Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Virol ; 96(6): e0175121, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-34986000

RESUMEN

The emergence of new epidemic variants of alphaviruses poses a public health risk. It is associated with adaptive mutations that often cause increased pathogenicity. Getah virus (GETV), a neglected and re-emerging mosquito-borne alphavirus, poses threat to many domestic animals and probably even humans. At present, the underlying mechanisms of GETV pathogenesis are not well defined. We identified a residue in the E2 glycoprotein that is critical for viral adsorption to cultured cells and pathogenesis in vivo. Viruses containing an arginine instead of a lysine at residue 253 displayed enhanced infectivity in mammalian cells and diminished virulence in a mouse model of GETV disease. Experiments in cell culture show that heparan sulfate (HS) is a new attachment factor for GETV, and the exchange Lys253Arg improves virus attachment by enhancing binding to HS. The mutation also results in more effective binding to glycosaminoglycan (GAG), linked to low virulence due to rapid virus clearance from the circulation. Localization of residue 253 in the three-dimensional structure of the spike revealed several other basic residues in E2 and E1 in close vicinity that might constitute an HS-binding site different from sites previously identified in other alphaviruses. Overall, our study reveals that HS acts as the attachment factor of GETV and provides convincing evidence for an HS-binding determinant at residue 253 in the E2 glycoprotein of GETV, which contributes to infectivity and virulence. IMPORTANCE Due to decades of inadequate monitoring and lack of vaccines and specific treatment, a large number of people have been infected with alphaviruses. GETV is a re-emerging alphavirus that has the potential to infect humans. This specificity of the GETV disease, particularly its propensity for chronic musculoskeletal manifestations, underscores the need to identify the genetic determinants that govern GETV virulence in the host. Using a mouse model, we show that a single amino acid substitution at residue 253 in the E2 glycoprotein causes attenuation of the virus. Residue 253 might be part of a binding site for HS, a ubiquitous attachment factor on the cell surface. The substitution of Lys by Arg improves cell attachment of the virus in vitro and virus clearance from the blood in vivo by enhancing binding to HS. In summary, we have identified HS as a new attachment factor for GETV and the corresponding binding site in the E2 protein for the first time. Our research potentially improved understanding of the pathogenic mechanism of GETV and provided a potential target for the development of new attenuated vaccines and antiviral drugs.


Asunto(s)
Infecciones por Alphavirus , Alphavirus , Sustitución de Aminoácidos , Proteínas del Envoltorio Viral , Alphavirus/genética , Alphavirus/patogenicidad , Infecciones por Alphavirus/virología , Animales , Sitios de Unión/genética , Células Cultivadas , Modelos Animales de Enfermedad , Heparitina Sulfato/metabolismo , Humanos , Ratones , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo
2.
J Virol ; 94(2)2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31666381

RESUMEN

Infectious bursal disease virus (IBDV) is an important member of the Birnaviridae family, causing severe immunosuppressive disease in chickens. The major capsid protein VP2 is responsible for the binding of IBDV to the host cell and its cellular tropism. In order to find proteins that potentially interact with IBDV VP2, a liquid chromatography-mass spectrometry (LC-MS) assay was conducted, and the host chicken CD74 protein was identified. Here, we investigate the role of chicken CD74 in IBDV attachment. Coimmunoprecipitation assays indicated that the extracellular domain of CD74 interacted with the VP2 proteins of multiple IBDV strains. Knockdown and overexpression experiments showed that CD74 promotes viral infectivity. Confocal assays showed that CD74 overexpression allows the attachment of IBDV and subvirus-like particles (SVPs) to the cell surface of nonpermissive cells, and quantitative PCR (qPCR) analysis further confirmed the attachment function of CD74. Anti-CD74 antibody, soluble CD74, depletion of CD74 by small interfering RNA (siRNA), and CD74 knockdown in the IBDV-susceptible DT40 cell line significantly inhibited IBDV binding, suggesting a pivotal role of this protein in virus attachment. These findings demonstrate that CD74 is a novel important receptor for IBDV attachment to the chicken B lymphocyte cell line DT40.IMPORTANCE CD74 plays a pivotal role in the correct folding and functional stability of major histocompatibility complex class II (MHC-II) molecules and in the presentation of antigenic peptides, acting as a regulatory factor in the antigen presentation process. In our study, we demonstrate a novel role of CD74 during IBDV infection, showing that chicken CD74 plays a significant role in IBDV binding to target B cells by interacting with the viral VP2 protein. This is the first report demonstrating that CD74 is involved as a novel attachment receptor in the IBDV life cycle in target B cells, thus contributing new insight into host-pathogen interactions.


Asunto(s)
Antígenos de Diferenciación de Linfocitos B/inmunología , Proteínas Aviares/inmunología , Linfocitos B/inmunología , Infecciones por Birnaviridae/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Virus de la Enfermedad Infecciosa de la Bolsa/inmunología , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/virología , Animales , Linfocitos B/patología , Infecciones por Birnaviridae/patología , Embrión de Pollo , Pollos , Células HeLa , Humanos , Enfermedades de las Aves de Corral/patología
3.
J Virol ; 91(13)2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28404852

RESUMEN

Hepatitis C virus (HCV) requires multiple receptors for its attachment to and entry into cells. Our previous studies found that human syndecan-1 (SDC-1), SDC-2, and T cell immunoglobulin and mucin domain-containing protein 1 (TIM-1) are HCV attachment receptors. Other cell surface molecules, such as CD81, Claudin-1 (CLDN1), Occludin (OCLN), SR-BI, and low-density lipoprotein receptor (LDLR), function mainly at postattachment steps and are considered postattachment receptors. The underlying molecular mechanisms of different receptors in HCV cell-free and cell-to-cell transmission remain elusive. In the present study, we used a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 technology, gene-specific small interfering RNAs, and a newly developed luciferase-based reporter system to quantitatively determine the importance of individual receptors in HCV cell-free and cell-to-cell transmission. Knockouts of SDC-1 and SDC-2 resulted in remarkable reductions of HCV infection and cell attachment, whereas SDC-3 and SDC-4 knockouts did not affect HCV infection. Defective HCV attachment to SDC-1 and/or SDC-2 knockout cells was completely restored by SDC-1 and SDC-2 but not SDC-4 expression. Knockout of the attachment receptors SDC-1, SDC-2, and TIM-1 also modestly decreased HCV cell-to-cell transmission. In contrast, silencing and knockout of the postattachment receptors CD81, CLDN1, OCLN, SR-BI, and LDLR greatly impaired both HCV cell-free and cell-to-cell transmission. Additionally, apolipoprotein E was found to be important for HCV cell-to-cell spread, but very-low-density lipoprotein (VLDL)-containing mouse serum did not affect HCV cell-to-cell transmission, although it inhibited cell-free infection. These findings demonstrate that attachment receptors are essential for initial HCV binding and that postattachment receptors are important for both HCV cell-free and cell-to-cell transmission.IMPORTANCE The importance and underlying molecular mechanisms of cell surface receptors in HCV cell-free and cell-to-cell transmission are poorly understood. The role of some of the HCV attachment and postattachment receptors in HCV infection and cell-to-cell spread remains controversial. Using CRISPR-Cas9-mediated knockouts of specific cellular genes, we demonstrate that both SDC-1 and SDC-2, but not SDC-3 or SDC-4, are bona fide HCV attachment receptors. We also used a newly developed luciferase-based reporter system to quantitatively determine the importance of attachment and postattachment receptors in HCV cell-to-cell transmission. SDC-1, SDC-2, TIM-1, and SR-BI were found to modestly promote HCV cell-to-cell spread. CD81, CLDN1, OCLN, and LDLR play more important roles in HCV cell-to-cell transmission. Likewise, apolipoprotein E (apoE) is critically important for HCV cell-to-cell spread, unlike VLDL-containing mouse serum, which did not affect HCV cell-to-cell spread. These findings suggest that the mechanism(s) of HCV cell-to-cell spread differs from that of cell-free infection.


Asunto(s)
Hepacivirus/fisiología , Receptores Virales/metabolismo , Acoplamiento Viral , Internalización del Virus , Línea Celular , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Hepatocitos/virología , Humanos , Receptores Virales/genética
4.
Biochim Biophys Acta ; 1834(12): 2722-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24096023

RESUMEN

Clostridium botulinum neurotoxins (BoNTs) cause the life-threatening disease botulism through the inhibition of neurotransmitter release by cleaving essential SNARE proteins. There are seven serologically distinctive types of BoNTs and many subtypes within a serotype have been identified. BoNT/A5 is a recently discovered subtype of type A botulinum neurotoxin which possesses a very high degree of sequence similarity and identity to the well-studied A1 subtype. In the present study, we examined the endopeptidase activity of these two BoNT/A subtypes and our results revealed significant differences in substrate binding and cleavage efficiency between subtype A5 and A1. Distinctive hydrolysis efficiency was observed between the two toxins during cleavage of the native substrate SNAP-25 versus a shortened peptide mimic. N-terminal truncation studies demonstrated that a key region of the SNAP-25, including the amino acid residues at 151 through 154 located in the remote binding region of the substrate, contributed to the differential catalytic properties between A1 and A5. Elevated binding affinity of the peptide substrate resulted from including these important residues and enhanced BoNT/A5's hydrolysis efficiency. In addition, mutations of these amino acid residues affect the proteolytic performance of the two toxins in different ways. This study provides a better understanding of the biological activity of these toxins, their performance characteristics in the Endopep-MS assay to detect BoNT in clinical samples and foods, and is useful for the development of peptide substrates.


Asunto(s)
Toxinas Botulínicas Tipo A/química , Clostridium botulinum/enzimología , Proteína 25 Asociada a Sinaptosomas/química , Toxinas Botulínicas Tipo A/genética , Catálisis , Hidrólisis , Mutación , Unión Proteica , Proteína 25 Asociada a Sinaptosomas/genética
5.
Emerg Microbes Infect ; 12(1): 2208683, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37143369

RESUMEN

Pteropine orthoreoviruses (PRVs) are an emerging group of fusogenic, bat-borne viruses from the Orthoreovirus genus. Since the isolation of PRV from a patient with acute respiratory tract infections in 2006, the zoonotic potential of PRV has been further highlighted following subsequent isolation of PRV species from patients in Malaysia, Hong Kong and Indonesia. However, the entry mechanism of PRV is currently unknown. In this study, we investigated the role of previously identified mammalian orthoreovirus (MRV) receptors, sialic acid and junctional adhesion molecule-1 for PRV infection. However, none of these receptors played a significant role in PRV infection, suggesting PRV uses a distinct entry receptor from MRV. Given its broad tissue tropism, we hypothesized that PRV may use a receptor that is widely expressed in all cell types, heparan sulphate (HS). Enzymatic removal of cell surface HS by heparinase treatment and genetic ablation of HS biosynthesis genes, SLC35B2, exostosin-1, N-deacetylase/N-sulfotransferase I and beta-1,3-glucuronyltransferase 3, significantly reduced infection with multiple genetically distinct PRV species. Replication kinetic of PRV3M in HS knockout cells revealed that HS plays a crucial role in the early phase of PRV infection. Mechanistic studies demonstrated that HS is an essential host-factor for PRV attachment and internalization into cells. To our knowledge, this is the first report on the use of HS as an attachment receptor by PRVs.


Asunto(s)
Orthoreovirus de los Mamíferos , Orthoreovirus , Infecciones por Reoviridae , Animales , Humanos , Orthoreovirus/genética , Indonesia , Malasia , Orthoreovirus de los Mamíferos/genética , Mamíferos
6.
J Orthop Res ; 41(5): 1097-1104, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36031587

RESUMEN

Bacteriophage therapy is a promising treatment for periprosthetic joint infections (PJIs), particularly given these agents have innate abilities to degrade the biofilm matrix and lyse bacteria within. However, many aspects of this therapy are poorly understood causing treatments to lack uniform effectiveness and reproducibility, which is in part a consequence of several inherent limitations to using bacteriophages to treat PJI. Herein, these limitations are discussed as are additional translational research that needs to be conducted to advance this therapeutic. These include determining if bacteria causing PJIs are polyclonal, consequences of bacteriophage attachment receptor phenotypic variations and ramifications of bacteriophage activity when bacteria interact with in vivo macromolecules. Only with the realization of the current limitations and subsequent knowledge gained from translational research will the potential of bacteriophages to reduce the morbidity and mortality in PJI be fully elucidated.


Asunto(s)
Artritis Infecciosa , Terapia de Fagos , Infecciones Relacionadas con Prótesis , Humanos , Infecciones Relacionadas con Prótesis/terapia , Infecciones Relacionadas con Prótesis/microbiología , Reproducibilidad de los Resultados , Bacterias
7.
Cureus ; 14(8): e28464, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36176870

RESUMEN

Vesicle-associated membrane protein 2 (VAMP2) and Agrin (AGRN) are crucial proteins in neurotransmission. VAMP2 is a vesicular protein that facilitates the exocytosis of neurotransmitters. At the same time, AGRN plays a critical role in the maintenance and function of neuromuscular junctions. Mutations in the signaling pathway of VAMP2 and AGRN impair proper signaling between the presynaptic and postsynaptic neurons, and can result in neurodevelopmental conditions known as global developmental delay (GDD). This study highlights a presentation of GDD in a patient with concurrent mutations in VAMP2 and AGRN. A three-year-old female child presented with GDD characterized by hypotonia, intellectual disability, and dysphagia. Physical exam exhibited signs of developmental delay and severe muscle weakness. EEG findings were suggestive of a hypsarrhythmia pattern. The ophthalmological evaluation showed partial optic atrophy bilaterally. Therapeutic interventions included Keppra and Topamax, which proved ineffective. The patient's outcome was inconclusive as care was transferred to another facility. This case study reports the novel appearance of two concurrent mutations: p.Gln76Pro associated with VAMP2 and p.Gln970Glu associated with AGRN. Mutations in VAMP2 lead to a dysfunctional SNARE complex and inhibit exocytosis of neurotransmitters into the synaptic cleft. Mutations in AGRN impair the ability to form and activate postsynaptic nicotinic acetylcholine receptors. Improper signaling between presynaptic and postsynaptic neurons is an important determinant of GDD. We hope that accounting for this mutational pattern will contribute to understanding synapse assembly and help unravel the complex interplay of factors involved in the pathology of neuromuscular disorders and GDD.

8.
Microorganisms ; 9(6)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200288

RESUMEN

The first step of viral infection requires interaction with the host cell. Before finding the specific receptor that triggers entry, the majority of viruses interact with the glycocalyx. Identifying the carbohydrates that are specifically recognized by different viruses is important both for assessing the cellular tropism and for identifying new antiviral targets. Advances in the tools available for studying glycan-protein interactions have made it possible to identify them more rapidly; however, it is important to recognize the limitations of these methods in order to draw relevant conclusions. Here, we review different techniques: genetic screening, glycan arrays, enzymatic and pharmacological approaches, and surface plasmon resonance. We then detail the glycan interactions of enterovirus D68 and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlighting the aspects that need further clarification.

9.
Viruses ; 11(7)2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31266258

RESUMEN

Heparan sulfate proteoglycans (HSPG) are composed of unbranched, negatively charged heparan sulfate (HS) polysaccharides attached to a variety of cell surface or extracellular matrix proteins. Widely expressed, they mediate many biological activities, including angiogenesis, blood coagulation, developmental processes, and cell homeostasis. HSPG are highly sulfated and broadly used by a range of pathogens, especially viruses, to attach to the cell surface.


Asunto(s)
Proteoglicanos de Heparán Sulfato/metabolismo , Receptores Virales/metabolismo , Acoplamiento Viral , Virosis/metabolismo , Animales , Proteoglicanos de Heparán Sulfato/química , Humanos , Receptores Virales/química , Virosis/virología , Fenómenos Fisiológicos de los Virus , Virus/genética
10.
Viruses ; 11(4)2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30959796

RESUMEN

Despite high similarity of canine respiratory coronavirus (CRCoV), bovine coronavirus, (BCoV) and human coronavirus OC43 (HCoV-OC43), these viruses differ in species specificity. For years it was believed that they share receptor specificity, utilizing sialic acids for cell surface attachment, internalization, and entry. Interestingly, careful literature analysis shows that viruses indeed bind to the cell surface via sialic acids, but there is no solid data that these moieties mediate virus entry. In our study, using a number of techniques, we showed that all three viruses are indeed able to bind to sialic acids to a different extent, but these molecules render the cells permissive only for the clinical strain of HCoV-OC43, while for others they serve only as attachment receptors. CRCoV and BCoV appear to employ human leukocyte antigen class I (HLA-1) as the entry receptor. Furthermore, we identified heparan sulfate as an alternative attachment factor, but this may be related to the cell culture adaptation, as in ex vivo conditions, it does not seem to play a significant role. Summarizing, we delineated early events during CRCoV, BCoV, and HCoV-OC43 entry and systematically studied the attachment and entry receptor utilized by these viruses.


Asunto(s)
Coronavirus Humano OC43/fisiología , Coronavirus Bovino/fisiología , Coronavirus Canino/fisiología , Receptores Virales/análisis , Acoplamiento Viral , Células Cultivadas , Heparitina Sulfato/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Ácidos Siálicos/metabolismo
11.
Plant Signal Behav ; 9(10): e970426, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25482803

RESUMEN

Transgenic tomato plants with reduced expression of the sucrose transporter SlSUT2 showed higher efficiency of mycorrhization suggesting a sucrose retrieval function of SlSUT2 from the peri-arbuscular space back into the cell cytoplasm plant cytoplasm thereby limiting mycorrhiza fungal development. Sucrose uptake in colonized root cells requires efficient plasma membrane-targeting of SlSUT2 which is often retained intracellularly in vacuolar vesicles. Protein-protein interaction studies suggested a link between SISUT2 function and components of brassinosteroid biosynthesis and signaling. Indeed, the tomato DWARF mutant d(x) defective in BR synthesis (1) showed significantly reduced mycorrhization parameters. (2) The question has been raised whether the impact of brassinosteroids on mycorrhization is a general phenomenon. Here, we include a rice mutant defective in DIM1/DWARF1 involved in BR biosynthesis to investigate the effects on mycorrhization. A model is presented where brassinolides are able to impact mycorrhization by activating SUT2 internalization and inhibiting its role in sucrose retrieval.


Asunto(s)
Brasinoesteroides/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Micorrizas/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Brasinoesteroides/biosíntesis , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Modelos Biológicos , Mutación , Oryza/genética , Oryza/microbiología , Unión Proteica , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Fracciones Subcelulares/metabolismo
12.
Toxicon ; 74: 158-66, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23994593

RESUMEN

BoNT/B and TeNT cleave substrate VAMP2 at the same scissile bond, yet these two toxins showed different efficiency on substrate hydrolysis and had different requirements for the recognition of P2' site of VAMP2, E(78). These differences may be due to their different composition of their substrate recognition pockets in the active site. Swapping of LC/T S1' pocket residue, L(230), with the corresponding isoleucine in LC/B increased LC/T activity by ∼25 fold, while swapping of LC/B S1' pocket residue, S(201), with the corresponding proline in LC/T increased LC/B activity by ∼10 fold. Optimization of both S1 and S1' pocket residues of LC/T, LC/T (K(168)E, L(230)I) elevated LC/T activity by more than 100-fold. The highly active LC/T derivative engineered in this study has the potential to be used as a more effective tool to study mechanisms of exocytosis in central neuron. The LC/B derivative with elevated activity has the potential to be developed into novel therapy to minimize the impact of immunoresistance during BoNT/B therapy.


Asunto(s)
Neurotoxinas/química , Ingeniería de Proteínas , Toxina Tetánica/química , Animales , Catálisis , Dominio Catalítico , Línea Celular Tumoral , Cristalización , Hidrólisis , Ratones , Neurotoxinas/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Toxina Tetánica/genética , Proteína 2 de Membrana Asociada a Vesículas/genética , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
13.
J Mol Biol ; 425(22): 4629-41, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23994332

RESUMEN

DOC2B (double-C2 domain) protein is thought to be a high-affinity Ca(2+) sensor for spontaneous and asynchronous neurotransmitter release. To elucidate the molecular features underlying its physiological role, we determined the crystal structures of its isolated C2A and C2B domains and examined their Ca(2+)-binding properties. We further characterized the solution structure of the tandem domains (C2AB) using small-angle X-ray scattering. In parallel, we tested structure-function correlates with live cell imaging tools. We found that, despite striking structural similarity, C2B binds Ca(2+) with considerably higher affinity than C2A. The C2AB solution structure is best modeled as two domains with a highly flexible orientation and no difference in the presence or absence of Ca(2+). In addition, kinetic studies of C2AB demonstrate that, in the presence of unilamellar vesicles, Ca(2+) binding is stabilized, as reflected by the ~10-fold slower rate of Ca(2+) dissociation than in the absence of vesicles. In cells, isolated C2B translocates to the plasma membrane (PM) with an EC50 of 400 nM while the C2A does not translocate at submicromolar Ca(2+) concentrations, supporting the biochemical observations. Nevertheless, C2AB translocates to the PM with an ~2-fold lower EC50 and to a greater extent than C2B. Our results, together with previous studies, reveal that the C2B is the primary Ca(2+) sensing unit in DOC2B, whereas C2A enhances the interaction of C2AB with the PM.


Asunto(s)
Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Calcio/química , Calcio/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Dominios y Motivos de Interacción de Proteínas , Animales , Sitios de Unión , Membrana Celular/metabolismo , Cristalografía por Rayos X , Cinética , Ligandos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Ratas , Soluciones
14.
Neurosci Res ; 77(3): 128-36, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24025431

RESUMEN

Regulation of intestinal motility depends on an intact synaptic vesicle apparatus. Thus, we investigated the expression of the synaptic vesicle markers synaptophysin and synaptobrevin in the human enteric nervous system (ENS) and their regulation by glial cell line-derived neurotrophic factor (GDNF) in cultured enteric neurons. Full-thickness specimens of the human colon were assessed for expression of synaptophysin and synaptobrevin and neuronal localization was assessed by dual-label immunocytochemistry with PGP 9.5. Effects of GDNF on both synaptic markers were monitored in enteric nerve cell cultures and the presence of varicosities was determined by applying electron microscopy to the cultures. Human colonic specimens showed immunoreactivity for synaptophysin and synaptobrevin in both myenteric and submucosal ganglia as well as in nerve fibers. Both synaptic vesicle markers co-localized with the neuronal marker PGP 9.5 and exhibited granular accumulation patterns in the human and rat ENS. In cultured rat myenteric neurons GDNF treatment promoted expression of both synaptic vesicle markers and the formation of neuronal varicosities. The regulation of synaptophysin and synaptobrevin in enteric neurons by GDNF argues for the induction of functional neuronal networks in culture characterized by an increase of synaptogenesis.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Plexo Mientérico/efectos de los fármacos , Plexo Mientérico/metabolismo , Neuronas/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Células Cultivadas , Colon/efectos de los fármacos , Colon/metabolismo , Colon/ultraestructura , Humanos , Masculino , Persona de Mediana Edad , Plexo Mientérico/ultraestructura , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Proteínas R-SNARE/metabolismo , Ratas , Ratas Wistar , Vesículas Sinápticas/ultraestructura , Sinaptofisina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA