RESUMEN
Life on Earth uses DNA as the central template for self-replication, genetic encoding, and information transfer. However, there are no physical laws precluding life's existence elsewhere in space, and alternative life forms may not need DNA. In the search for exobiology, knowing what to look for as a biosignature remains a challenge - especially if it is not from the obvious list of biologic building blocks. Clues from chemicals recently discovered on Mars and in the Taurus Molecular Cloud 1 (TMC-1), show that intriguing organic compounds exist beyond Earth, which could provide a starting point for unconventional exobiotic designs. Here we present a new potential self-replicating system with structural similarities to recently discovered compounds on Mars and TMC-1. Rather than using DNA's hydrogen-bonding motif for reliable base-paring, our design employs sulfur-nitrogen interactions to selectively template unique benzothiadiazole units in sequence. We synthesized and studied two versions of this system, one reversible and the other irreversible, and found experimental evidence of self-replication in d-chloroform solvent. These results are part of a larger pursuit in our lab for developing a basis for a potential exobiological system using starting blocks closely related to these cosmic compounds.
RESUMEN
Herein, we report monomeric and dimeric norbornadiene-quadricyclane molecular photoswitch systems intended for molecular solar thermal applications. A series of six new norbornadiene derivatives conjugated with benzothiadiazole as the acceptor unit and dithiafulvene as the donor unit were synthesized and fully characterized. The photoswitches were evaluated by experimentally and theoretically measuring optical absorption profiles and thermal conversion of quadricyclane to norbornadiene. Computational insight by density functional theory calculations at the M06-2X/def2-SVPD level of theory provided geometries, storage energies, UV-vis absorption spectra, and HOMO-LUMO levels that are used to describe the function of the molecular systems. The studied molecules exhibit absorption onset ranging from 416â nm to 595â nm due to a systemic change in their donor-acceptor character. This approach was advantageous due to the introduction of benzothiadiazole and the dimeric nature of molecular structures. The best-performing system has a half-life of 3â days with quantum yields over 50 %.
RESUMEN
A homologous series of 4,7-bis(aryl) substituted benzothiadiazole (BTD) compounds, containing the helicenic derivatives bis([4]helicene), bis([5]helicene) and bis([6]helicene), have been prepared upon a double Suzuki coupling between 3,6-bis(pinacolyl-borane)-BTD and the corresponding bromo-aryl precursors. The single crystal X-ray structure of the bis([4]helicene) compound shows the existence of both helicities (M) and (P) on the same molecule. All the compounds of the series are highly emissive in solution, with quantum yields of the emission ranging from 50 to 91 %. The enantiopure compounds (M,M) and (P,P) for the BTD-bis([6]helicene) have been prepared from the corresponding enantiopure 2-bromo-[6]helicene precursors. Their chiroptical properties have been investigated in correlation with density functional theory (DFT) calculations, which allowed to confidently assign the absolute configuration of the helicene arms and to characterize the different electronic transitions, including the low energy charge transfer excitation from helicenes to BTD. The enantiomerically pure fluorophores (M,M)- and (P,P)-BTD-bis([6]helicene), which exist in solution as two main conformers, according to the DFT calculations, show CPL activity in solution, with glum factors of ≈1.7×10-3 at λem=525â nm, and also in the solid state, with glum factors of ≈1.2×10-3 in spite of the strong decrease of the quantum efficiency.
RESUMEN
Near-infrared (NIR) absorbing electron donor-acceptor (D-A) chromophores have been at the forefront of current energy research owing to their facile charge transfer (CT) characteristics, which are primitive for photovoltaic applications. Herein, we have designed and developed a new set of benzothiadiazole (BTD)-based tetracyanobutadiene (TCBD)/dicyanoquinodimethane (DCNQ)-embedded multimodular D-A systems (BTD1-BTD6) and investigated their inherent photo-electro-chemical responses for the first time having identical and mixed terminal donors of variable donicity. Apart from poor luminescence, the appearance of broad low-lying optical transitions extendable even in the NIR region (>1000â nm), particularly in the presence of the auxiliary acceptors, are indicative of underlying nonradiative excited state processes leading to robust intramolecular CT and subsequent charge separation (CS) processes in these D-A constructs. While electrochemical studies identify the moieties involved in these photo-events, orbital delocalization and consequent evidence for the low-energy CT transitions have been achieved from theoretical calculations. Finally, the spectral and temporal responses of different photoproducts are obtained from femtosecond transient absorption studies, which, coupled with spectroelectrochemical data, identify broad NIR signals as CS states of the compounds. All the systems are found to be susceptible to ultrafast (~ps) CT and CS before carrier recombination to the ground state, which is, however, significantly facilitated after incorporation of the secondary TCBD/DCNQ acceptors, leading to faster and thus efficient CT processes, particularly in polar solvents. These findings, including facile CT/CS and broad and intense panchromatic absorption over a wide window of the electromagnetic spectrum, are likely to expand the horizons of BTD-based multimodular CT systems to revolutionize the realm of solar energy conversion and associated photonic applications.
RESUMEN
Coronatine-insensitive 1 (COI1) has been identified as a target receptor of plant elicitor coronatine (COR). To discover novel plant elicitor leads, most of the potential molecules among 129 compounds discovered from the ZINC database by docking based virtual screening targeting COI1 were quinoline amides. On this lead basis, 2-benzothiadiazolylquinoline-4-carboxamides were rationally designed and synthesized for bioassay. All target compounds did not show significantly in vitro antifungal activity, compounds 4d, 4e and 4o displayed good in vivo systemic acquired resistance activity for Arabidopsis thaliana against Hyaloperonospora arabidopsidis isolate Noco2 with over 80% of inhibitory rate at the concentration of 50 µM. These results indicate that 2-benzothiadiazolylquinoline-4-carboxamides are promising plant elicitor leads for further study.
RESUMEN
Benzothiadiazole (BTH) regulates grape development, ripening, volatiles, and phenolics. This study used metabolomics and transcriptomics to understand how exogenous BTH affects Chardonnay grapes' maturation and synthesis of isoprenoids. A 0.37 mM BTH solution was sprayed during the swelling and veraison stages, and then the ripe grapes were analyzed. Our results show that BTH application significantly increased levels of important isoprenoids such as free terpinen-4-ol, bound linalool, and 8'-apo-ß-carotenal. Additionally, BTH was found to modulate several signaling pathways, including those involved in ethylene biosynthesis, salicylic acid synthesis, the abscisic acid pathway, and sugar metabolism, by regulating the expression of genes like VvACO4, VvTAR, VvPLD, VvTIP1-1, VvSTKs, VvPK, VvSUC2, VvGST4, and VvSTS. BTH also promoted grapevine resistance by up-regulating the expression of VvHSP20, VvGOLS4, VvOLP, and VvPR-10. Furthermore, BTH affected isoprenoids biosynthesis by regulating the expression of VvTPS35 and VvMYB24. Moreover, 13 hub genes in the MEgreen module were identified as crucial for the biosynthesis of isoprenoids. BTH application during the swelling stage remarkably promoted isoprenoid biosynthesis more effectively than veraison. Our study provides insights into the molecular mechanisms underlying BTH-induced regulation of grape development and offers a promising approach for enhancing the quality and resistance of grapes.
Asunto(s)
Frutas , Terpenos , Tiadiazoles , Transcriptoma , Vitis , Vitis/genética , Vitis/metabolismo , Vitis/efectos de los fármacos , Vitis/crecimiento & desarrollo , Terpenos/metabolismo , Tiadiazoles/farmacología , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Frutas/genética , Frutas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
Implementing sustainable crop protection practices is crucial to protect global harvests and ensure high-quality food supplies. While priming is an established method in seed production for the fortification of plants against various stresses, it is not yet a standard practice in transplant cultivation. Thus, we evaluated the long-term effects of thermopriming-a heat-based priming technique-on the growth, development, and fruit yield of tomato plants. Following a recovery period of about six weeks for thermoprimed plants without stress inducers, we subjected them to subsequent salt stress to ascertain the persistence of the priming effects. Additionally, we compared the efficacy of thermopriming with benzothiadiazole (BTH), a chemical elicitor, in enhancing plant resilience to abiotic stress. While BTH application negatively impacted both plant growth and fruit health, thermopriming showed no such adverse effects on these parameters. Instead, thermopriming initially enhanced the plant defense mechanisms by increasing the accumulation of protective phenols and flavonoids in the leaves. Interestingly, while thermopriming did not alter the response to salt stress, it notably strengthened the overall resilience of the plants. Our findings underscore both the potential and temporal constraints of thermopriming memory. Nonetheless, primed plants exhibited temporarily increased stress tolerance, offering a means to safeguard the offspring.
Asunto(s)
Agricultura , Productos Agrícolas , Calor , Estrés Salino , Solanum lycopersicum , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/crecimiento & desarrollo , Productos Agrícolas/efectos de los fármacos , Productos Agrícolas/crecimiento & desarrollo , Agricultura/métodos , Estrés Salino/fisiología , Tiadiazoles/farmacología , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos , Frutas/química , Frutas/efectos de los fármacosRESUMEN
An efficient access to the novel 5-(aryl)amino-1,2,3-triazole-containing 2,1,3-benzothiadiazole derivatives has been developed. The method is based on 1,3-dipolar azide-nitrile cycloaddition followed by Buchwald-Hartwig cross-coupling to afford the corresponding N-aryl and N,N-diaryl substituted 5-amino-1,2,3-triazolyl 2,1,3-benzothiadiazoles under NHC-Pd catalysis. The one-pot diarylative Pd-catalyzed heterocyclization opens the straightforward route to triazole-linked carbazole-benzothiadiazole D-A systems. The optical and electrochemical properties of the compound obtained were investigated to estimate their potential application as emissive layers in OLED devises. The quantum yield of photoluminescence (PLQY) of the synthesized D-A derivatives depends to a large extent on electron-donating strengths of donor (D) component, reaching in some cases the values closed to 100%. Based on the most photoactive derivative and wide bandgap host material mCP, a light-emitting layer of OLED was made. The device showed a maximum brightness of 8000 cd/m2 at an applied voltage of 18 V. The maximum current efficiency of the device reaches a value of 3.29 cd/A.
RESUMEN
Diblock conjugated oligomers are π-conjugated molecules that contain two segments having distinct frontier orbital energies and HOMO-LUMO gap offsets. These oligomers are of fundamental interest to understand how the distinct π-conjugated segments interact and modify their excited state properties. The current paper reports a study of two series of diblock oligomers that contain oligothiophene (Tn) and 4,7-bis(2-thienyl)-2,1,3-benzothiadiazole (TBT) segments that are coupled by either ethynyl (-C≡C-) or trans-(-C≡C-)2Pt(II)(PBu3)2 acetylide linkers. In these structures, the Tn segment is electron rich (donor), and the TBT is electron poor (acceptor). The diblock oligomers are characterized by steady-state and time-resolved spectroscopy, including UV-visible absorption, fluorescence, fluorescence lifetimes, and ultrafast transient absorption spectroscopy. Studies are compared in several solvents of different polarity and with different excitation wavelengths. The results reveal that the (-C≡C-) linked oligomers feature a delocalized excited state that takes on a charge transfer (CT) character in more polar media. In the (-C≡C-)2Pt(II)(PBu3)2-linked oligomers, there is weak coupling between the Tn and TBT segments. Consequently, short wavelength excitation selectively excites the Tn segment, which then undergoes ultrafast energy transfer (~1 ps) to afford a TBT-localized excited state.
RESUMEN
Green organic materials composed of C, H, O, and N elements are receiving more and more attention worldwide. However, the high solubility, poor electrical conductivity, and long activation time limit the development of organic materials in practice. Herein, two stable covalent organic materials with alkynyl linkage between benzene rings and benzothiadiazole groups with different amounts of fluorine atoms modification (defined as BOP-0F and BOP-2F), are designed for lithium-ion batteries. Both BOP-0F and BOP-2F can achieve superior reversible capacities of ≈719.8 and 713.5â mAh g-1 over 100â cycles on account of the redox activity of alkynyl (two-electron involved) and benzothiadiazole units (five-electron involved) in these organic materials. While BOP-2F electrodes exhibit much more stable cycling performance than BOP-0F electrodes, especially without pronounced capacity ascending during initial cycling. It can be assigned to the synergy effect of alkynyl linkage and fluorine atom modification in BOP-2F. The lithium storage and activation mechanism of alkynyl, benzothiadiazole, and fluorine groups have also been deeply probed by a series of material characterizations and theoretical simulations. This work could be noteworthy in providing novel tactics for the molecular design and investigation of high-efficiency organic electrodes for energy storage.
RESUMEN
Disordered polymer chain entanglements within all-polymer blends limit the formation of optimal donor-acceptor phase separation. Therefore, developing effective methods to regulate morphology evolution is crucial for achieving optimal morphological features in all-polymer organic solar cells (APSCs). In this study, two isomers, 4,5-difluorobenzo-c-1,2,5-thiadiazole (SF-1) and 5,6-difluorobenzo-c-1,2,5-thiadiazole (SF-2), were designed as solid additives based on the widely-used electron-deficient benzothiadiazole unit in nonfullerene acceptors. The incorporation of SF-1 or SF-2 into PM6 : PY-DT blend induces stronger molecular packing via molecular interaction, leading to the formation of continuous interpenetrated networks with suitable phase-separation and vertical distribution. Furthermore, after treatment with SF-1 and SF-2, the exciton diffusion lengths for PY-DT films are extended to over 40â nm, favoring exciton diffusion and charge transport. The asymmetrical SF-2, characterized by an enhanced dipole moment, increases the power conversion efficiency (PCE) of PM6 : PY-DT-based device to 18.83 % due to stronger electrostatic interactions. Moreover, a ternary device strategy boosts the PCE of SF-2-treated APSC to over 19 %. This work not only demonstrates one of the best performances of APSCs but also offers an effective approach to manipulate the morphology of all-polymer blends using rational-designed solid additives.
RESUMEN
Organic linker-based luminescent metal-organic frameworks (LMOFs) have received extensive attention due to their promising applications in chemical sensing, energy transfer, solid-state-lighting and heterogeneous catalysis. Benefiting from the virtually unlimited emissive organic linkers and the intrinsic advantages of MOFs, significant progress has been made in constructing LMOFs with specific emission behaviors and outstanding performances. Among these reported organic linkers, 2,1,3-benzothiadiazole and its derivatives, as unique building units with tunable electron-withdrawing abilities, can be used to synthesize numerous emissive linkers with a donor-bridge-acceptor-bridge-donor type structure. These linkers were utilized to coordinate with different metal nodes, forming LMOFs with diverse underlying nets and optical properties. In this Minireview, 2,1,3-benzothiadiazole and its derivative-based organic linkers and their corresponding LMOFs are summarized with which an emission library is built between the linker structures and the emission behaviors of constructed LMOFs. In particular, the preparation of LMOFs with customized emission properties ranging from deep-blue to near-infrared and sizes from dozens to hundreds of nanometers is discussed in detail. The applications of these LMOFs, including chemical sensing, energy harvesting and transfer, and catalysis, are then highlighted. Key perspectives and challenges for the future development of LMOFs are also addressed.
RESUMEN
The exploration of novel functionalized supramolecular coordination complexes (SCCs) can enable new applications in domains that include purification and sensing. In this study, employing a coordination-driven self-assembly strategy, we designed and prepared a series of benzochalcogenodiazole-based metallohelicates as high-efficiency charge-transfer surface-enhanced Raman scattering (SERS) substrates, expanding the range of applications for these metallohelicates. Through structural modifications, including the substitution of single heteroatoms on ligands, replacement of coordinating metals, and alteration of ligand framework linkages, the Raman performance of these metallohelicates as substrates were systematically optimized. Notably, the SERS enhancement factors (EFs) of the metallohelicate-based SERS substrates were significantly enhanced to levels as high as 1.03×107, which rivals the EFs of noble metals devoid of "hot spots". Additionally, the underlying Raman enhancement mechanisms of these metallohelicates have been investigated through a combination of control experiments and theoretical calculations. This study not only demonstrates the utility of metallohelicates as SERS substrates but also offers insights and materials for the development of high-efficiency new charge-transfer SERS substrates.
RESUMEN
In order to achieve a multifunctional compound with potential application in organic photonics and electronics, a multidonor benzothiadiazole derivative was rationally designed and synthesized employing microwave irradiation as energy source, increasing the process efficiency about yields and reaction times in comparison with conventional conditions. This powerful compound displayed solvatochromism and showed efficient behavior as red optical waveguide with low OLC around 10-2 â dB µm-1 and with the capacity of light transmission in two directions. In addition, the proposed derivative acted as efficient p-type semiconductor in organic field-effect transistors (OFETs) with hole mobilities up 10-1 â cm2 â V-1 s-1 . This corroborates its multifunctional character, thus making it a potential candidate to be applied in hybrid organic field-effect optical waveguides (OFEWs).
RESUMEN
The synthesis and characterization of asymmetric alkoxy- are reported, fluoro-benzothiadiazole (BT) acceptor core derivatized with a series of six different heterocycles (selenophene, thiophene, furan, 5-thiazole, 2-thiazole and 2-oxazole). The effect of the flanked-heterocycles containing different chalcogen atoms of the six homopolymers (HPX) is studied using optical, thermal, electrochemical, and computational analysis. Computational calculations indicate a strong relationship between the most stable conformation for each homopolymer and their bearing heterocycle, thus homopolymers HPSe', HPTp', HPFu', and HPTzC5, adopted the syn-syn and syn-anti conformations due to their noncovalent interactions with shorter distances, while HPTzC2' and HPOx' demonstrate preference for the anti-anti conformation. Optical property studies of the homopolymers reveal a strong red-shift in solution and film upon exchanging the chalcogen atom from Oxygen < Sulfur < Selenium in HPFu, HPTp, and HPSe, respectively. In addition, deeper highest occupied molecular orbital (HOMO) energy levels are observed when the donor-acceptor moieties (HPSe, HPTp, and HPFu) are substituted for the acceptor-acceptor systems such as HPTzC5, HPTzC2, and HPOx. Improved packing and morphology are exhibited for the donor-acceptor homopolymers. Thus, having a flanked heterocycle containing different chalcogen-atoms in polymeric systems is one way of tuning the physicochemical properties of conjugated materials for optoelectronic applications.
Asunto(s)
Calcógenos , Tiadiazoles , Calcógenos/química , Oxígeno/químicaRESUMEN
Ladder polymers with poly(diketopyrrolopyrrole) (DPP) moieties have recently attracted enormous interest for a large variety of opto-electronic applications. Since the rigidity of the backbone increases with ladderization, a strong influence on the self-organization of thin films is expected. We study the molecular orientation of DPP-based ladder polymers in about 50 nm thin films using polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS). Exemplarily, for one polymer, the orientation in thicker films is qualitatively investigated by infrared spectroscopy in transmission. Further, this method allows us to rule out the effects of a possible azimuthal ordering, which would affect the analysis of the orientation by PM-IRRAS. For all polymers, the long axis of the polymer backbone is preferentially oriented parallel to the substrate surface, pointing to a high degree of ordering. It is suggested that the choice of the side chains might be a promising way to tune for face-on and edge-on orientations. The exemplarily performed investigation of interface properties on substrates with different work functions suggests that the choice of the side chains has a minor effect on the interfacial electronic interface structure.
RESUMEN
Side chains play an important role in the photo-oxidation process of low band gap (LBG) polymers. For example, it has been shown that their photostability can be increased by the introduction of aromatic-oxy-alkyl links. We studied the photostability of prototypical LBG polymers with alkyl and oxyalkyl side chains during irradiation with white light (AM 1.5 conditions) in dry air using UV/vis and IR spectroscopy. Though its degradation kinetics were distinctly affected by the presence or absence of oxygen in the structure of the side chains, in particular cases, the stability was more affected by the presence of linear or branched side chains. Moreover, we showed that the exact position of the alkyl/oxyalkyl side chain at the polymer backbone could be crucial. Although minor effects of chemical modifications on the electronic parameters (ionization potential and gap) were observed, the molecular orientation, determined by polarization modulation-infrared reflection-absorption spectroscopy (PMIRRAS), could be affected. The aggregation and crystallinity of these polymers may distinctly affect their stability.
RESUMEN
BACKGROUND: Proanthocyanidins (PAs) are phenolic compounds present in skins and seeds of wine grapes and have great implications for plant physiology and wine quality. There are several strategies to increase PA concentration, such as application of elicitors methyl jasmonate (MeJ) and benzothiadiazole (BTH), compounds that can stimulate defence responses like phenolic compound biosynthesis in wine grapes, which have been applied mainly at veraison (beginning of ripening). We recently evaluated the application of MeJ and BTH on Vitis vinifera cv. Monastrell grapes during veraison and mid-ripening (3 weeks after veraison). Grapes treated at mid-ripening showed higher anthocyanin concentrations than those at veraison. In this trial, over two seasons, we evaluated whether time of application (veraison or mid-ripening) of MeJ and BTH on 'Monastrell' grapes is a determining factor in the biosynthesis and composition of PAs in grapes and their subsequent release into wines. RESULTS: Application of elicitors at different ripening times produced significant differences in the PAs of 'Monastrell' grapes, since those treated at mid-ripening recorded a higher PAs concentration in skin and seeds, and then in the wines produced, compared to grapes treated at veraison. CONCLUSION: Results suggest that despite different environmental conditions endured in each of the two seasons evaluated, application of elicitors at mid-ripening of Monastrell grapes could be used to harvest grapes with higher PA concentration, increasing the functional value of the wines, without altering their organoleptic quality. © 2022 Society of Chemical Industry.
Asunto(s)
Proantocianidinas , Vitis , Vino , Vitis/química , Proantocianidinas/análisis , Frutas/química , Oxilipinas/química , Vino/análisis , Antocianinas/análisis , Fenoles/análisisRESUMEN
The current review describes advances in the use of fluorescent 2,1,3-benzothiadiazole (BTD) derivatives after nearly one decade since the first description of bioimaging experiments using this class of fluorogenic dyes. The review describes the use of BTD-containing fluorophores applied as, inter alia, bioprobes for imaging cell nuclei, mitochondria, lipid droplets, sensors, markers for proteins and related events, biological processes and activities, lysosomes, plasma membranes, multicellular models, and animals. A number of physicochemical and photophysical properties commonly observed for BTD fluorogenic structures are also described.
Asunto(s)
Imagen Óptica , Tiadiazoles , Colorantes Fluorescentes , LisosomasRESUMEN
Conjugated polymers feature promising structure and properties for photocatalytic water splitting. Herein, a hydrolysis strategy was demonstrated to rationally modulate the surface hydrophilicity and band structures of conjugated poly-benzothiadiazoles. High hydrophilicity not only enhances the dispersions of polymeric solids in an aqueous solution but also reduces the absorption energy of water molecules. Besides, both theoretical and experimental results reveal that a more positive valence band potential is generated, which contributes to enhancing the photocatalytic water oxidation performance. Accordingly, the surface-modified conjugated polymers show largely promoted photocatalytic water oxidation activities by deposition of cobalt oxides as cocatalysts.