RESUMEN
New particle formation (NPF) substantially affects the global radiation balance and climate. Iodic acid (IA) is a key marine NPF driver that recently has also been detected inland. However, its impact on continental particle nucleation remains unclear. Here, we provide molecular-level evidence that IA greatly facilitates clustering of two typical land-based nucleating precursors: dimethylamine (DMA) and sulfuric acid (SA), thereby enhancing particle nucleation. Incorporating this mechanism into an atmospheric chemical transport model, we show that IA-induced enhancement could realize an increase of over 20% in the SA-DMA nucleation rate in iodine-rich regions of China. With declining anthropogenic pollution driven by carbon neutrality and clean air policies in China, IA could enhance nucleation rates by 1.5 to 50 times by 2060. Our results demonstrate the overlooked key role of IA in continental NPF nucleation and highlight the necessity for considering synergistic SA-IA-DMA nucleation in atmospheric modeling for correct representation of the climatic impacts of aerosols.
RESUMEN
The discrepancy between the observed lack of surface warming in the eastern equatorial Pacific and climate model projections of an El Niño-like warming pattern confronts the climate research community. While anthropogenic aerosols have been suggested as a cause, the prolonged cooling trend over the equatorial Pacific appears in conflict with Northern Hemisphere aerosol emission reduction since the 1980s. Here, using CESM, we show that the superposition of fast and slow responses to aerosol emission change-an increase followed by a decrease-can sustain the La Niña-like condition for a longer time than expected. The rapid adjustment of Hadley Cell to aerosol reduction triggers joint feedback between low clouds, wind, evaporation, and sea surface temperature in the Southeast Pacific, leading to a wedge-shaped cooling that extends to the central equatorial Pacific. Meanwhile, the northern subtropical cell gradually intensifies, resulting in equatorial subsurface cooling that lasts for decades.
RESUMEN
The debate on the sign of the soil moisture-precipitation feedback remains open. On the one hand, studies using global coarse-resolution climate models have found strong positive feedback. However, such models cannot represent convection explicitly. On the other hand, studies using km-scale regional climate models and explicit convection have reported negative feedback. Yet, the large-scale circulation is prescribed in such models. This study revisits the soil moisture-precipitation feedback using global, coupled simulations conducted for 1 y with explicit convection and compares the results to coarse-resolution simulations with parameterized convection. We find significant differences in a majority of points with feedback that is weaker and dominantly negative with explicit convection. The model with explicit convection is more often in a wet regime and prefers the triggering of convection over dry soil in the presence of soil moisture heterogeneity, in contrast to the coarse-resolution model. Further analysis indicates that the feedback not only between soil moisture and evapotranspiration but also between evapotranspiration and precipitation is weaker, in better agreement with observations. Our findings suggest that coarse-resolution models may not be well suited to study aspects of climate change over land such as changes in droughts and heatwaves.
RESUMEN
Land surface temperatures (LSTs) are strongly shaped by radiation but are modulated by turbulent fluxes and hydrologic cycling as the presence of water vapor in the atmosphere (clouds) and at the surface (evaporation) affects temperatures across regions. Here, we used a thermodynamic systems framework forced with independent observations to show that the climatological variations in LSTs across dry and humid regions are mainly mediated through radiative effects. We first show that the turbulent fluxes of sensible and latent heat are constrained by thermodynamics and the local radiative conditions. This constraint arises from the ability of radiative heating at the surface to perform work to maintain turbulent fluxes and sustain vertical mixing within the convective boundary layer. This implies that reduced evaporative cooling in dry regions is then compensated for by an increased sensible heat flux and buoyancy, which is consistent with observations. We show that the mean temperature variation across dry and humid regions is mainly controlled by clouds that reduce surface heating by solar radiation. Using satellite observations for cloudy and clear-sky conditions, we show that clouds cool the land surface over humid regions by up to 7 K, while in arid regions, this effect is absent due to the lack of clouds. We conclude that radiation and thermodynamic limits are the primary controls on LSTs and turbulent flux exchange which leads to an emergent simplicity in the observed climatological patterns within the complex climate system.
RESUMEN
Our understanding of ocean-cloud interactions and their effect on climate lacks insight into a key pathway: do biogenic marine emissions form new particles in the open ocean atmosphere? Using measurements collected in ship-borne air-sea interface tanks deployed in the Southwestern Pacific Ocean, we identified new particle formation (NPF) during nighttime that was related to plankton community composition. We show that nitrate ions are the only species for which abundance could support NPF rates in our semicontrolled experiments. Nitrate ions also prevailed in the natural pristine marine atmosphere and were elevated under higher sub-10 nm particle concentrations. We hypothesize that these nucleation events were fueled by complex, short-term biogeochemical cycling involving the microbial loop. These findings suggest a new perspective with a previously unidentified role of nitrate of marine biogeochemical origin in aerosol nucleation.
Asunto(s)
Atmósfera , Nitratos , Atmósfera/química , Clima , Compuestos Orgánicos/química , Océano Pacífico , Aerosoles/químicaRESUMEN
Reduced nitrogen (N) is central to global biogeochemistry, yet there are large uncertainties surrounding its sources and rate of cycling. Here, we present observations of gas-phase urea (CO(NH2)2) in the atmosphere from airborne high-resolution mass spectrometer measurements over the North Atlantic Ocean. We show that urea is ubiquitous in the lower troposphere in the summer, autumn, and winter but was not detected in the spring. The observations suggest that the ocean is the primary emission source, but further studies are required to understand the responsible mechanisms. Urea is also observed aloft due to long-range transport of biomass-burning plumes. These observations alongside global model simulations point to urea being an important, and currently unaccounted for, component of reduced-N to the remote marine atmosphere. Airborne transfer of urea between nutrient-rich and -poor parts of the ocean can occur readily and could impact ecosystems and oceanic uptake of carbon dioxide, with potentially important climate implications.
RESUMEN
Gaseous nitrous acid (HONO) is a critical source of hydroxyl radicals (OH) in the troposphere. While both direct and secondary sources contribute to atmospheric HONO, direct emissions have traditionally been considered minor contributors. In this study, we developed δ15N and δ18O isotopic fingerprints to identify six direct HONO emission sources and conducted a 1-y case study on the isotopic composition of atmospheric HONO at rural and urban sites. Interestingly, we identified that livestock farming is a previously overlooked direct source of HONO and determined its HONO to ammonia (NH3) emission ratio. Additionally, our results revealed that spatial and temporal variations in atmospheric HONO isotopic composition can be partially attributed to direct emissions. Through a detailed HONO budget analysis incorporating agricultural sources, we found that direct HONO emissions accounted for 39~45% of HONO production in rural areas across different seasons. The findings were further confirmed by chemistry transport model simulations, highlighting the significance of direct HONO emissions and their impact on air quality in the North China Plain. These findings provide compelling evidence that direct HONO emissions play a more substantial role in contributing to atmospheric HONO than previously believed. Moreover, the δ15N and δ18O isotopic fingerprints developed in this study may serve as a valuable tool for further research on the atmospheric chemistry of reactive nitrogen gases.
RESUMEN
Emissions of biogenic volatile organic compounds (BVOCs) are a crucial component of biosphere-atmosphere interactions. In northern latitudes, climate change is amplified by feedback processes in which BVOCs have a recognized, yet poorly quantified role, mainly due to a lack of measurements and concomitant modeling gaps. Hence, current Earth system models mostly rely on temperature responses measured on vegetation from lower latitudes, rendering their predictions highly uncertain. Here, we show how tundra isoprene emissions respond vigorously to temperature increases, compared to model results. Our unique dataset of direct eddy covariance ecosystem-level isoprene measurements in two contrasting ecosystems exhibited Q10 (the factor by which the emission rate increases with a 10 °C rise in temperature) temperature coefficients of up to 20.8, that is, 3.5 times the Q10 of 5.9 derived from the equivalent model calculations. Crude estimates using the observed temperature responses indicate that tundra vegetation could enhance their isoprene emissions by up to 41% (87%)-that is, 46% (55%) more than estimated by models-with a 2 °C (4 °C) warming. Our results demonstrate that tundra vegetation possesses the potential to substantially boost its isoprene emissions in response to future rising temperatures, at rates that exceed the current Earth system model predictions.
Asunto(s)
Butadienos , Calentamiento Global , Hemiterpenos , Desarrollo de la Planta , Tundra , Compuestos Orgánicos Volátiles , Butadienos/análisis , Hemiterpenos/análisis , Temperatura , Compuestos Orgánicos Volátiles/análisisRESUMEN
Biogenic volatile organic compounds (VOCs) constitute a significant portion of gas-phase metabolites in modern ecosystems and have unique roles in moderating atmospheric oxidative capacity, solar radiation balance, and aerosol formation. It has been theorized that VOCs may account for observed geological and evolutionary phenomena during the Archaean, but the direct contribution of biology to early non-methane VOC cycling remains unexplored. Here, we provide an assessment of all potential VOCs metabolized by the last universal common ancestor (LUCA). We identify enzyme functions linked to LUCA orthologous protein groups across eight literature sources and estimate the volatility of all associated substrates to identify ancient volatile metabolites. We hone in on volatile metabolites with confirmed modern emissions that exist in conserved metabolic pathways and produce a curated list of the most likely LUCA VOCs. We introduce volatile organic metabolites associated with early life and discuss their potential influence on early carbon cycling and atmospheric chemistry.
Asunto(s)
Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/metabolismo , Planeta Tierra , Redes y Vías Metabólicas , Archaea/metabolismo , Archaea/genética , Evolución Biológica , Atmósfera/química , EcosistemaRESUMEN
A long-standing debate looks at whether air or soil dryness is more limiting to vegetation water use and productivity. The answer has large implications for future ecosystem functioning, as atmospheric dryness is predicted to increase globally while changes in soil moisture are predicted to be far more variable. Here, I review the complexities that contribute to this debate, including the strong coupling between atmospheric and soil dryness, and the widespread heterogeneity in vegetation hydraulic traits, acclimations, and adaptations to water stress. I discuss solutions to improve understanding and modeling of vegetation sensitivity to dryness, including how different types of observational data can be used together to gain insight into vegetation response to water stress across spatial and temporal scales.
RESUMEN
Investigating plant responses to climate change is key to develop suitable adaptation strategies. However, whether changes in land management can alleviate increasing drought threats to crops in the future is still unclear. We conducted a management × drought experiment with winter wheat (Triticum aestivum L.) to study plant water and vegetative traits in response to drought and management (conventional vs organic farming, with intensive vs conservation tillage). Water traits (root water uptake pattern, stem metaxylem area, leaf water potential, stomatal conductance) and vegetative traits (plant height, leaf area, leaf Chl content) were considered simultaneously to characterise the variability of multiple traits in a trait space, using principal component analysis. Management could not alleviate the drought impacts on plant water traits as it mainly affected vegetative traits, with yields ultimately being affected by both management and drought. Trait spaces were clearly separated between organic and conventional management as well as between drought and control conditions. Moreover, changes in trait space triggered by management and drought were independent from each other. Neither organic management nor conservation tillage eased drought impacts on winter wheat. Thus, our study raised concerns about the effectiveness of these management options as adaptation strategies to climate change.
Asunto(s)
Sequías , Carácter Cuantitativo Heredable , Estaciones del Año , Triticum , Agua , Triticum/fisiología , Triticum/crecimiento & desarrollo , Análisis de Componente Principal , Hojas de la Planta/fisiología , Agricultura/métodos , Raíces de Plantas/fisiología , Raíces de Plantas/crecimiento & desarrolloRESUMEN
Terrestrial water fluxes are substantially mediated by vegetation, while the distribution, growth, health, and mortality of plants are strongly influenced by the availability of water. These interactions, playing out across multiple spatial and temporal scales, link the disciplines of plant ecophysiology and ecohydrology. Despite this connection, the disciplines have provided complementary, but largely independent, perspectives on the soil-plant-atmosphere continuum since their crystallization as modern scientific disciplines in the late 20th century. This review traces the development of the two disciplines, from their respective origins in engineering and ecology, their largely independent growth and maturation, and the eventual development of common conceptual and quantitative frameworks. This common ground has allowed explicit coupling of the disciplines to better understand plant function. Case studies both illuminate the limitations of the disciplines working in isolation, and reveal the exciting possibilities created by consilience between the disciplines. The histories of the two disciplines suggest opportunities for new advances will arise from sharing methodologies, working across multiple levels of complexity, and leveraging new observational technologies. Practically, these exchanges can be supported by creating shared scientific spaces. This review argues that consilience and collaboration are essential for robust and evidence-based predictions and policy responses under global change.
Asunto(s)
Plantas , Plantas/metabolismo , Fenómenos Fisiológicos de las Plantas , Hidrología , Ecología , Ecosistema , Agua/metabolismo , Agua/fisiologíaRESUMEN
Drought threatens plant growth and related ecosystem services. The emergence of plant drought stress under edaphic drought is well studied, whilst the importance of atmospheric drought only recently gained momentum. Yet, little is known about the interaction and relative contribution of edaphic and atmospheric drought on the emergence of plant drought stress. We conducted a gradient experiment, fully crossing gravimetric water content (GWC: maximum water holding capacity-permanent wilting point) and vapour pressure deficit (VPD: 1-2.25 kPa) using five wheat varieties from three species (Triticum monococcum, T. durum & T. aestivum). We quantified the occurrence of plant drought stress on molecular (abscisic acid), cellular (stomatal conductance), organ (leaf water potential) and stand level (evapotranspiration). Plant drought stress increased with decreasing GWC across all organizational levels. This effect was magnified nonlinearly by VPD after passing a critical threshold of soil water availability. At around 20%GWC (soil matric potential 0.012 MPa), plants lost their ability to regulate leaf water potential via stomata regulation, followed by the emergence of hydraulic dysfunction. The emergence of plant drought stress is characterized by changing relative contributions of soil versus atmosphere and their non-linear interaction. This highly non-linear response is likely to abruptly alter plant-related ecosystem services in a drying world.
Asunto(s)
Atmósfera , Sequías , Hojas de la Planta , Estomas de Plantas , Suelo , Estrés Fisiológico , Triticum , Agua , Triticum/fisiología , Agua/fisiología , Agua/metabolismo , Suelo/química , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Transpiración de Plantas/fisiología , Ácido Abscísico/metabolismo , Presión de VaporRESUMEN
Forestation efforts are accelerating across the globe in the fight against global climate change, in order to restore biodiversity, and to improve local livelihoods. Yet, so far the non-local effects of forestation on rainfall have largely remained a blind spot. Here we build upon emerging work to propose that targeted rainfall enhancement may also be considered in the prioritization of forestation. We show that the tools to achieve this are rapidly becoming available, but we also identify drawbacks and discuss which further developments are still needed to realize robust assessments of the rainfall effects of forestation in the face of climate change. Forestation programs may then mitigate not only global climate change itself but also its adverse effects in the form of drying.
Asunto(s)
Biodiversidad , Cambio Climático , EcosistemaRESUMEN
We investigate the effects of oxygen vacancies on the ferroelectric behavior of Al:HfO2films annealed in O2and N2atmosphere. X-ray photoelectron spectroscopy results showed that the O/Hf atomic ratio was 1.88 for N2-annealed samples and 1.96 for O2-annealed samples, implying a neutralization of oxygen vacancies during O2atmosphere annealing. The O2-annealed films exhibited an increasing remanent polarization from 23µC cm-2to 28µC cm-2after 104cycles, with a negligible leakage current density of â¼2µA cm-2, while the remanent polarization decreased from 29µC cm-2to 20µC cm-2after cycling in the N2-annealed films, with its severe leakage current density decreasing from â¼1200µA cm-2to â¼300µA cm-2.A phase transition from the metastable tetragonal (t) phase to the low-temperature stable orthorhombic (o) phase and monoclinic (m) phase was observed during annealing. As a result of the fierce· competition between the t-to-o transition and the t-to-m transition, clear grain boundaries of several ruleless atomic layers were formed in the N2-annealed samples. On the other hand, the transition from the t-phase to the low-temperature stable phase was found to be hindered by the neutralization of oxygen vacancies, with almost continuous grain boundaries observed. The results elucidate the phase transformation caused by oxygen vacancies in the Al:HfO2films, which may be helpful for the preparation of HfO2-based films with excellent ferroelectricity.
RESUMEN
Most previous measurements of oxidized mercury were collected using a method now known to be biased low. In this study, a dual-channel system with an oxidized mercury detection limit of 6-12 pg m-3 was deployed alongside a permeation tube-based automated calibrator at a mountain top site in Steamboat Springs Colorado, USA, in 2021 and 2022. Permeation tubes containing elemental mercury and mercury halides were characterized via an International System of Units (SI)-traceable gravimetric method and gas chromatography/mass spectrometry before deployment in the calibrator. The dual-channel system recovered 97 ± 4 and 100 ± 8% (±standard deviation) of injected elemental mercury and HgBr2, respectively. Total Hg permeation rates and Hg speciation from the gravimetric method, the chromatography system, the dual-channel system, and an independent SI-traceable measurement method performed at the Jozef Stefan Institute laboratory were all comparable within the respective uncertainties of each method. These are the first measurements of oxidized mercury at low environmental concentrations that have been verified against an SI-traceable calibration system in field conditions while sampling ambient air, and they show that accurate, routinely calibrated oxidized mercury measurements are achievable.
Asunto(s)
Monitoreo del Ambiente , Mercurio , Oxidación-Reducción , Mercurio/análisis , Calibración , Monitoreo del Ambiente/métodos , Atmósfera/química , Contaminantes Atmosféricos/análisis , Colorado , Cromatografía de Gases y Espectrometría de MasasRESUMEN
Risk assessment of pesticide impacts on remote ecosystems makes use of model-estimated degradation in air. Recent studies suggest these degradation rates to be overestimated, questioning current pesticide regulation. Here, we investigated the concentrations of 76 pesticides in Europe at 29 rural, coastal, mountain, and polar sites during the agricultural application season. Overall, 58 pesticides were observed in the European atmosphere. Low spatial variation of 7 pesticides suggests continental-scale atmospheric dispersal. Based on concentrations in free tropospheric air and at Arctic sites, 22 pesticides were identified to be prone to long-range atmospheric transport, which included 15 substances approved for agricultural use in Europe and 7 banned ones. Comparison between concentrations at remote sites and those found at pesticide source areas suggests long atmospheric lifetimes of atrazine, cyprodinil, spiroxamine, tebuconazole, terbuthylazine, and thiacloprid. In general, our findings suggest that atmospheric transport and persistence of pesticides have been underestimated and that their risk assessment needs to be improved.
RESUMEN
Carbonyl compounds play a crucial role in the formation of ozone (O3) and secondary aerosols, with recent studies particularly highlighting formaldehyde (HCHO) as a significant contributor to the missing particulate sulfur. However, evaluations based on field observations are limited, especially in clean marine environments. Utilizing observation data from a coastal mountain site in May 2021 in Qingdao, northern China, we reveal the important regulating effect of carbonyls in atmospheric oxidation capacity and particulate sulfur chemistry using detailed chemical box models. Photolysis of gaseous carbonyls accounted for >90% and >60% of the primary sources of HO2 and RO2, respectively, contributing 38% of net O3 production. Notably, HCHO alone constituted 80% of the primary HO2 and 15% of net O3 production. Using a multiphase model with updated HCHO-related chemistry, we determine that HCHO chemistry can account for up to 30% of total particulate sulfur (the sum of hydroxymethanesulfonate and sulfate) and address more than one-third of the simulated sulfate gap. The emission-based multiphase model indicates that the HCHO-related pathway remains significant and can account for 20% of the particulate sulfur under clean marine conditions. These findings underscore the importance of carbonyls, particularly HCHO, in regulating the atmospheric oxidation capacity and particulate sulfur chemistry in the marine atmosphere, urging further laboratory studies on chemical kinetics and field measurements of particle-phase carbonyls.
Asunto(s)
Atmósfera , Oxidación-Reducción , Azufre , Atmósfera/química , Azufre/química , Ozono/química , Contaminantes Atmosféricos/química , Aerosoles , China , Material ParticuladoRESUMEN
The redox chemistry of mercury (Hg) in the atmosphere exerts a significant influence on its global cycle. However, our understanding of this important process remains shrouded in uncertainty. In this study, we utilize three-dimensional atmospheric Hg isotope modeling to evaluate the isotopic composition of particle-bound mercury [HgII(P)] in the global atmosphere. We investigate various chemistry mechanisms and find that they induce remarkably disparate odd-number mass-independent fractionation (odd-MIF) in HgII(P) on a global scale. The observed odd-MIF data identify the essential role of sea salt aerosol debromination in the redox chemistry of atmospheric Hg and underscore the predominant influence of Br oxidation in the marine boundary layer. The odd-MIF signatures significantly narrow the uncertainty range of redox chemistry rates and constrain the photoreduction of HgII(P) at a magnitude of 10-3 JNO2 (local photolysis frequency of NO2) in the global atmosphere. This study advances our understanding of atmospheric Hg chemistry processes and provides insights into the potential impacts of climate change on Hg cycling.
RESUMEN
Photo-, microbial, and abiotic dark reduction of soil mercury (Hg) may all lead to elemental mercury (Hg(0)) emissions. Utilizing lab incubations, isotope signatures of Hg(0) emitted from mining soils were characterized to quantify the interplay and contributions of various Hg reduction pathways, which have been scarcely studied. At 15 °C, microbial reduced Hg(0) showed a negative mass-dependent fractionation (MDF) (δ202Hg = -0.30 ± 0.08, 1SD) and near-zero mass-independent fractionation (MIF) (Δ199Hg = 0.01 ± 0.04, 1SD), closely resembling dark reduced Hg(0) (δ202Hg = -0.18 ± 0.05, Δ199Hg = -0.01 ± 0.03, 1SD). In comparison, photoreduced Hg(0) exhibited significant MDF and MIF (δ202Hg = -0.55 ± 0.05, Δ199Hg = -0.20 ± 0.07, 1SD). In the dark, Hg isotopic signatures remained constant over the temperature range of 15-35 °C. Nonetheless, light exposure and temperature changes together altered Hg(0) MIF signatures significantly. Isotope mixing models along with Hg(0) emission flux data highlighted photo- and microbial reduction contributing 79-88 and 12-21%, respectively, of the total Hg(0) emissions from mining soils, with negligible abiotic dark reduction. Microorganisms are the key driver of soil Hg(0) emissions by first dissolving HgS and then promoting ionic Hg formation, followed by facilitating the photo- and microbial reduction of organically bound Hg. These insights deepen our understanding of the biogeochemical processes that influence Hg(0) releases from surface soils.