Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemphyschem ; 25(18): e202400302, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-38842521

RESUMEN

Various aza-crowns with different sizes and substituents have been explored computationally as potential hosts for stabilizing the explosive guest xenon trioxide (XeO3) through σ-hole-mediated aerogen bonding interactions. Interestingly, aza-crowns demonstrate superior binding towards XeO3 compared to their oxygen and thio counterparts. However, unlike the latter cases, where the binding was found to be increasingly favorable with the increase in the size of the crowns, aza-crowns exhibit a variable size preference for XeO3, peaking with aza-15-crown-5, and reducing thereafter with increase in crown size.

2.
Molecules ; 29(2)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38276609

RESUMEN

In the present work, several coumarin-3-carboxamides with different azacrown ether moieties were designed and tested as potential luminescent sensors for metal ions. The derivative containing a 1-aza-15-crown-5 as a metal chelating group was found to yield the strongest response for Ca2+ and Pb2+, exhibiting an eight- and nine-fold emission increase, respectively, while other cations induced no changes in the optical properties of the chemosensor molecule. Job's plots revealed a 1:1 binding stoichiometry, with association constants of 4.8 × 104 and 8.7 × 104 M-1, and limits of detection of 1.21 and 8.04 µM, for Ca2+ and Pb2+, respectively. Computational studies suggest the existence of a PET quenching mechanism, which is inhibited after complexation with each of these two metals. Proton NMR experiments and X-ray crystallography suggest a contribution from the carbonyl groups in the coumarin-3-carboxamide fluorophore in the coordination sphere of the metal ion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA