. This reactivity is facilitated by the electrophilic nature of these open-shell intermediates and the presence of strong polar effects in the transition-state for C-N bond formation/ring-opening. With the aid of a simple reductive quenching photoredox cycle, we have successfully harnessed this novel radical strain-release amination as part of a multicomponent cascade compatible with several external trapping agents. Overall, this radical strategy enables the rapid construction of novel amino-functionalized building blocks with potential application in medicinal chemistry programs as p-substituted aniline bioisosteres.

19.
Prep Biochem Biotechnol ; 49(6): 590-596, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30929562

RESUMEN

In this study, 6-phosphogluconate dehydrogenase was covalently immobilized onto the N-2-aminoethyl-3-aminopropyltriethoxysilane (APTES) modified core-shell Fe3O4@SiO2 magnetic nanoparticles (ASMNPs) using glutaraldehyde (GA). Immobilization of 6PGDH on ASMNPs was confirmed using fourier transform-infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) analysis. The NADP+ conversion ratio, the reusability, thermal, and storage stability of the immobilized 6PGDH were determined and compared with those of the free enzyme. The maximum retention of enzyme activity reached to 96% when the enzyme was immobilized on ASMNPs activated with monomer form of GA. Although the thermal stability of free and immobilized enzymes was similar, at 30 °C, the immobilized 6PGDH showed the improved thermal stability at 40 °C and 50 °C compared with free 6PGDH. While the free 6PGDH only converted 33% of NADP+ in reaction medium upon 480 s, the immobilized 6PGDH performed 56% conversion of NADP+ at same time. The immobilized 6PGDH retained 62% of its initial activity up to the fifth cycle and 35% of its initial activity after 22 days of storage at 4 °C.


Asunto(s)
Enzimas Inmovilizadas/química , Nanopartículas de Magnetita/química , Fosfogluconato Deshidrogenasa/química , Estabilidad de Enzimas , Glutaral/química , Propilaminas/química , Silanos/química , Dióxido de Silicio/química , Temperatura
20.
Beilstein J Org Chem ; 12: 2372-2377, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28144305

RESUMEN

2-Ns-Protected ß-amino Weinreb amides were synthesized by aminochlorination of α,ß-unsaturated Weinreb amides in an ionic liquid, 1-n-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([BMIM][NTf2]). Processed without the use of metal catalysts or the need of an inert gas atmosphere, the presented process can be readily performed as a one-pot synthesis at room temperature. Moreover, the preparation has the distinct advantages of the use of 2-NsNCl2 as an inexpensive and stable nitrogen/halogen source and the ionic liquid as a recyclable reaction media. Nine examples were examined, and modest to good isolated chemical yields (40-83%) were obtained.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA