Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 762
Filtrar
Más filtros

Intervalo de año de publicación
1.
Bioessays ; 45(11): e2300037, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37582645

RESUMEN

There are an increasing number of cell therapy approaches being studied and employed world-wide. An emerging area in this field is the use of human pluripotent stem cell (hPSC) products for the treatment of injuries/diseases that cannot be effectively managed through current approaches. However, as with any cell therapy, vast numbers of functional and safe cells are required. Bioreactors provide an attractive avenue to generate clinically relevant cell numbers with decreased labour and decreased batch to batch variation. Yet, current methods of performing quality control are not readily scalable to the cell densities produced during bioreactor scale-up. One potential solution is the application of inducible/controllable suicide genes that can trigger cell death in unwanted cell types. These types of approaches have been demonstrated to increase the quality and safety of the resultant cell products. In this review, we will provide background on these approaches and how they could be used together with bioreactor technology to create effective bioprocesses for the generation of high quality and safe hPSCs for use in regenerative medicine approaches.


Asunto(s)
Técnicas de Cultivo de Célula , Células Madre Pluripotentes , Humanos , Técnicas de Cultivo de Célula/métodos , Reactores Biológicos , Control de Calidad , Tratamiento Basado en Trasplante de Células y Tejidos , Diferenciación Celular/genética
2.
Planta ; 260(1): 28, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878167

RESUMEN

MAIN CONCLUSION: We generated transplastomic tobacco lines that stably express a human Basic Fibroblast Growth Factor (hFGFb) in their chloroplasts stroma and purified a biologically active recombinant hFGFb. MAIN: The use of plants as biofactories presents as an attractive technology with the potential to efficiently produce high-value human recombinant proteins in a cost-effective manner. Plastid genome transformation stands out for its possibility to accumulate recombinant proteins at elevated levels. Of particular interest are recombinant growth factors, given their applications in animal cell culture and regenerative medicine. In this study, we produced recombinant human Fibroblast Growth Factor (rhFGFb), a crucial protein required for animal cell culture, in tobacco chloroplasts. We successfully generated two independent transplastomic lines that are homoplasmic and accumulate rhFGFb in their leaves. Furthermore, the produced rhFGFb demonstrated its biological activity by inducing proliferation in HEK293T cell lines. These results collectively underscore plastid genome transformation as a promising plant-based bioreactor for rhFGFb production.


Asunto(s)
Cloroplastos , Factor 2 de Crecimiento de Fibroblastos , Nicotiana , Plantas Modificadas Genéticamente , Proteínas Recombinantes , Nicotiana/genética , Nicotiana/metabolismo , Humanos , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Cloroplastos/metabolismo , Cloroplastos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células HEK293 , Proliferación Celular , Hojas de la Planta/metabolismo , Hojas de la Planta/genética
3.
Biochem Soc Trans ; 52(3): 997-1010, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38813858

RESUMEN

Advancements in synthetic biology have facilitated the incorporation of heterologous metabolic pathways into various bacterial chassis, leading to the synthesis of targeted bioproducts. However, total output from heterologous production pathways can suffer from low flux, enzyme promiscuity, formation of toxic intermediates, or intermediate loss to competing reactions, which ultimately hinder their full potential. The self-assembling, easy-to-modify, protein-based bacterial microcompartments (BMCs) offer a sophisticated way to overcome these obstacles by acting as an autonomous catalytic module decoupled from the cell's regulatory and metabolic networks. More than a decade of fundamental research on various types of BMCs, particularly structural studies of shells and their self-assembly, the recruitment of enzymes to BMC shell scaffolds, and the involvement of ancillary proteins such as transporters, regulators, and activating enzymes in the integration of BMCs into the cell's metabolism, has significantly moved the field forward. These advances have enabled bioengineers to design synthetic multi-enzyme BMCs to promote ethanol or hydrogen production, increase cellular polyphosphate levels, and convert glycerol to propanediol or formate to pyruvate. These pioneering efforts demonstrate the enormous potential of synthetic BMCs to encapsulate non-native multi-enzyme biochemical pathways for the synthesis of high-value products.


Asunto(s)
Bacterias , Ingeniería Metabólica , Redes y Vías Metabólicas , Biología Sintética , Ingeniería Metabólica/métodos , Bacterias/metabolismo , Biología Sintética/métodos , Proteínas Bacterianas/metabolismo , Glicoles de Propileno/metabolismo , Etanol/metabolismo
4.
Biotechnol Bioeng ; 121(9): 2662-2677, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38708676

RESUMEN

Gene therapy using recombinant adeno-associated virus (rAAV) as delivery vehicles has garnered much interest in recent years. There are still significant gaps in our fundamental understanding of the manufacturing processes to deliver sufficient products. Manufacturing efforts of rAAV using HEK293 cells have commonly relied on fixed bed falling film bioreactors like the iCELLis®. We used computational fluid dynamics (CFD) to validate the operating conditions required for a predictive iCELLis® 500 scale-down model. The small-scale and at-scale systems have different flow paths causing validation of the corresponding agitation rates required to achieve the same linear flow through the fixed bed across scales to be non-trivial. Therefore, we used CFD to predict the theoretical scaling relationship. In addition, CFD could predict kLa differences between the two systems and the operating conditions required to match kLa between scales. We also confirmed that the location of DO control must be the same in both systems to achieve proper scaling. Experimental runs confirming the validity of the novel scale-down model showed that based on the modifications to the iCELLis® Nano system, we achieved similar DO, key metabolite, pH, and GC titer trends in both systems.


Asunto(s)
Reactores Biológicos , Dependovirus , Terapia Genética , Hidrodinámica , Dependovirus/genética , Humanos , Terapia Genética/métodos , Células HEK293 , Simulación por Computador , Vectores Genéticos/genética
5.
Biotechnol Bioeng ; 121(2): 655-669, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38031493

RESUMEN

A physics-based model for predicting cell culture fluid properties inside a stirred tank bioreactor with embedded PID controller logic is presented. The model evokes a time-accurate solution to the fluid velocity field and overall volumetric mass transfer coefficient, as well as the ongoing effects of interfacial mass transfer, species mixing, and aqueous chemical reactions. The modeled system also includes a direct coupling between process variables and system control variables via embedded controller logic. Satisfactory agreement is realized between the model prediction and measured bioreactor data in terms of the steady-state operating conditions and the response to setpoint changes. Simulation runtimes are suitable for industrial research and design timescales.


Asunto(s)
Reactores Biológicos , Oxígeno , Oxígeno/química , Técnicas de Cultivo de Célula , Simulación por Computador , Concentración de Iones de Hidrógeno
6.
Biotechnol Bioeng ; 121(9): 2691-2705, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38715197

RESUMEN

The human microbiota impacts a variety of diseases and responses to therapeutics. Due to a lack of robust in vitro models, detailed mechanistic explanations of host-microbiota interactions cannot often be recapitulated. We describe the design and development of a novel, versatile and modular in vitro system that enables indirect coculture of human epithelial cells with anaerobic bacteria for the characterization of host-microbe secreted metabolite interactions. This system was designed to compartmentalize anaerobes and human cells in separate chambers conducive to each organism's requisite cell growth conditions. Using perfusion, fluidic mixing, and automated sample collection, the cells continuously received fresh media, while in contact with their corresponding compartments conditioned supernatant. Supernatants from each chamber were collected in a cell-free time-resolved fashion. The system sustained low oxygen conditions in the anaerobic chamber, while also supporting the growth of a representative anaerobe (Bacteroides thetaiotaomicron) and a human colonic epithelial cell line (Caco-2) in the aerobic chamber. Caco-2 global gene expression changes in response to coculture with B. thetaiotaomicron was characterized using RNA sequencing. Extensive, targeted metabolomics analysis of over 150 central carbon metabolites was performed on the serially collected supernatants. We observed broad metabolite changes in host-microbe coculture, compared to respective mono-culture controls. These effects were dependent both on sampling time and the compartment probed (apical vs. basolateral). Coculturing resulted in the depletion of several important metabolites, including guanine, uridine 5'-monophosphate, asparagine, and thiamine. Additionally, while Caco-2 cells cultured alone predominantly affected the basolateral metabolite milieu, increased abundance of 2,3-dihydroxyisovalerate and thymine on the basolateral side, occurred when the cells were cocultured with B. thetaiotaomicron. Thus, our system can capture the dynamic, competitive and cooperative processes between host cells and gut microbes.


Asunto(s)
Reactores Biológicos , Técnicas de Cocultivo , Células Epiteliales , Humanos , Reactores Biológicos/microbiología , Células Epiteliales/microbiología , Células Epiteliales/metabolismo , Células CACO-2 , Microbioma Gastrointestinal/fisiología , Bacteroides thetaiotaomicron/metabolismo
7.
Biotechnol Lett ; 46(2): 279-293, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38349512

RESUMEN

PURPOSE: 3D cell culture and hypoxia have been demonstrated to increase the therapeutic effects of mesenchymal stem/stromal cells (MSCs)-derived extracellular vesicles (EVs). In this study, a process for the production of MSC-EVs in a novel 3D bioreactor system under normoxic and hypoxic conditions was established and the resulting EVs were characterized. METHODS: Human adipose-derived MSCs were seeded and cultured on a 3D membrane in the VITVO® bioreactor system for 7 days. Afterwards, MSC-EVs were isolated and characterized via fluorescence nanoparticle tracking analysis, flow cytometry with staining against annexin V (Anx5) as a marker for EVs exposing phosphatidylserine, as well as CD73 and CD90 as MSC surface markers. RESULTS: Cultivation of MSC in the VITVO® bioreactor system demonstrated a higher concentration of MSC-EVs from the 3D bioreactor (9.1 × 109 ± 1.5 × 109 and 9.7 × 109 ± 3.1 × 109 particles/mL) compared to static 2D culture (4.2 × 109 ± 7.5 × 108 and 3.9 × 109 ± 3.0 × 108 particles/mL) under normoxic and hypoxic conditions, respectively. Also, the particle-to-protein ratio as a measure for the purity of EVs increased from 3.3 × 107 ± 1.1 × 107 particles/µg protein in 2D to 1.6 × 108 ± 8.3 × 106 particles/µg protein in 3D. Total MSC-EVs as well as CD73-CD90+ MSC-EVs were elevated in 2D normoxic conditions. The EV concentration and size did not differ significantly between normoxic and hypoxic conditions. CONCLUSION: The production of MSC-EVs in a 3D bioreactor system under hypoxic conditions resulted in increased EV concentration and purity. This system could be especially useful in screening culture conditions for the production of 3D-derived MSC-EVs.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Humanos , Vesículas Extracelulares/metabolismo , Reactores Biológicos
8.
Mar Drugs ; 22(4)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38667759

RESUMEN

The enormous potential attributed to prodigiosin regarding its applicability as a natural pigment and pharmaceutical agent justifies the development of sound bioprocesses for its production. Using a Serratia rubidaea strain isolated from a shallow-water hydrothermal vent, optimization of the growth medium composition was carried out. After medium development, the bacterium temperature, light and oxygen needs were studied, as was growth inhibition by product concentration. The implemented changes led to a 13-fold increase in prodigiosin production in a shake flask, reaching 19.7 mg/L. The conditions allowing the highest bacterial cell growth and prodigiosin production were also tested with another marine strain: S. marcescens isolated from a tide rock pool was able to produce 15.8 mg/L of prodigiosin. The bioprocess with S. rubidaea was scaled up from 0.1 L shake flasks to 2 L bioreactors using the maintenance of the oxygen mass transfer coefficient (kLa) as the scale-up criterion. The implemented parameters in the bioreactor led to an 8-fold increase in product per biomass yield and to a final concentration of 293.1 mg/L of prodigiosin in 24 h.


Asunto(s)
Reactores Biológicos , Medios de Cultivo , Prodigiosina , Serratia , Prodigiosina/biosíntesis , Serratia/metabolismo , Medios de Cultivo/química , Biomasa , Oxígeno/metabolismo , Temperatura , Organismos Acuáticos/metabolismo
9.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34580200

RESUMEN

Human malignant hematopoietic stem and progenitor cells (HSPCs) reside in bone marrow (BM) niches, which remain challenging to explore due to limited in vivo accessibility and constraints with humanized animal models. Several in vitro systems have been established to culture patient-derived HSPCs in specific microenvironments, but they do not fully recapitulate the complex features of native bone marrow. Our group previously reported that human osteoblastic BM niches (O-N), engineered by culturing mesenchymal stromal cells within three-dimensional (3D) porous scaffolds under perfusion flow in a bioreactor system, are capable of maintaining, expanding, and functionally regulating healthy human cord blood-derived HSPCs. Here, we first demonstrate that this 3D O-N can sustain malignant CD34+ cells from acute myeloid leukemia (AML) and myeloproliferative neoplasm patients for up to 3 wk. Human malignant cells distributed in the bioreactor system mimicking the spatial distribution found in native BM tissue, where most HSPCs remain linked to the niches and mature cells are released to the circulation. Using human adipose tissue-derived stromal vascular fraction cells, we then generated a stromal-vascular niche and demonstrated that O-N and stromal-vascular niche differentially regulate leukemic UCSD-AML1 cell expansion, immunophenotype, and response to chemotherapy. The developed system offers a unique platform to investigate human leukemogenesis and response to drugs in customized environments, mimicking defined features of native hematopoietic niches and compatible with the establishment of personalized settings.


Asunto(s)
Células Madre Hematopoyéticas/citología , Nicho de Células Madre/fisiología , Animales , Antígenos CD34/metabolismo , Médula Ósea/metabolismo , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Madre Hematopoyéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Fracción Vascular Estromal/metabolismo , Andamios del Tejido/química , Microambiente Tumoral/fisiología
10.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39000533

RESUMEN

Vascular calcification (VC) is a cardiovascular disease characterized by calcium salt deposition in vascular smooth muscle cells (VSMCs). Standard in vitro models used in VC investigations are based on VSMC monocultures under static conditions. Although these platforms are easy to use, the absence of interactions between different cell types and dynamic conditions makes these models insufficient to study key aspects of vascular pathophysiology. The present study aimed to develop a dynamic endothelial cell-VSMC co-culture that better mimics the in vivo vascular microenvironment. A double-flow bioreactor supported cellular interactions and reproduced the blood flow dynamic. VSMC calcification was stimulated with a DMEM high glucose calcification medium supplemented with 1.9 mM NaH2PO4/Na2HPO4 (1:1) for 7 days. Calcification, cell viability, inflammatory mediators, and molecular markers (SIRT-1, TGFß1) related to VSMC differentiation were evaluated. Our dynamic model was able to reproduce VSMC calcification and inflammation and evidenced differences in the modulation of effectors involved in the VSMC calcified phenotype compared with standard monocultures, highlighting the importance of the microenvironment in controlling cell behavior. Hence, our platform represents an advanced system to investigate the pathophysiologic mechanisms underlying VC, providing information not available with the standard cell monoculture.


Asunto(s)
Diferenciación Celular , Técnicas de Cocultivo , Músculo Liso Vascular , Miocitos del Músculo Liso , Calcificación Vascular , Humanos , Calcificación Vascular/metabolismo , Calcificación Vascular/patología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Células Cultivadas , Supervivencia Celular , Factor de Crecimiento Transformador beta1/metabolismo , Sirtuina 1/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Reactores Biológicos
11.
Int J Mol Sci ; 25(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38791256

RESUMEN

Interrupted blood flow in the brain due to ischemic injuries such as ischemic stroke or traumatic brain injury results in irreversible brain damage, leading to cognitive impairment associated with inflammation, disruption of the blood-brain barrier (BBB), and cell death. Since the BBB only allows entry to a small class of drugs, many drugs used to treat ischemia in other tissues have failed in brain-related disorders. The administration of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) has shown promise in improving the functional recovery of the brain following cerebral ischemia by inducing blood vessel formation. To facilitate such a treatment approach, it is necessary to develop bioprocesses that can produce therapeutically relevant MSC-EVs in a reproducible and scalable manner. This study evaluated the feasibility of using stirred suspension bioreactors (SSBs) to scale-up the serum-free production of pro-angiogenic MSC-EVs under clinically relevant physioxic conditions. It was found that MSCs grown in SSBs generated EVs that stimulated angiogenesis in cerebral microvascular endothelial cells, supporting the use of SSBs to produce MSC-EVs for application in cerebral ischemia. These properties were impaired at higher cell confluency, outlining the importance of considering the time of harvest when developing bioprocesses to manufacture EV populations.


Asunto(s)
Reactores Biológicos , Células Endoteliales , Vesículas Extracelulares , Células Madre Mesenquimatosas , Neovascularización Fisiológica , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Humanos , Células Endoteliales/metabolismo , Células Endoteliales/citología , Encéfalo/metabolismo , Encéfalo/irrigación sanguínea , Células Cultivadas , Barrera Hematoencefálica/metabolismo , Angiogénesis
12.
J Environ Manage ; 360: 121182, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38772237

RESUMEN

The emergence of algal biorefineries has garnered considerable attention to researchers owing to their potential to ensure carbon neutrality via mitigation of atmospheric greenhouse gases. Algae-derived biofuels, characterized by their carbon-neutral nature, stand poised to play a pivotal role in advancing sustainable development initiatives aimed at enhancing environmental and societal well-being. In this context, algae-based wastewater treatment systems are greatly appreciated for their efficacy in nutrient removal and simultaneous bioenergy generation. These systems leverage the growth of algae species on wastewater nutrients-including carbon, nitrogen, and phosphorus-alongside carbon dioxide, thus facilitating a multifaceted approach to pollution remediation. This review seeks to delve into the realization of carbon neutrality through algae-mediated wastewater treatment approaches. Through a comprehensive analysis, this review scrutinizes the trajectory of algae-based wastewater treatment via bibliometric analysis. It subsequently examines the case studies and empirical insights pertaining to algae cultivation, treatment performance analysis, cost and life cycle analyses, and the implementation of optimization methodologies rooted in artificial intelligence and machine learning algorithms for algae-based wastewater treatment systems. By synthesizing these diverse perspectives, this study aims to offer valuable insights for the development of future engineering applications predicated on an in-depth understanding of carbon neutrality within the framework of circular economy paradigms.


Asunto(s)
Carbono , Purificación del Agua , Biocombustibles , Dióxido de Carbono/análisis , Nitrógeno , Fósforo , Eliminación de Residuos Líquidos/métodos , Aguas Residuales , Purificación del Agua/métodos
13.
Cytotherapy ; 25(9): 993-1005, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37256241

RESUMEN

BACKGROUND AIMS: Human pluripotent stem cells (PSCs) hold a great promise for promoting regenerative medical therapies due to their ability to generate multiple mature cell types and for their high expansion potential. However, cell therapies require large numbers of cells to achieve desired therapeutic effects, and traditional two-dimensional static culture methods cannot meet the required production demand for cellular therapies. One solution to this problem is scaling up expansion of PSCs in bioreactors using culture strategies such as growing cells on microcarriers or as aggregates in suspension culture. METHODS: In this study, we directly compared PSC expansion and quality parameters in microcarrier- and aggregate-cultures grown in single-use vertical-wheel bioreactors. RESULTS: We showed comparable expansion of cells on microcarriers and as aggregates by day 6 with a cell density reaching 2.2 × 106 cells/mL and 1.8 × 106 cells/mL and a fold-expansion of 22- and 18-fold, respectively. PSCs cultured on microcarriers and as aggregates were comparable with parallel two-dimensional cultures and with each other in terms of pluripotency marker expression and retention of other pluripotency characteristics as well as differentiation potential into three germ layers, neural precursor cells and cardiomyocytes. CONCLUSIONS: Our study did not demonstrate a clear advantage between the two three-dimensional methods for the quality parameters assessed. This analysis adds support to the use of bioreactor systems for large scale expansion of PSCs, demonstrating that the cells retain key characteristics of PSCs and differentiation potential in suspension culture.


Asunto(s)
Células-Madre Neurales , Células Madre Pluripotentes , Humanos , Técnicas de Cultivo de Célula/métodos , Reactores Biológicos , Diferenciación Celular , Proliferación Celular
14.
Crit Rev Biotechnol ; : 1-23, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37500186

RESUMEN

In vitro plant cell and organ cultures are appealing alternatives to traditional methods of producing valuable specialized metabolites for use as: pharmaceuticals, food additives, cosmetics, perfumes, and agricultural chemicals. Cell cultures have been adopted for the production of specialized metabolites in certain plants. However, in certain other systems, adventitious roots are superior to cell suspension cultures as they are organized structures that accumulate high levels of specialized metabolites. The cultivation of adventitious roots has been investigated in various bioreactor systems, including: mechanically agitated, pneumatically agitated, and modified bioreactors. The main relevance and importance of this work are to develop a long-lasting industrial biotechnological technology as well as to improve the synthesis of these metabolites from the plant in vitro systems. These challenges are exacerbated by: the peculiarities of plant cell metabolism, the complexity of specialized metabolite pathways, the proper selection of bioreactor systems, and bioprocess optimization. This review's major objective is to analyze several bioreactor types for the development of adventitious roots, as well as the advantages and disadvantages of each type of bioreactor, and to describe the strategies used to increase the synthesis of specialized metabolites. This review also emphasizes current advancements in the field, and successful instances of scaled-up cultures and the generation of specialized metabolites for commercial purposes are also covered.

15.
Biotechnol Bioeng ; 120(10): 2827-2839, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37243890

RESUMEN

Transgenic modification of Bombyx mori silkworms is a benign approach for the production of silk fibers with extraordinary properties and also to generate therapeutic proteins and other biomolecules for various applications. Silk fibers with fluorescence lasting more than a year, natural protein fibers with strength and toughness exceeding that of spider silk, proteins and therapeutic biomolecules with exceptional properties have been developed using transgenic technology. The transgenic modifications have been done primarily by modifying the silk sericin and fibroin genes and also the silk producing glands. Although the genetic modifications were typically performed using the sericin 1 and other genes, newer techniques such as CRISPR/Cas9 have enabled successful modifications of both the fibroin H-chain and L-chain. Such modifications have led to the production of therapeutic proteins and other biomolecules in reasonable quantities at affordable costs for tissue engineering and other medical applications. Transgenically modified silkworms also have distinct and long-lasting fluorescence useful for bioimaging applications. This review presents an overview of the transgenic techniques for modifications of B. mori silkworms and the properties obtained due to such modifications with particular focus on production of growth factors, fluorescent proteins, and high performance protein fibers.


Asunto(s)
Bombyx , Fibroínas , Animales , Bombyx/genética , Bombyx/metabolismo , Fibroínas/genética , Animales Modificados Genéticamente/genética , Seda/genética , Seda/metabolismo , Fluorescencia
16.
Biotechnol Bioeng ; 120(9): 2725-2741, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36919232

RESUMEN

Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) act as signaling mediators of cellular responses. However, despite representing a promising alternative to cell-based therapies, clinical translation of EVs is currently limited by their lack of scalability and standardized bioprocessing. Herein, we integrated scalable downstream processing protocols with standardized expansion of large numbers of viable cells in stirred-tank bioreactors to improve EV production. Higher EV yields were linked to EV isolation by tangential flow filtration followed by size exclusion chromatography, rendering 5 times higher number of EVs comparatively to density gradient ultracentrifugation protocols. Additionally, when compared to static culture, EV manufacture in bioreactors resulted in 2.2 higher yields. Highlighting the role of operating under optimal cell culture conditions to maximize the number of EVs secreted per cell, MSCs cultured at lower glucose concentration favored EV secretion. While offline measurements of metabolites concentration can be performed, in this work, Raman spectroscopy was also applied to continuously track glucose levels in stirred-tank bioreactors, contributing to streamline the selection of optimal EV collection timepoints. Importantly, MSC-derived EVs retained their quality attributes and were able to stimulate angiogenesis in vitro, therefore highlighting their promising therapeutic potential.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Técnicas de Cultivo de Célula , Reactores Biológicos , Vesículas Extracelulares/metabolismo , Glucosa/metabolismo
17.
Microb Cell Fact ; 22(1): 230, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37936187

RESUMEN

The physical states and chemical components of bulk sludge determine the occurrence and development of membrane fouling in membrane bioreactors. Thus, regulation of sludge suspensions can provide new strategies for fouling control. In this study, we used "top-down" enrichment to construct a synthetic anti-fouling consortium (SAC) from bio-cake and evaluate its roles in preventing membrane fouling. The SAC was identified as Massilia-dominated and could almost wholly degrade the alginate solution (1,000 mg/L) within 72 h. Two-dimensional Fourier transformation infrared correlation spectroscopy (2D-FTIR-CoS) analysis demonstrated that the SAC induced the breakage of glycosidic bond in alginates. The co-cultivation of sludge with a low dosage of SAC (ranging from 0 to 1%) led to significant fouling mitigation, increased sludge floc size, and decreased unified membrane fouling index value (0.55 ± 0.06 and 0.11 ± 0.05). FTIR spectra and X-ray spectroscopy analyses demonstrated that the addition of SAC decreased the abundance of the O-acetylation of polysaccharides in extracellular polymeric substances. Secondary derivatives analysis of amide I spectra suggested a strong reduction in the α-helix/(ß-sheet + random coil) ratio in the presence of SAC, which was expected to enhance cell aggregation. Additionally, the extracellular secretions of SAC could both inhibit biofilm formation and strongly disperse the existing biofilm strongly during the biofilm incubation tests. In summary, this study illustrates the feasibility and benefits of using SAC for fouling control and provides a new strategy for fouling control.


Asunto(s)
Incrustaciones Biológicas , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Incrustaciones Biológicas/prevención & control , Membranas Artificiales , Biopelículas , Polisacáridos , Reactores Biológicos , Alginatos
18.
Environ Res ; 236(Pt 1): 116738, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37495066

RESUMEN

As human society and industrialization have progressed, harmful algal blooms have contributed to global ecological pollution which makes the development of a novel and effective algal control strategy imminent. This is because existing physical and chemical methods for dealing with the problem have issues like cost and secondary pollution. Benefiting from their environmentally friendly and biocompatible properties, white-rot fungi (WRF) have been studied to control algal growth. WRF control algae by using algae for carbon or nitrogen, antagonism, and enhancing allelopathies. It can be better applied to practice by immobilization. This paper reviews the mechanism for WRF control of algae growth and its practical application. It demonstrates the limitations of WRF controlling algae growth and aids the further study of biological methods to regulate eutrophic water in algae growth research. In addition, it provides theoretical support for the fungi controlling algae growth.


Asunto(s)
Basidiomycota , Eutrofización , Humanos , Floraciones de Algas Nocivas , Hongos
19.
Environ Res ; 237(Pt 2): 117100, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37689336

RESUMEN

The levels of pesticides in air, water, and soil are gradually increasing due to its inappropriate management. In particular, agricultural runoff inflicts the damages on the ecosystem and human health at massive scale. Present study summarizes 70 studies in which investigations on removal or treatment of pesticides/insecticides/herbicides are reported. A bibliometric analysis was also done to understand the recent research trends through the analysis of 2218 publications. The specific objectives of this study are as follows: i) to inventorize the characteristics details of agriculture runoff and analyzing the occurrence and impacts of pesticides, ii) analyzing the role and interaction of pesticides in different environmental segments, iii) investigating the fate of pesticides in agriculture runoff treatment systems, iv) summarizing the experiences and findings of most commonly technology deployed for pesticides remediation in agriculture runoff including target pesticide(s), specifications, configuration of technological intervention. Among the reported technologies for pesticide treatment in agriculture runoff, constructed wetland was at the top followed by algal or photobioreactor. Among various advanced oxidation processes, photo Fenton method is mainly used for pesticides remediation such as triazine, methyl parathion, fenuron and diuron. Algal bioreactors are extensively used for a wide range of pesticides treatment including 2,4-Dichlorophenoxyacetic acid, 2-methyl-4-chlorophenoxyacetic acid, alachlor, diuron, chlorpyrifos, endosulfan, and imidacloprid; especially at lower hydraulic retention time of 2-6 h. This study highlights that hybrid approaches can offers potential opportunities for effective removal of pesticides in a more viable manner.

20.
Appl Microbiol Biotechnol ; 107(7-8): 2061-2071, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36847855

RESUMEN

Since ancient times, Morinda species, particularly Morinda citrifolia, have been used for their therapeutic benefits. Iridoids, anthraquinones, coumarins, flavonoids, lignans, phytosterols, and carotenoids are examples of natural substances with bioactivity. Anthraquinone derivatives are the most significant of these chemicals since they are utilized as natural coloring agents and have a wide range of medicinal functions. Utilizing cell and organ cultures of Morinda species, various biotechnological methods have been developed for the bioproduction of anthraquinone derivatives. The generation of anthraquinone derivatives in cell and organ cultures is summarized in this article. The methods used to produce these chemicals in bioreactor cultures have also been examined. KEY POINTS: • This review investigates the potential of cell and organ cultures for anthraquinone synthesis. • The overproduction of anthraquinones has been addressed using a variety of techniques. • The use of bioreactor technologies for anthraquinone manufacturing is highlighted.


Asunto(s)
Lignanos , Morinda , Técnicas de Cultivo de Órganos , Morinda/química , Antraquinonas/química , Extractos Vegetales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA