Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; : e0068524, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162435

RESUMEN

MIL77-3 is one component of antibody cocktail that is produced in our lab and represents an effective regimen for animals suffering from Zaire Ebolavirus (EBOV) infection. MIL77-3 is engineered to increase its affinity for the FcγRIIIa (CD16a) by deleting the fucose in the framework region. The potential effects of this modification on host immune responses, however, remain largely unknown. Herein, we demonstrated that MIL77-3 recognized secreted glycoproptein (sGP), produced by EBOV, and formed the immunocomplex to potently augment antibody-dependent cytotoxicity of human peripheral blood-derived natural killer cells (pNKs), including CD56dim and CD56bright subpopulations, in contrast to the counterparts (Mab114, rEBOV548, fucosylated MIL77-3). Intriguingly, this effect was not observed when NK92-CD16a cell line was utilized and restored by the addition of beads-coupled or membrane-anchored sGP in combination with MIL77-3. Furthermore, sGP bound to unrecognized receptors on T cells contaminated in pNKs rather than NK92-CD16a cells. Administration of beads-coupled sGP/MIL77-3 complex in mice elicited NK activation. Overall, this work reveals an immune-stimulating function of sGP/MIL77-3 complex by triggering cytotoxic activity of NK cells, highlighting the necessity to evaluate the potential impact of MIL77-3 on host immune reaction in clinical trials. IMPORTANCE: Zaire Ebolavirus (EBOV) is highly lethal and causes sporadic outbreaks. The passive administration of monoclonal antibodies (mAbs) represents a promising treatment regimen against EBOV. Mounting evidence has shown that the efficacy of a subset of therapeutic mAbs in vivo is intimately associated with its capacity to trigger NK activity, supporting glycomodification of Fc region of anti-EBOV mAbs as a putative strategy to enhance Fc-mediated immune effector function as well as protection in vivo. Our work here uncovers the potential harmful influence of this modification on host immune responses, especially for mAbs with cross-reactivity to secreted glycoproptein (sGP) (e.g., MIL77-3), and highlights it is necessary to evaluate the NK-stimulating activity of a fucosylated mAb engaged with sGP when a new candidate is developed.

2.
J Virol ; 97(2): e0160022, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36757205

RESUMEN

Infection by Kaposi sarcoma-associated herpesvirus (KSHV) can cause severe consequences, such as cancers and lymphoproliferative diseases. Whole inactivated viruses (WIV) with chemically destroyed genetic materials have been used as antigens in several licensed vaccines. During KSHV productive replication, virus-like vesicles (VLVs) that lack capsids and viral genomes are generated along with virions. Here, we investigated the immunogenicity of KSHV VLVs produced from a viral mutant that was defective in capsid formation and DNA packaging. Mice immunized with adjuvanted VLVs generated KSHV-specific T cell and antibody responses. Neutralization of KSHV infection by the VLV immune serum was low but was markedly enhanced in the presence of the complement system. Complement-enhanced neutralization and complement deposition on KSHV-infected cells was dependent on antibodies targeting viral open reading frame 4 (ORF4). However, limited complement-mediated enhancement was detected in the sera of a small cohort of KSHV-infected humans which contained few neutralizing antibodies. Therefore, vaccination that induces antibody effector functions can potentially improve infection-induced humoral immunity. Overall, our study highlights a potential benefit of engaging complement-mediated antibody functions in future KSHV vaccine development. IMPORTANCE KSHV is a virus that can lead to cancer after infection. A vaccine that prevents KSHV infection or transmission would be helpful in preventing the development of these cancers. We investigated KSHV VLV as an immunogen for vaccination. We determined that antibodies targeting the viral protein ORF4 induced by VLV immunization could engage the complement system and neutralize viral infection. However, ORF4-specific antibodies were seldom detected in the sera of KSHV-infected humans. Moreover, these human sera did not potently trigger complement-mediated neutralization, indicating an improvement that immunization can confer. Our study suggests a new antibody-mediated mechanism to control KSHV infection and underscores the benefit of activating the complement system in a future KSHV vaccine.


Asunto(s)
Anticuerpos Neutralizantes , Herpesvirus Humano 8 , Animales , Humanos , Ratones , Anticuerpos Neutralizantes/inmunología , Infecciones por Herpesviridae , Herpesvirus Humano 8/inmunología , Sistemas de Lectura Abierta/inmunología , Vacunación , Proteínas Virales/inmunología
3.
J Virol ; 96(11): e0007122, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35575481

RESUMEN

Zika virus (ZIKV) is a global public health concern due to its ability to cause congenital Zika syndrome and lack of approved vaccine, therapeutic, or other control measures. We discovered eight novel rabbit monoclonal antibodies (MAbs) that bind to distinct ZIKV envelope protein epitopes. The majority of the MAbs were ZIKV specific and targeted the lateral ridge of the envelope (E) protein domain III, while the MAb with the highest neutralizing activity recognized a putative quaternary epitope spanning E protein domains I and III. One of the non-neutralizing MAbs specifically recognized ZIKV precursor membrane protein (prM). Somatic hypermutation of immunoglobulin variable regions increases antibody affinity maturation and triggers antibody class switching. Negative correlations were observed between the somatic hypermutation rate of the immunoglobulin heavy-chain variable region and antibody binding parameters such as equilibrium dissociation constant, dissociation constant, and half-maximal effective concentration value of MAb binding to ZIKV virus-like particles. Complementarity-determining regions recognize the antigen epitopes and are scaffolded by canonical framework regions. Reversion of framework region amino acids to the rabbit germ line sequence decreased anti-ZIKV MAb binding activity of some MAbs. Thus, antibody affinity maturation, including somatic hypermutation and framework region mutations, contributed to the binding and function of these anti-ZIKV MAbs. IMPORTANCE ZIKV is a global health concern against which no vaccine or therapeutics are available. We characterized eight novel rabbit monoclonal antibodies recognizing ZIKV envelope and prM proteins and studied the relationship between somatic hypermutation of complementarity-determining regions, framework regions, mutations, antibody specificity, binding, and neutralizing activity. The results contribute to understanding structural features and somatic mutation pathways by which potent Zika virus-neutralizing antibodies can evolve, including the role of antibody framework regions.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antivirales , Hipermutación Somática de Inmunoglobulina , Virus Zika , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Neutralizantes/genética , Anticuerpos Antivirales/genética , Regiones Determinantes de Complementariedad/genética , Epítopos/genética , Mutación , Conejos , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Virus Zika/inmunología
4.
Proc Natl Acad Sci U S A ; 117(49): 31142-31148, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33229516

RESUMEN

Marburg virus (MARV) disease is lethal, with fatality rates up to 90%. Neutralizing antibodies (Abs) are promising drug candidates to prevent or treat the disease. Current efforts are focused in part on vaccine development to induce such MARV-neutralizing Abs. We analyzed the antibody repertoire from healthy unexposed and previously MARV-infected individuals to assess if naïve repertoires contain suitable precursor antibodies that could become neutralizing with a limited set of somatic mutations. We computationally searched the human Ab variable gene repertoire for predicted structural homologs of the neutralizing Ab MR78 that is specific to the receptor binding site (RBS) of MARV glycoprotein (GP). Eight Ab heavy-chain complementarity determining region 3 (HCDR3) loops from MARV-naïve individuals and one from a previously MARV-infected individual were selected for testing as HCDR3 loop chimeras on the MR78 Ab framework. Three of these chimerized antibodies bound to MARV GP. We then tested a full-length native Ab heavy chain encoding the same 17-residue-long HCDR3 loop that bound to the MARV GP the best among the chimeric Abs tested. Despite only 57% amino acid sequence identity, the Ab from a MARV-naïve donor recognized MARV GP and possessed neutralizing activity against the virus. Crystallization of both chimeric and full-length native heavy chain-containing Abs provided structural insights into the mechanism of binding for these types of Abs. Our work suggests that the MARV GP RBS is a promising candidate for epitope-focused vaccine design to induce neutralizing Abs against MARV.


Asunto(s)
Anticuerpos Antivirales/genética , Regiones Determinantes de Complementariedad/genética , Enfermedad del Virus de Marburg/inmunología , Marburgvirus/inmunología , Animales , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Regiones Determinantes de Complementariedad/inmunología , Epítopos/genética , Epítopos/inmunología , Glicoproteínas/genética , Glicoproteínas/inmunología , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/inmunología , Enfermedad del Virus de Marburg/tratamiento farmacológico , Enfermedad del Virus de Marburg/genética , Enfermedad del Virus de Marburg/virología , Marburgvirus/patogenicidad , Mutación/genética , Mutación/inmunología , Proteínas del Envoltorio Viral , Vacunas Virales/genética , Vacunas Virales/inmunología
5.
Infect Immun ; 90(11): e0021422, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36226942

RESUMEN

Melioidosis is a fatal tropical disease caused by the environmental Gram-negative bacterium, Burkholderia pseudomallei. This bacterium is intrinsically resistant to several antibiotics and treatment of melioidosis requires prolonged antibiotic administration. To date, there are no vaccines available for melioidosis. Previous studies have shown that humoral immunity is critical for surviving melioidosis and that O-polysaccharide (OPS) and hemolysin coregulated protein 1 (Hcp1) are important protective antigens in animal models of melioidosis. Our previous studies revealed that melioidosis patients had high levels of OPS- and Hcp1-specific antibodies and that IgG against OPS (IgG-OPS) and Hcp1 (IgG-Hcp1) were associated with patient survival. In this study, we characterized the potential function(s) of IgG-OPS and IgG-Hcp1 from melioidosis patients. IgG-OPS and IgG-Hcp1 were purified from pooled serum obtained from melioidosis patients using immuno-affinity chromatography. Antibody-dependent cellular phagocytosis assays were performed with pooled serum from melioidosis patients and compared with serum obtained from healthy controls. Serum from melioidosis patients significantly enhanced B. pseudomallei uptake into the human monocytic cell line THP-1 compared with pooled serum from healthy donors. Enhanced opsonization was observed with IgG-OPS and IgG-Hcp1 in a dose-dependent manner. Antibody-dependent complement deposition assays were performed with IgG-OPS and IgG-Hcp1 using flow cytometry and showed that there was enhanced C3b deposition on the surface of B. pseudomallei treated with IgG-OPS but to a lesser degree with IgG-Hcp1. This study provides insight into the function of IgG-OPS and IgG-Hcp1 in human melioidosis and supports that OPS and Hcp1 are potential vaccine antigens for immunization against melioidosis.


Asunto(s)
Burkholderia pseudomallei , Melioidosis , Humanos , Anticuerpos Antibacterianos , Proteínas Hemolisinas , Inmunoglobulina G , Polisacáridos
6.
Vox Sang ; 117(1): 128-132, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34125957

RESUMEN

BACKGROUND: CD36 is a glycoprotein expressed on platelets and monocytes of the blood. There are two types of CD36 deficiency, type I and type II. Individuals with type I-deficiency do not express CD36 in any cell type and can produce the CD36 antibody, which causes pathological conditions, such as fetal/neonatal alloimmune thrombocytopenia (FNAIT) and platelet transfusion refractory (PTR), through antigenic exposure via transfusion or pregnancy. CASE PRESENTATION: We experienced a case of Philadelphia-positive acute lymphoblastic leukaemia with PTR. In addition to the CD36 antibody, multiple-specificity HLA antibodies were present in the patient's plasma, requiring transfusion of HLA-compatible and CD36-negative platelets (PC-HLA). Since the number of donors was limited, it was necessary to set-up a blood transfusion schedule so that hyper-fractionated cyclophosphamide, vincristine and doxorubicin therapy (hyper-CVAD) and ponatinib combination chemotherapy could be safely administered to achieve molecular remission. Rituximab administration resulted in reduced levels of both CD36 antibody and HLA antibody. Given the expression of CD36 on haematopoietic stem cells and the limited availability of CD36-negative PC-HLA, haematopoietic stem cell transplantation (HSCT) was not considered to be an option. CONCLUSION: If CD36-negative, allogeneic haematopoietic stem cell donors are unable to be found, the indications for HSCT in patients with type I CD36-deficiency should be carefully weighed. In the present case, molecular remission has been able to be maintained to the present day after completion of a two-year maintenance regimen.


Asunto(s)
Trastornos de las Plaquetas Sanguíneas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Trombocitopenia Neonatal Aloinmune , Femenino , Enfermedades Genéticas Congénitas , Humanos , Cromosoma Filadelfia , Embarazo
7.
Infect Immun ; 89(12): e0041221, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34460286

RESUMEN

Pseudomonas aeruginosa is one of the principal pathogens implicated in respiratory infections of patients with cystic fibrosis (CF) and non-CF bronchiectasis. Previously, we demonstrated that impaired serum-mediated killing of P. aeruginosa was associated with increased severity of respiratory infections in patients with non-CF bronchiectasis. This inhibition was mediated by high titers of O-antigen-specific IgG2 antibodies that cloak the surface of the bacteria, blocking access to the membrane. Infection-related symptomatology was ameliorated in patients by using plasmapheresis to remove the offending antibodies. To determine if these inhibitory "cloaking antibodies" were prevalent in patients with CF, we investigated 70 serum samples from patients with P. aeruginosa infection and 5 from those without P. aeruginosa infection. Of these patients, 32% had serum that inhibited the ability of healthy control serum to kill P. aeruginosa. Here, we demonstrate that this inhibition of killing requires O-antigen expression. Furthermore, we reveal that while IgG alone can inhibit the activity of healthy control serum, O-antigen-specific IgA in patient sera can also inhibit serum-killing. We found that antibody affinity, not just titer, was also important in the inhibition of serum-mediated killing. These studies provide novel insight into cloaking antibodies in human infection and may provide further options in CF and other diseases for treatment of recalcitrant P. aeruginosa infections.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Fibrosis Quística/complicaciones , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Lipopolisacáridos/inmunología , Infecciones por Pseudomonas/etiología , Pseudomonas aeruginosa/inmunología , Proteínas del Sistema Complemento/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre
8.
J Virol ; 94(4)2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31776278

RESUMEN

Induction of protective antibodies is a critical goal of HIV-1 vaccine development. One strategy is to induce nonneutralizing antibodies (NNAbs) that kill virus-infected cells, as these antibody specificities have been implicated in slowing HIV-1 disease progression and in protection. HIV-1 Env constant region 1 and 2 (C1C2) monoclonal antibodies (MAbs) frequently mediate potent antibody-dependent cellular cytotoxicity (ADCC), making them an important vaccine target. Here, we explore the effect of delayed and repetitive boosting of RV144 vaccine recipients with AIDSVAX B/E on the C1C2-specific MAb repertoire. It was found that boosting increased clonal lineage-specific ADCC breadth and potency. A ligand crystal structure of a vaccine-induced broad and potent ADCC-mediating C1C2-specific MAb showed that it bound a highly conserved Env gp120 epitope. Thus, boosting to affinity mature these types of IgG C1C2-specific antibody responses may be one method by which to make an improved HIV vaccine with higher efficacy than that seen in the RV144 trial.IMPORTANCE Over one million people become infected with HIV-1 each year, making the development of an efficacious HIV-1 vaccine an important unmet medical need. The RV144 human HIV-1 vaccine regimen is the only HIV-1 clinical trial to date to demonstrate vaccine efficacy. An area of focus has been on identifying ways by which to improve upon RV144 vaccine efficacy. The RV305 HIV-1 vaccine regimen was a follow-up boost of RV144 vaccine recipients that occurred 6 to 8 years after the conclusion of RV144. Our study focused on the effect of delayed boosting in humans on the vaccine-induced Env constant region 1 and 2 (C1C2)-specific antibody repertoire. It was found that boosting with an HIV-1 Env vaccine increased C1C2-specific antibody-dependent cellular cytotoxicity potency and breadth.


Asunto(s)
Vacunas contra el SIDA/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , Anticuerpos Monoclonales/inmunología , Formación de Anticuerpos/inmunología , Especificidad de Anticuerpos/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Epítopos/inmunología , Anticuerpos Anti-VIH/inmunología , Anticuerpos Anti-VIH/ultraestructura , Proteína gp120 de Envoltorio del VIH/ultraestructura , Infecciones por VIH/inmunología , VIH-1/inmunología , Humanos , Inmunización Secundaria/métodos , Inmunoglobulina G/inmunología
9.
J Virol ; 94(7)2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-31941787

RESUMEN

The dependence of viruses on the host cell to complete their replicative cycle renders cellular functions potential targets for novel antivirals. We screened a panel of broadly acting cellular ion channel inhibitors for activity against human cytomegalovirus (HCMV) and identified the voltage-gated chloride ion channel inhibitor 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) as a potent inhibitor of HCMV replication. Time-of-addition studies demonstrated that DIDS inhibited entry via direct interaction with the virion that impeded binding to the plasma membrane. Synthesis and analysis of pharmacological variants of DIDS suggested that intrinsic cysteine, and not lysine, reactivity was important for activity against HCMV. Although sequencing of DIDS-resistant HCMV revealed enrichment of a mutation within UL100 (encoding glycoprotein M) and a specific truncation of glycoprotein RL13, these did not explain the DIDS resistance phenotype. Specifically, only the introduction of the RL13 mutant partially phenocopied the DIDS resistance phenotype. Serendipitously, the entry of DIDS-resistant HCMV also became independent of heparan sulfate proteoglycans (HSPGs), suggesting that evasion of DIDS lowered dependence on an initial interaction with HSPGs. Intriguingly, the DIDS-resistant virus demonstrated increased sensitivity to antibody neutralization, which mapped, in part, to the presence of the gM mutation. Taken together the data characterize the antiviral activity of a novel HCMV inhibitor that drives HCMV infection to occur independently of HSPGs and the generation of increased sensitivity to humoral immunity. The data also demonstrate that compounds with cysteine reactivity have the potential to act as antiviral compounds against HCMV via direct engagement of virions.IMPORTANCE Human cytomegalovirus (HCMV) is major pathogen of nonimmunocompetent individuals that remains in need of new therapeutic options. Here, we identify a potent antiviral compound (4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid [DIDS]), its mechanism of action, and the chemical properties required for its activity. In doing so, the data argue that cysteine-reactive compounds could have the capacity to be developed for anti-HCMV activity. Importantly, the data show that entry of DIDS-resistant virus became independent of heparan sulfate proteoglycans (HSPGs) but, concomitantly, became more sensitive to neutralizing antibody responses. This serendipitous observation suggests that retention of an interaction with HSPGs during the entry process in vivo may be evolutionarily advantageous through better evasion of humoral responses directed against HCMV virions.


Asunto(s)
Cisteína/metabolismo , Infecciones por Citomegalovirus/metabolismo , Citomegalovirus/fisiología , Proteoglicanos de Heparán Sulfato/metabolismo , Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/farmacología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Línea Celular , Citomegalovirus/efectos de los fármacos , Biblioteca de Genes , Humanos , Inmunidad Humoral , Inmunidad Innata , Concentración 50 Inhibidora , Lentivirus , Lisina/metabolismo , Proteínas de la Membrana/genética , Ratones , Mutación , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus/efectos de los fármacos , Replicación Viral
10.
J Virol ; 95(1)2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33055251

RESUMEN

Protective immunity against influenza A viruses (IAVs) generally depends on antibodies to the major envelope glycoprotein, hemagglutinin (HA), whose antigenicity is distinctive among IAV subtypes. On the other hand, the matrix 2 (M2) protein is antigenically highly conserved and has been studied as an attractive vaccine antigen to confer cross-protective immunity against multiple subtypes of IAVs. However, antiviral mechanisms of M2-specific antibodies are not fully understood. Here, we report the molecular basis of antiviral activity of an M2-specific monoclonal antibody (MAb), rM2ss23. We first found that rM2ss23 inhibited A/Aichi/2/1968 (H3N2) (Aichi) but not A/PR/8/1934 (H1N1) (PR8) replication. rM2ss23 altered the cell surface distribution of M2, likely by cross-linking the molecules, and interfered with the colocalization of HA and M2, resulting in reduced budding of progeny viruses. However, these effects were not observed for another strain, PR8, despite the binding capacity of rM2ss23 to PR8 M2. Interestingly, HA was also involved in the resistance of PR8 to rM2ss23. We also found that two amino acid residues at positions 54 and 57 in the M2 cytoplasmic tail were critical for the insensitivity of PR8 to rM2ss2. These findings suggest that the disruption of the M2-HA colocalization on infected cells and subsequent reduction of virus budding is one of the principal mechanisms of antiviral activity of M2-specific antibodies and that anti-M2 antibody-sensitive and -resistant IAVs have different properties in the interaction between M2 and HA.IMPORTANCE Although the IAV HA is the major target of neutralizing antibodies, most of the antibodies are HA subtype specific, restricting the potential of HA-based vaccines. On the contrary, the IAV M2 protein has been studied as a vaccine antigen to confer cross-protective immunity against IAVs with multiple HA subtypes, since M2 is antigenically conserved. Although a number of studies highlight the protective role of anti-HA neutralizing and nonneutralizing antibodies, precise information on the molecular mechanism of action of M2-specific antibodies is still obscure. In this study, we found that an anti-M2 antibody interfered with the HA-M2 association, which is important for efficient budding of progeny virus particles from infected cells. The antiviral activity was IAV strain dependent despite the similar binding capacity of the antibody to M2, and, interestingly, HA was involved in susceptibility to the antibody. Our data provide a novel mechanism underlying antiviral activity of M2-specific antibodies.


Asunto(s)
Anticuerpos Antivirales/farmacología , Antivirales/farmacología , Virus de la Influenza A/efectos de los fármacos , Proteínas de la Matriz Viral/inmunología , Aminoácidos , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Anticuerpos Antivirales/inmunología , Antivirales/inmunología , Perros , Células HEK293 , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Virus de la Influenza A/genética , Virus de la Influenza A/inmunología , Células de Riñón Canino Madin Darby , Mutación , Unión Proteica/efectos de los fármacos , Especificidad de la Especie , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/metabolismo , Liberación del Virus/efectos de los fármacos
11.
J Virol ; 94(9)2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32075936

RESUMEN

Infants of HIV-positive mothers can acquire HIV infection by various routes, but even in the absence of antiviral treatment, the majority of these infants do not become infected. There is evidence that maternal antibodies provide some protection from infection, but gestational maternal antibodies have not yet been characterized in detail. One of the most studied vertically infected infants is BG505, as the virus from this infant yielded an Envelope protein that was successfully developed as a stable trimer. Here, we isolated and characterized 39 HIV-specific neutralizing monoclonal antibodies (nAbs) from MG505, the mother of BG505, at a time point just prior to vertical transmission. These nAbs belonged to 21 clonal families and employed a variety of VH genes. Many were specific for the HIV-1 Env V3 loop, and this V3 specificity correlated with measurable antibody-dependent cellular cytotoxicity (ADCC) activity. The isolated nAbs did not recapitulate the full breadth of heterologous or autologous virus neutralization by contemporaneous plasma. Notably, we found that the V3-targeting nAb families neutralized one particular maternal Env variant, even though all tested variants had low V3 sequence diversity and were measurably bound by these nAbs. None of the nAbs neutralized BG505 transmitted virus. Furthermore, the MG505 nAb families were found at relatively low frequencies within the maternal B cell repertoire; all were less than 0.25% of total IgG sequences. Our findings illustrate an example of the diversity of HIV-1 nAbs within one mother, cumulatively resulting in a collection of antibody specificities that can contribute to the transmission bottleneck.IMPORTANCE Mother-to-child-transmission of HIV-1 offers a unique setting in which maternal antibodies both within the mother and passively transferred to the infant are present at the time of viral exposure. Untreated HIV-exposed human infants are infected at a rate of 30 to 40%, meaning that some infants do not get infected despite continued exposure to virus. Since the potential of HIV-specific immune responses to provide protection against HIV is a central goal of HIV vaccine design, understanding the nature of maternal antibodies may provide insights into immune mechanisms of protection. In this study, we isolated and characterized HIV-specific antibodies from the mother of an infant whose transmitted virus has been well studied.


Asunto(s)
Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Vacunas contra el SIDA/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Especificidad de Anticuerpos , Epítopos/inmunología , Femenino , Infecciones por VIH/virología , Humanos , Lactante , Transmisión Vertical de Enfermedad Infecciosa/prevención & control , Embarazo , Complicaciones Infecciosas del Embarazo/virología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
12.
Infect Immun ; 88(4)2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32014894

RESUMEN

Unbiased identification of individual immunogenic B-cell epitopes in major antigens of a pathogen remains a technology challenge for vaccine discovery. We therefore developed a platform for rapid phage display screening of deep recombinant libraries consisting of as few as one major pathogen antigen. Using the bicomponent pore-forming leukocidin (Luk) exotoxins of the major pathogen Staphylococcus aureus as a prototype, we randomly fragmented and separately ligated the hemolysin gamma A (HlgA) and LukS genes into a custom-built phage display system, termed pComb-Opti8. Deep sequence analysis of barcoded amplimers of the HlgA and LukS gene fragment libraries demonstrated that biopannng against a cross-reactive anti-Luk monoclonal antibody (MAb) recovered convergent molecular clones with short overlapping homologous sequences. We thereby identified an 11-amino-acid sequence that is highly conserved in four Luk toxin subunits and is ubiquitous in representation within S. aureus clinical isolates. The isolated 11-amino-acid peptide probe was predicted to retain the native three-dimensional (3D) conformation seen within the Luk holotoxin. Indeed, this peptide was recognized by the selecting anti-Luk MAb, and, using mutated peptides, we showed that a particular amino acid side chain was essential for these interactions. Furthermore, murine immunization with this peptide elicited IgG responses that were highly reactive with both the autologous synthetic peptide and the full-length Luk toxin homologues. Thus, using a gene fragment- and phage display-based pipeline, we have identified and validated immunogenic B-cell epitopes that are cross-reactive between members of the pore-forming leukocidin family. This approach could be harnessed to identify novel epitopes for a much-needed S. aureus-protective subunit vaccine.


Asunto(s)
Proteínas Bacterianas/inmunología , Mapeo Epitopo , Epítopos de Linfocito B/inmunología , Exotoxinas/inmunología , Staphylococcus aureus/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Anticuerpos Monoclonales/inmunología , Inmunoglobulina G/sangre , Ratones , Biblioteca de Péptidos , Vacunas Estafilocócicas/administración & dosificación , Vacunas Estafilocócicas/inmunología , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología
13.
J Virol ; 93(8)2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30700610

RESUMEN

Seasonal influenza viruses are a major cause of human disease worldwide. Most neutralizing antibodies (Abs) elicited by influenza viruses target the head domain of the hemagglutinin (HA) protein. Anti-HA head Abs can be highly potent, but they have limited breadth since the HA head is variable. There is great interest in developing new universal immunization strategies that elicit broadly neutralizing Abs against conserved regions of HA, such as the stalk domain. Although HA stalk Abs can provide protection in animal models, it is unknown if they are present at sufficient levels in humans to provide protection against naturally acquired influenza virus infections. Here, we quantified H1N1 HA head- and stalk-specific Abs in 179 adults hospitalized during the 2015-2016 influenza virus season. We found that HA head Abs, as measured by hemagglutinin inhibition (HAI) assays, were associated with protection against naturally acquired H1N1 infection. HA stalk-specific serum total IgG titers were also associated with protection, but this association was attenuated and not statistically significant after adjustment for HA head-specific Ab titers. We found slightly higher titers of HA stalk-specific IgG1 and IgA Abs in sera from uninfected participants than in sera from infected participants; however, we found no difference in serum in vitro antibody-dependent cellular cytotoxicity activity. In passive transfer experiments, sera from participants with high HAI activity efficiently protected mice, while sera with low HAI activity protected mice to a lower extent. Our data suggest that HA head Abs are more efficient at protecting against H1N1 infection than HA stalk Abs.IMPORTANCE Abs targeting the HA head of influenza viruses are often associated with protection from influenza virus infections. These Abs typically have limited breadth, since mutations frequently arise in HA head epitopes. New vaccines targeting the more conserved HA stalk domain are being developed. Abs that target the HA stalk are protective in animal models, but it is unknown if these Abs exist at protective levels in humans. Here, we completed experiments to determine if Abs against the HA head and stalk were associated with protection from naturally acquired human influenza virus infections during the 2015-2016 influenza season.


Asunto(s)
Anticuerpos Antivirales/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Adolescente , Adulto , Anciano , Animales , Anticuerpos Antivirales/farmacología , Femenino , Humanos , Inmunización Pasiva , Gripe Humana/prevención & control , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad
14.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30567978

RESUMEN

Marburg virus (MARV) is a filovirus related to Ebola virus (EBOV) associated with human hemorrhagic disease. Outbreaks are sporadic and severe, with a reported case mortality rate of upward of 88%. There is currently no antiviral or vaccine available. Given the sporadic nature of outbreaks, vaccines provide the best approach for long-term control of MARV in regions of endemicity. We have developed an inactivated rabies virus-vectored MARV vaccine (FILORAB3) to protect against Marburg virus disease. Immunogenicity studies in our labs have shown that a Th1-biased seroconversion to both rabies virus and MARV glycoproteins (GPs) is beneficial for protection in a preclinical murine model. As such, we adjuvanted FILORAB3 with glucopyranosyl lipid adjuvant (GLA), a Toll-like receptor 4 agonist, in a squalene-in-water emulsion. Across two different BALB/c mouse challenge models, we achieved 92% protection against murine-adapted Marburg virus (ma-MARV). Although our vaccine elicited strong MARV GP antibodies, it did not strongly induce neutralizing antibodies. Through both in vitro and in vivo approaches, we elucidated a critical role for NK cell-dependent antibody-mediated cellular cytotoxicity (ADCC) in vaccine-induced protection. Overall, these findings demonstrate that FILORAB3 is a promising vaccine candidate for Marburg virus disease.IMPORTANCE Marburg virus (MARV) is a virus similar to Ebola virus and also causes a hemorrhagic disease which is highly lethal. In contrast to EBOV, only a few vaccines have been developed against MARV, and researchers do not understand what kind of immune responses are required to protect from MARV. Here we show that antibodies directed against MARV after application of our vaccine protect in an animal system but fail to neutralize the virus in a widely used virus neutralization assay against MARV. This newly discovered activity needs to be considered more when analyzing MARV vaccines or infections.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Glicoproteínas/inmunología , Enfermedad del Virus de Marburg/inmunología , Marburgvirus/inmunología , Virus de la Rabia/inmunología , Rabia/inmunología , Animales , Línea Celular , Chlorocebus aethiops , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Vacunas Antirrábicas/inmunología , Vacunación/métodos , Células Vero , Vacunas Virales/inmunología
15.
J Virol ; 93(4)2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30487278

RESUMEN

Receptors recognizing the Fc part of immunoglobulin G (FcγRs) are key determinants in antibody-mediated immune responses. Members of the Herpesviridae interfere with this immune regulatory network by expressing viral FcγRs (vFcγRs). Human cytomegalovirus (HCMV) encodes four distinct vFcγRs that differ with respect to their IgG subtype specificity and their impact on antibody-mediated immune function in vitro The impact of vFcγRs on HCMV pathogenesis and immunomodulation in vivo is not known. The closest evolutionary animal model of HCMV is rhesus CMV (RhCMV) infection of rhesus macaques. To enable the characterization of vFcγR function in this model, we studied IgG binding by RhCMV. We show that lysates of RhCMV-infected cells contain an IgG-binding protein of 30 kDa encoded by the gene Rh05 that is a predicted type I glycoprotein belonging to the RL11 gene family. Upon deletion of Rh05, IgG-Fc binding by RhCMV strain 68-1 is lost, whereas ectopic expression of Rh05 results in IgG binding to transfected cells consistent with Rh05 being a vFcγR. Using a set of reporter cell lines stably expressing human and rhesus FcγRs, we further demonstrate that Rh05 antagonizes host FcγR activation. Compared to Rh05-intact RhCMV, RhCMVΔRh05 showed an increased activation of host FcγR upon exposure of infected cells to IgG from RhCMV-seropositive animals, suggesting that Rh05 protects infected cells from opsonization and IgG-dependent activation of host FcγRs. However, antagonizing host FcγR activation by Rh05 was not required for the establishment and maintenance of infection of RhCMV, even in a seropositive host, as shown by the induction of T cell responses to heterologous antigens expressed by RhCMV lacking the gene region encoding Rh05. In contrast to viral evasion of natural killer cells or T cell recognition, the evasion of antibody-mediated effects does not seem to be absolutely required for infection or reinfection. The identification of the first vFcγR that efficiently antagonizes host FcγR activation in the RhCMV genome will thus permit more detailed studies of this immunomodulatory mechanism in promoting viral dissemination in the presence of natural or vaccine-induced humoral immunity.IMPORTANCE Rhesus cytomegalovirus (RhCMV) offers a unique model for studying human cytomegalovirus (HCMV) pathogenesis and vaccine development. RhCMV infection of nonhuman primates greatly broadened the understanding of mechanisms by which CMVs evade or reprogram T cell and natural killer cell responses in vivo However, the role of humoral immunity and viral modulation of anti-CMV antibodies has not been studied in this model. There is evidence from in vitro studies that HCMVs can evade humoral immunity. By gene mapping and with the help of a novel cell-based reporter assay system we characterized the first RhCMV encoded IgG-Fcγ binding glycoprotein as a potent antagonist of rhesus FcγR activation. We further demonstrate that, unlike evasion of T cell immunity, this viral Fcγ receptor is not required to overcome anti-CMV immunity to establish secondary infections. These findings enable more detailed studies of the in vivo consequences of CMV evasion from IgG responses in nonhuman primate models.


Asunto(s)
Citomegalovirus/inmunología , Glicoproteínas/inmunología , Receptores de IgG/metabolismo , Animales , Anticuerpos Antivirales/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular , Citomegalovirus/fisiología , Infecciones por Citomegalovirus/virología , Glicoproteínas/metabolismo , Células HEK293 , Células HeLa , Humanos , Inmunoglobulina G/metabolismo , Macaca mulatta/virología , Ratones , Unión Proteica/fisiología , Receptores de IgG/inmunología , Transducción de Señal , Proteínas Virales/metabolismo
16.
Infect Immun ; 87(12)2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31548319

RESUMEN

Antibodies are essential for immunity against Ehrlichia chaffeensis, and protective mechanisms involve blocking of ehrlichial attachment or complement and Fcγ-receptor-dependent destruction. In this study, we determined that major outer membrane protein 1 (OMP-19) hypervariable region 1 (HVR1)-specific human monoclonal antibodies (huMAbs) are protective through conventional extracellular neutralization and, more significantly, through a novel intracellular TRIM21-mediated mechanism. Addition of OMP-1-specific huMAb EHRL-15 (IgG1) prevented infection by blocking attachment/entry, a mechanism previously reported; conversely, OMP-1-specific huMAb EHRL-4 (IgG3) engaged intracellular TRIM21 and initiated an immediate innate immune response and rapid intracellular degradation of ehrlichiae. EHRL-4-TRIM21-mediated inhibition was significantly impaired in TRIM21 knockout THP-1 cells. EHRL-4 interacted with cytosolic Fc receptor TRIM21, observed by confocal microscopy and confirmed by co-immunoprecipitation. E. chaffeensis-EHRL-4-TRIM21 complexes caused significant upregulation of proinflammatory cytokine/chemokine transcripts and resulted in rapid (<30 min) nuclear accumulation of NF-κB and TRIM21 and ehrlichial destruction. We investigated the role of TRIM21 in the autophagic clearance of ehrlichiae in the presence of EHRL-4. Colocalization between EHRL-4-opsonized ehrlichiae, polyubiquitinated TRIM21, autophagy regulators (ULK1 and beclin 1) and effectors (LC3 and p62), and lysosome-associated membrane protein 2 (LAMP2) was observed. Moreover, autophagic flux defined by conversion of LC3I to LC3II and accumulation and degradation of p62 was detected, and EHRL-4-mediated degradation of E. chaffeensis was abrogated by the autophagy inhibitor 3-methyladenine. Our results demonstrate that huMAbs are capable of inhibiting E. chaffeensis infection by distinct effector mechanisms: extracellularly by neutralization and intracellularly by engaging TRIM21, which mediates a rapid innate immune response that mobilizes the core autophagy components, triggering localized selective autophagic degradation of ehrlichiae.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/inmunología , Ehrlichia chaffeensis/inmunología , Ribonucleoproteínas/genética , Adenina/análogos & derivados , Adenina/farmacología , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Antígenos Bacterianos/genética , Autofagia/inmunología , Adhesión Bacteriana/genética , Sistemas CRISPR-Cas , Línea Celular Tumoral , Ehrlichia chaffeensis/genética , Técnicas de Inactivación de Genes , Humanos , Inmunidad Humoral/inmunología , FN-kappa B/genética , Células THP-1
17.
Infect Immun ; 87(4)2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30642904

RESUMEN

Plasmodium falciparum erythrocyte-binding antigen 140 (EBA-140) plays a role in tight junction formation during parasite invasion of red blood cells and is a potential vaccine candidate for malaria. Individuals in areas where malaria is endemic possess EBA-140-specific antibodies, and individuals with high antibody titers to this protein have a lower rate of reinfection by parasites. The red blood cell binding segment of EBA-140 is comprised of two Duffy-binding-like domains, called F1 and F2, that together create region II. The sialic acid-binding pocket of F1 is essential for binding, whereas the sialic acid-binding pocket in F2 appears dispensable. Here, we show that immunization of mice with the complete region II results in poorly neutralizing antibodies. In contrast, immunization of mice with the functionally relevant F1 domain of region II results in antibodies that confer a 2-fold increase in parasite neutralization compared to that of the F2 domain. Epitope mapping of diverse F1 and F2 monoclonal antibodies revealed that the functionally relevant F1 sialic acid-binding pocket is a privileged site inaccessible to antibodies, that the F2 sialic acid-binding pocket contains a nonneutralizing epitope, and that two additional epitopes reside in F1 on the opposite face from the sialic acid-binding pocket. These studies indicate that focusing the immune response to the functionally important F1 sialic acid binding pocket improves the protective immune response of EBA-140. These results have implications for improving future vaccine designs and emphasize the importance of structural vaccinology for malaria.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Proteínas Portadoras/inmunología , Epítopos/inmunología , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/inmunología , Formación de Anticuerpos , Proteínas Portadoras/química , Proteínas Portadoras/genética , Mapeo Epitopo , Epítopos/química , Epítopos/genética , Humanos , Malaria Falciparum/parasitología , Masculino , Proteínas de la Membrana , Ratones Endogámicos BALB C , Plasmodium falciparum/genética , Dominios Proteicos , Proteínas Protozoarias/química , Proteínas Protozoarias/genética
18.
BMC Med ; 17(1): 45, 2019 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-30798787

RESUMEN

BACKGROUND: Leading malaria vaccine, RTS,S, is based on the circumsporozoite protein (CSP) of sporozoites. RTS,S confers partial protection against malaria in children, but efficacy wanes relatively quickly after primary immunization. Vaccine efficacy has some association with anti-CSP IgG; however, it is unclear how these antibodies function, and how functional antibodies are induced and maintained over time. Recent studies identified antibody-complement interactions as a potentially important immune mechanism against sporozoites. Here, we investigated whether RTS,S vaccine-induced antibodies could function by interacting with complement. METHODS: Serum samples were selected from children in a phase IIb trial of RTS,S/AS02A conducted at two study sites of high and low malaria transmission intensity in Manhiça, Mozambique. Samples following primary immunization and 5-year post-immunization follow-up time points were included. Vaccine-induced antibodies were characterized by isotype, subclass, and epitope specificity, and tested for the ability to fix and activate complement. We additionally developed statistical methods to model the decay and determinants of functional antibodies after vaccination. RESULTS: RTS,S vaccination induced anti-CSP antibodies that were mostly IgG1, with some IgG3, IgG2, and IgM. Complement-fixing antibodies were effectively induced by vaccination, and targeted the central repeat and C-terminal regions of CSP. Higher levels of complement-fixing antibodies were associated with IgG that equally recognized both the central repeat and C-terminal regions of CSP. Older age and higher malaria exposure were significantly associated with a poorer induction of functional antibodies. There was a marked decay in functional complement-fixing antibodies within months after vaccination, as well as decays in IgG subclasses and IgM. Statistical modeling suggested the decay in complement-fixing antibodies was mostly attributed to the waning of anti-CSP IgG1, and to a lesser extent IgG3. CONCLUSIONS: We demonstrate for the first time that RTS,S can induce complement-fixing antibodies in young malaria-exposed children. The short-lived nature of functional responses mirrors the declining vaccine efficacy of RTS,S over time. The negative influence of age and malaria exposure on functional antibodies has implications for understanding vaccine efficacy in different settings. These findings provide insights into the mechanisms and longevity of vaccine-induced immunity that will help inform the future development of highly efficacious and long-lasting malaria vaccines.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Vacunas contra la Malaria/inmunología , Malaria/prevención & control , Preescolar , Humanos
19.
J Virol ; 92(13)2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29643249

RESUMEN

A vaccination regimen capable of eliciting potent and broadly neutralizing antibodies (bNAbs) remains an unachieved goal of the HIV-1 vaccine field. Here, we report the immunogenicity of longitudinal prime/boost vaccination regimens with a panel of HIV-1 envelope (Env) gp140 protein immunogens over a period of 200 weeks in guinea pigs. We assessed vaccine regimens that included a monovalent clade C gp140 (C97ZA012 [C97]), a tetravalent regimen consisting of four clade C gp140s (C97ZA012, 459C, 405C, and 939C [4C]), and a tetravalent regimen consisting of clade A, B, C, and mosaic gp140s (92UG037, PVO.4, C97ZA012, and Mosaic 3.1, respectively [ABCM]). We found that the 4C and ABCM prime/boost regimens were capable of eliciting greater magnitude and breadth of binding antibody responses targeting variable loop 2 (V2) over time than the monovalent C97-only regimen. The longitudinal boosting regimen conducted over more than 2 years increased the magnitude of certain tier 1 NAb responses but did not increase the magnitude or breadth of heterologous tier 2 NAb responses. These data suggest that additional immunogen design strategies are needed to induce broad, high-titer tier 2 NAb responses.IMPORTANCE The elicitation of potent, broadly neutralizing antibodies (bNAbs) remains an elusive goal for the HIV-1 vaccine field. In this study, we explored the use of a long-term vaccination regimen with different immunogens to determine if we could elicit bNAbs in guinea pigs. We found that longitudinal boosting over more than 2 years increased tier 1 NAb responses but did not increase the magnitude and breadth of tier 2 NAb responses. These data suggest that additional immunogen designs and vaccination strategies will be necessary to induce broad tier 2 NAb responses.


Asunto(s)
Vacunas contra el SIDA/administración & dosificación , Anticuerpos Neutralizantes/metabolismo , VIH-1/clasificación , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Vacunas contra el SIDA/inmunología , Animales , Femenino , Cobayas , Anticuerpos Anti-VIH/metabolismo , VIH-1/inmunología , Inmunización Secundaria , Estudios Longitudinales , Vacunación , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
20.
J Virol ; 92(12)2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29593047

RESUMEN

Chronic viral infections represent a major challenge to the host immune response, and a unique network of immunological elements, including cytokines, are required for their containment. By using a model persistent infection with the natural murine pathogen lymphocytic choriomeningitis virus clone 13 (LCMV Cl13) we investigated the role of one such cytokine, interleukin-27 (IL-27), in the control of chronic infection. We found that IL-27 receptor (IL-27R) signaling promoted control of LCMV Cl13 as early as days 1 and 5 after infection and that il27p28 transcripts were rapidly elevated in multiple subsets of dendritic cells (DCs) and myeloid cells. In particular, plasmacytoid DCs (pDCs), the most potent type 1 interferon (IFN-I)-producing cells, significantly increased il27p28 in a Toll-like receptor 7 (TLR7)-dependent fashion. Notably, mice deficient in an IL-27-specific receptor, WSX-1, exhibited a pleiotropy of innate and adaptive immune alterations after chronic lymphocytic choriomeningitis virus (LCMV) infection, including compromised NK cell cytotoxicity and antibody responses. While, the majority of these immune alterations appeared to be cell extrinsic, cell-intrinsic IL-27R was necessary to maintain early pDC numbers, which, alongside lower IFN-I transcription in CD11b+ DCs and myeloid cells, may explain the compromised IFN-I elevation that we observed early after LCMV Cl13 infection in IL-27R-deficient mice. Together, these data highlight the critical role of IL-27 in enabling optimal antiviral immunity early and late after infection with a systemic persistent virus and suggest that a previously unrecognized positive-feedback loop mediated by IL-27 in pDCs might be involved in this process.IMPORTANCE Persistently replicating pathogens, such as human immunodeficiency virus, hepatitis B virus, and hepatitis C virus, represent major health problems worldwide. These infections impose a long-term challenge on the host immune system, which must be heavily and continuously regulated to keep pathogen replication in check without causing fatal immunopathology. Using a persistently replicating rodent pathogen, LCMV, in its natural host, we identified the cellular sources and effects of one important regulatory pathway, interleukin-27 receptor WSX-1 signaling, that is required for both very early and late restriction of chronic (but not acute) infection. We found that WSX-1 was necessary to promote innate immunity and the development of aberrant adaptive immune responses. This not only highlights the role of IL-27 receptor signaling in regulating distinct host responses that are known to be necessary to control chronic infections, but also positions IL-27 as a potential therapeutic target for their modulation.


Asunto(s)
Inmunidad Adaptativa/inmunología , Células Dendríticas/inmunología , Inmunidad Innata/inmunología , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Receptores de Citocinas/inmunología , Animales , Enfermedad Crónica , Interleucina-27/inmunología , Células Asesinas Naturales/inmunología , Coriomeningitis Linfocítica/patología , Coriomeningitis Linfocítica/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Citocinas/genética , Receptores de Interleucina , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA