Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Virol ; 98(3): e0150223, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38315015

RESUMEN

Capsid assembly is critical in the hepatitis B virus (HBV) life cycle, mediated by the viral core protein. Capsid assembly is the target for new anti-viral therapeutics known as capsid assembly modulators (CAMs) of which the CAM-aberrant (CAM-A) class induces aberrant shaped core protein structures and leads to hepatocyte cell death. This study aimed to identify the mechanism of action of CAM-A modulators leading to HBV-infected hepatocyte elimination where CAM-A-mediated hepatitis B surface antigen (HBsAg) reduction was evaluated in a stable HBV replicating cell line and in AAV-HBV-transduced C57BL/6, C57BL/6 SCID, and HBV-infected chimeric mice with humanized livers. Results showed that in vivo treatment with CAM-A modulators induced pronounced reductions in hepatitis B e antigen (HBeAg) and HBsAg, associated with a transient alanine amino transferase (ALT) increase. Both HBsAg and HBeAg reductions and ALT increase were delayed in C57BL/6 SCID and chimeric mice, suggesting that adaptive immune responses may indirectly contribute. However, CD8+ T cell depletion in transduced wild-type mice did not impact antigen reduction, indicating that CD8+ T cell responses are not essential. Transient ALT elevation in AAV-HBV-transduced mice coincided with a transient increase in endoplasmic reticulum stress and apoptosis markers, followed by detection of a proliferation marker. Microarray data revealed antigen presentation pathway (major histocompatibility complex class I molecules) upregulation, overlapping with the apoptosis. Combination treatment with HBV-specific siRNA demonstrated that CAM-A-mediated HBsAg reduction is dependent on de novo core protein translation. To conclude, CAM-A treatment eradicates HBV-infected hepatocytes with high core protein levels through the induction of apoptosis, which can be a promising approach as part of a regimen to achieve functional cure. IMPORTANCE: Treatment with hepatitis B virus (HBV) capsid assembly modulators that induce the formation of aberrant HBV core protein structures (CAM-A) leads to programmed cell death, apoptosis, of HBV-infected hepatocytes and subsequent reduction of HBV antigens, which differentiates CAM-A from other CAMs. The effect is dependent on the de novo synthesis and high levels of core protein.


Asunto(s)
Antivirales , Apoptosis , Regulación Viral de la Expresión Génica , Antígenos del Núcleo de la Hepatitis B , Virus de la Hepatitis B , Hepatocitos , Biosíntesis de Proteínas , Animales , Ratones , Antivirales/farmacología , Antivirales/uso terapéutico , Apoptosis/efectos de los fármacos , Cápside/química , Cápside/clasificación , Cápside/efectos de los fármacos , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Hepatitis B/tratamiento farmacológico , Hepatitis B/inmunología , Hepatitis B/metabolismo , Hepatitis B/virología , Antígenos del Núcleo de la Hepatitis B/biosíntesis , Antígenos del Núcleo de la Hepatitis B/metabolismo , Antígenos e de la Hepatitis B/metabolismo , Antígenos de Superficie de la Hepatitis B/metabolismo , Virus de la Hepatitis B/crecimiento & desarrollo , Virus de la Hepatitis B/inmunología , Virus de la Hepatitis B/metabolismo , Virus de la Hepatitis B/patogenicidad , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Hepatocitos/virología , Ratones Endogámicos C57BL , Ratones SCID , Replicación Viral , Línea Celular , Linfocitos T CD8-positivos/inmunología , Presentación de Antígeno
2.
J Hepatol ; 81(3): 404-414, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38583491

RESUMEN

BACKGROUND & AIMS: Functional cure for chronic hepatitis B (CHB) requires finite treatment. Two agents under investigation with the goal of achieving functional cure are the small-interfering RNA JNJ-73763989 (JNJ-3989) and the capsid assembly modulator JNJ-56136379 (JNJ-6379; bersacapavir). METHODS: REEF-2, a phase IIb, double-blind, placebo-controlled, randomized study, enrolled 130 nucleos(t)ide analogue (NA)-suppressed hepatitis B e-antigen (HBeAg)-negative patients with CHB who received JNJ-3989 (200 mg subcutaneously every 4 weeks) + JNJ-6379 (250 mg oral daily) + NA (oral daily; active arm) or placebos for JNJ-3989 and JNJ-6379 +active NA (control arm) for 48 weeks followed by 48 weeks off-treatment follow-up. RESULTS: At follow-up Week 24, no patients achieved the primary endpoint of functional cure (off-treatment hepatitis B surface antigen [HBsAg] seroclearance). No patients achieved functional cure at follow-up Week 48. There was a pronounced on-treatment reduction in mean HBsAg from baseline at Week 48 in the active arm vs. no decline in the control arm (1.89 vs. 0.06 log10 IU/ml; p = 0.001). At follow-up Week 48, reductions from baseline were >1 log10 IU/ml in 81.5% vs. 12.5% of patients in the active and control arms, respectively, and 38/81 (46.9%) patients in the active arm achieved HBsAg <100 IU/ml vs. 6/40 (15.0%) patients in the control arm. Off-treatment HBV DNA relapse and alanine aminotransferase increases were less frequent in the active arm, with 7/77 (9.1%) and 11/41 (26.8%) patients in the active and control arms, respectively, restarting NAs during follow-up. CONCLUSIONS: Finite 48-week treatment with JNJ-3989 + JNJ-6379 + NA resulted in fewer and less severe post-treatment HBV DNA increases and alanine aminotransferase flares, and a higher proportion of patients with off-treatment HBV DNA suppression, with or without HBsAg suppression, but did not result in functional cure. IMPACT AND IMPLICATIONS: Achieving a functional cure from chronic hepatitis B (CHB) with finite treatments is a major unmet medical need. The current study assessed the rate of functional cure and clinical outcome after controlled nucleos(t)ide analogue (NA) withdrawal in patients with low levels of HBsAg induced by 48 weeks of treatment with the small-interfering RNA JNJ-3989 and the capsid assembly modulator JNJ-6379 plus NA vs. patients who only received NA treatment. Though functional cure was not achieved by any patient in either arm, the 48-week treatment regimen of JNJ-3989, JNJ-6379, and NA did result in more patients achieving pronounced reductions in HBsAg, with clinically meaningful reductions maintained for up to 48 weeks off all treatments, as well as fewer off-treatment HBV DNA increases and alanine aminotransferase flares. These findings provide valuable insights for future studies investigating potential finite treatment options, while the reported efficacy and safety outcomes may be of interest to healthcare providers making treatment decisions for patients with NA-suppressed HBeAg-negative CHB. GOV IDENTIFIER: NCT04129554.


Asunto(s)
Antivirales , Hepatitis B Crónica , Humanos , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/virología , Masculino , Femenino , Método Doble Ciego , Adulto , Antivirales/uso terapéutico , Antivirales/administración & dosificación , Persona de Mediana Edad , Resultado del Tratamiento , Antígenos de Superficie de la Hepatitis B/sangre , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/efectos de los fármacos , Antígenos e de la Hepatitis B/sangre , Quimioterapia Combinada/métodos , Nucleósidos/administración & dosificación , Nucleósidos/uso terapéutico , ADN Viral/sangre , ADN Viral/análisis
3.
Antimicrob Agents Chemother ; 68(7): e0042024, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38780261

RESUMEN

Capsid assembly mediated by hepatitis B virus (HBV) core protein (HBc) is an essential part of the HBV replication cycle, which is the target for different classes of capsid assembly modulators (CAMs). While both CAM-A ("aberrant") and CAM-E ("empty") disrupt nucleocapsid assembly and reduce extracellular HBV DNA, CAM-As can also reduce extracellular HBV surface antigen (HBsAg) by triggering apoptosis of HBV-infected cells in preclinical mouse models. However, there have not been substantial HBsAg declines in chronic hepatitis B (CHB) patients treated with CAM-As to date. To investigate this disconnect, we characterized the antiviral activity of tool CAM compounds in HBV-infected primary human hepatocytes (PHHs), as well as in HBV-infected human liver chimeric mice and mice transduced with adeno-associated virus-HBV. Mechanistic studies in HBV-infected PHH revealed that CAM-A, but not CAM-E, induced a dose-dependent aggregation of HBc in the nucleus which is negatively regulated by the ubiquitin-binding protein p62. We confirmed that CAM-A, but not CAM-E, induced HBc-positive cell death in both mouse models via induction of apoptotic and inflammatory pathways and demonstrated that the degree of HBV-positive cell loss was positively correlated with intrahepatic HBc levels. Importantly, we determined that there is a significantly lower level of HBc per hepatocyte in CHB patient liver biopsies than in either of the HBV mouse models. Taken together, these data confirm that CAM-As have a unique secondary mechanism with the potential to kill HBc-positive hepatocytes. However, this secondary mechanism appears to require higher intrahepatic HBc levels than is typically observed in CHB patients, thereby limiting the therapeutic potential.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B Crónica , Hepatocitos , Humanos , Hepatocitos/virología , Hepatocitos/efectos de los fármacos , Animales , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/fisiología , Ratones , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/virología , Proteínas del Núcleo Viral/metabolismo , Antivirales/farmacología , Antivirales/uso terapéutico , Antígenos del Núcleo de la Hepatitis B/metabolismo , Cápside/metabolismo , Cápside/efectos de los fármacos , Hígado/virología , Hígado/efectos de los fármacos , Hígado/metabolismo , Antígenos de Superficie de la Hepatitis B/metabolismo , Ensamble de Virus/efectos de los fármacos , Apoptosis/efectos de los fármacos , Replicación Viral/efectos de los fármacos
4.
J Virol ; 97(10): e0072223, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37754761

RESUMEN

IMPORTANCE: Chronic hepatitis B is the most important cause of liver cancer worldwide and affects more than 290 million people. Current treatments are mostly suppressive and rarely lead to a cure. Therefore, there is a need for novel and curative drugs that target the host or the causative agent, hepatitis B virus itself. Capsid assembly modulators are an interesting class of antiviral molecules that may one day become part of curative treatment regimens for chronic hepatitis B. Here we explore the characteristics of a particularly interesting subclass of capsid assembly modulators. These so-called non-HAP CAM-As have intriguing properties in cell culture but also clear virus-infected cells from the mouse liver in a gradual and sustained way. We believe they represent a considerable improvement over previously reported molecules and may one day be part of curative treatment combinations for chronic hepatitis B.


Asunto(s)
Antivirales , Cápside , Virus de la Hepatitis B , Hepatitis B Crónica , Ensamble de Virus , Animales , Humanos , Ratones , Antivirales/clasificación , Antivirales/farmacología , Antivirales/uso terapéutico , Cápside/química , Cápside/efectos de los fármacos , Cápside/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/efectos de los fármacos , Proteínas de la Cápside/metabolismo , Células Cultivadas , Virus de la Hepatitis B/química , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/crecimiento & desarrollo , Virus de la Hepatitis B/metabolismo , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/virología , Técnicas In Vitro , Ensamble de Virus/efectos de los fármacos , Modelos Animales de Enfermedad
5.
Antimicrob Agents Chemother ; 67(1): e0134822, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36519892

RESUMEN

The standard of care for the treatment of chronic hepatitis B (CHB) is typically lifelong treatment with nucleos(t)ide analogs (NAs), which suppress viral replication and provide long-term clinical benefits. However, infectious virus can still be detected in patients who are virally suppressed on NA therapy, which may contribute to the failure of these agents to cure most CHB patients. Accordingly, new antiviral treatment options are being developed to enhance the suppression of hepatitis B virus (HBV) replication in combination with NAs ("antiviral intensification"). Here, we describe GS-SBA-1, a capsid assembly modulator (CAM) belonging to class CAM-E, that demonstrates potent inhibition of extracellular HBV DNA in vitro (EC50 [50% effective concentration] = 19 nM) in HBV-infected primary human hepatocytes (PHHs) as well as in vivo in an HBV-infected immunodeficient mouse model. GS-SBA-1 has comparable activities across HBV genotypes and nucleos(t)ide-resistant mutants in HBV-infected PHHs. In addition, GS-SBA-1 demonstrated in vitro additivity in combination with tenofovir alafenamide (TAF). The administration of GS-SBA-1 to PHHs at the time of infection prevents covalently closed circular DNA (cccDNA) formation and, hence, decreases HBV RNA and antigen levels (EC50 = 80 to 200 nM). Furthermore, GS-SBA-1 prevents the production of extracellular HBV RNA-containing viral particles in vitro. Collectively, these data demonstrate that GS-SBA-1 is a potent CAM that has the potential to enhance viral suppression in combination with an NA.


Asunto(s)
Hepatitis B Crónica , Hepatitis B , Animales , Ratones , Humanos , Hepatitis B Crónica/tratamiento farmacológico , Cápside , Virus de la Hepatitis B , Antivirales/farmacología , Antivirales/uso terapéutico , Proteínas de la Cápside/genética , ARN , ADN Viral/genética , ADN Circular , Hepatitis B/tratamiento farmacológico
6.
Bioorg Med Chem Lett ; 94: 129456, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37633618

RESUMEN

Disruption of the HBV capsid assembly process through small-molecule interaction with HBV core protein is a validated target for the suppression of hepatitis B viral replication and the development of new antivirals. Through combination of key structural features associated with two distinct series of capsid assembly modulators, a novel aminochroman-based chemotype was identified. Optimization of anti-HBV potency through generation of SAR in addition to further core modifications provided a series of related functionalized aminoindanes. Key compounds demonstrated excellent cellular potency in addition to favorable ADME and pharmacokinetic profiles and were shown to be highly efficacious in a mouse model of HBV replication. Aminoindane derivative AB-506 was subsequently advanced into clinical development.


Asunto(s)
Antivirales , Proteínas de la Cápside , Cápside , Animales , Ratones , Antivirales/farmacología , Modelos Animales de Enfermedad , Relación Estructura-Actividad , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/metabolismo
7.
Biol Pharm Bull ; 46(9): 1277-1288, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37661407

RESUMEN

Hepatitis B virus (HBV) infection is the most common cause of death from liver disease worldwide. The use of capsid assembly modulators is considered a prominent strategy for the development of novel anti-HBV therapies. We performed a pharmacophore-based virtual screening strategy, and a benzamide scaffold hit, WAI-5, was chosen for further structural optimization. A series of novel HBV capsid assembly modulators (CAMs) were found. Compared with the lead hit, the representative compounds 11g and 11n exhibited a 10-fold increase in anti-HBV activity with 50% effective concentration (EC50) values of 1.74 and 1.90 µM, respectively.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Humanos , Cápside , Farmacóforo , Hepatitis B/tratamiento farmacológico , Benzamidas/farmacología
8.
Bioorg Med Chem Lett ; 73: 128904, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35868496

RESUMEN

Chronic hepatitis B (CHB) is a major worldwide public health problem and novel anti-HBV therapies preventing liver disease progression to cirrhosis and hepatocellular carcinoma are urgently needed. Over the last several years, capsid assembly modulators (CAM) have emerged as clinically effective anti-HBV agents which can inhibit HBV replication in CHB patients. As part of a drug discovery program aimed at obtaining novel CAM endowed with high in vitro and in vivo antiviral activity, we identified a novel series of sulfamoylbenzamide (SBA) derivatives. Compound 10, one of the most in vitro potent SBA-derived CAM discovered to date, showed excellent pharmacokinetics in mice suitable for oral dosing. When studied in a transgenic mouse model of hepatic HBV replication, it was considerably more potent than NVR 3-778, the first sulfamoylbenzamide (SBA) CAM that entered clinical trials for CHB, at reducing viral replication in a dose-dependent fashion. We present herein the discovery process, the SAR analysis and the pre-clinical profile of this novel SBA CAM.


Asunto(s)
Antivirales , Cápside , Animales , Antivirales/farmacocinética , Proteínas de la Cápside , Virus de la Hepatitis B , Ratones , Ensamble de Virus , Replicación Viral
9.
Clin Infect Dis ; 73(2): 175-182, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32649736

RESUMEN

BACKGROUND: GLS4 is a first-in-class hepatitis B virus (HBV) capsid assembly modulator (class I) that can inhibit HBV replication by interfering with the assembly and disassembly of HBV nucleocapsid. Here, we evaluated its antiviral activity, pharmacokinetics, and tolerability in a double-blind, randomized, parallel, entecavir-controlled study. METHODS: Twenty-four patients with chronic HBV were randomized to receive a 28-day course of GLS4 (120 or 240 mg) and ritonavir (100 mg) combination (cohorts A and B, respectively) or entecavir treatment (cohort C) at a 1:1:1 ratio. Patients were followed up for 40 days in a phase 1b study. RESULTS: The GLS4/ritonavir combination was a tolerated combination for the treatment of chronic HBV infection. A total of 2, 3, and 3 subjects presented with alanine aminotransferase flare in cohorts A, B, and C, respectively. This contributed to the withdrawal of 1, 2, and 1 patient from cohorts A, B, and C, respectively. The mean Ctrough of GLS4 was 205-218 ng/mL, which was approximately 3.7-3.9 times the 90% effective concentration (55.8 ng/mL), with a lower accumulation (accumulation rate, 1.1-2.0). In cohorts A, B, and C, the mean declines in HBV DNA after 28 days of treatment were -1.42, -2.13, and -3.5 log10 IU/mL; in hepatitis B surface antigen were -0.06, -0.14, and -0.33 log10 IU/mL; in pregenomic RNA were -0.75, -1.78, and -0.96 log10 copies/mL; and in hepatitis B core antigen were -0.23, -0.5, and -0.44 log10 U/mL, respectively. CONCLUSIONS: Treatment with 120 mg GLS4 was tolerated and had antiviral activity in patients with chronic HBV infection. CLINICAL TRIALS REGISTRATION: Chinese Clinical Trial Registry; CTR20160068. http://www.chinadrugtrials.org.cn.


Asunto(s)
Hepatitis B Crónica , Hepatitis B , Antivirales/uso terapéutico , Cápside , Proteínas de la Cápside , ADN Viral , Hepatitis B/tratamiento farmacológico , Virus de la Hepatitis B/genética , Hepatitis B Crónica/tratamiento farmacológico , Humanos
10.
Molecules ; 26(24)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34946502

RESUMEN

Hepatitis B virus (HBV) is a major causative agent of human hepatitis. Its viral genome comprises partially double-stranded DNA, which is complexed with viral polymerase within an icosahedral capsid consisting of a dimeric core protein. Here, we describe the effects of capsid assembly modulators (CAMs) on the geometric or kinetic disruption of capsid construction and the virus life cycle. We highlight classical, early-generation CAMs such as heteroaryldihydropyrimidines, phenylpropenamides or sulfamoylbenzamides, and focus on the chemical structure and antiviral efficacy of recently identified non-classical CAMs, which consist of carboxamides, aryl ureas, bithiazoles, hydrazones, benzylpyridazinones, pyrimidines, quinolines, dyes, and antimicrobial compounds. We summarize the therapeutic efficacy of four representative classical compounds with data from clinical phase 1 studies in chronic HBV patients. Most of these compounds are in phase 2 trials, either as monotherapy or in combination with approved nucleos(t)ides drugs or other immunostimulatory molecules. As followers of the early CAMs, the therapeutic efficacy of several non-classical CAMs has been evaluated in humanized mouse models of HBV infection. It is expected that these next-generation HBV CAMs will be promising candidates for a series of extended human clinical trials.


Asunto(s)
Antivirales/farmacología , Proteínas de la Cápside/antagonistas & inhibidores , Desarrollo de Medicamentos , Virus de la Hepatitis B/efectos de los fármacos , Antivirales/síntesis química , Antivirales/química , Proteínas de la Cápside/metabolismo , Ensamble de Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
11.
Artículo en Inglés | MEDLINE | ID: mdl-32094138

RESUMEN

Capsid assembly is a critical step in the hepatitis B virus (HBV) life cycle, mediated by the core protein. Core is a potential target for new antiviral therapies, the capsid assembly modulators (CAMs). JNJ-56136379 (JNJ-6379) is a novel and potent CAM currently in phase II trials. We evaluated the mechanisms of action (MOAs) and antiviral properties of JNJ-6379 in vitro Size exclusion chromatography and electron microscopy studies demonstrated that JNJ-6379 induced the formation of morphologically intact viral capsids devoid of genomic material (primary MOA). JNJ-6379 accelerated the rate and extent of HBV capsid assembly in vitro JNJ-6379 specifically and potently inhibited HBV replication; its median 50% effective concentration (EC50) was 54 nM (HepG2.117 cells). In HBV-infected primary human hepatocytes (PHHs), JNJ-6379, when added with the viral inoculum, dose-dependently reduced extracellular HBV DNA levels (median EC50 of 93 nM) and prevented covalently closed circular DNA (cccDNA) formation, leading to a dose-dependent reduction of intracellular HBV RNA levels (median EC50 of 876 nM) and reduced antigen levels (secondary MOA). Adding JNJ-6379 to PHHs 4 or 5 days postinfection reduced extracellular HBV DNA and did not prevent cccDNA formation. Time-of-addition PHH studies revealed that JNJ-6379 most likely interfered with postentry processes. Collectively, these data demonstrate that JNJ-6379 has dual MOAs in the early and late steps of the HBV life cycle, which is different from the MOA of nucleos(t)ide analogues. JNJ-6379 is in development for chronic hepatitis B treatment and may translate into higher HBV functional cure rates.


Asunto(s)
Antivirales/farmacología , Cápside/efectos de los fármacos , Virus de la Hepatitis B/efectos de los fármacos , Compuestos Orgánicos/farmacología , Cápside/ultraestructura , Proteínas de la Cápside/metabolismo , Línea Celular , Replicación del ADN/efectos de los fármacos , ADN Viral/biosíntesis , ADN Viral/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Hepatitis B/tratamiento farmacológico , Hepatitis B/virología , Virus de la Hepatitis B/ultraestructura , Hepatocitos/virología , Humanos , Pruebas de Sensibilidad Microbiana , Cultivo Primario de Células , Replicación Viral/efectos de los fármacos
12.
J Viral Hepat ; 27(11): 1127-1137, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32579776

RESUMEN

Four weeks of once-daily oral JNJ-56136379 (JNJ-6379; 25, 75, 150 or 250 mg), a class-N capsid assembly modulator (CAM-N), was well tolerated with potent antiviral activity in treatment-naïve, chronic hepatitis B e antigen-positive and hepatitis B e antigen-negative patients (NCT02662712). Hepatitis B virus (HBV) genome sequence analysis, using HBV DNA next-generation sequence technology, was performed, and impact of substitutions on efficacy was assessed. Analyses focused on HBV core protein amino acid positions associated with JNJ-6379 and/or other CAMs in vitro resistance, and those within the CAM-binding pocket. 31/57 patients had ≥ 1 polymorphism at any of the core amino acid positions of interest, most frequently at positions 38 (32%), 105 (23%) and 109 (14%). None of these polymorphisms are known to reduce JNJ-6379 in vitro activity (fold change [FC] in 50% effective concentration <3.0). Two JNJ-6379-treated patients carried a Y118F baseline core polymorphism known to reduce JNJ-6379 activity in vitro (FC = 6.6) and had HBV DNA declines of 2.77 (75 mg) and 2.19 log10 IU/mL (150 mg) at the end of treatment. One 75 mg JNJ-6379-treated patient had an emerging T109S substitution (FC = 1.8; HBV DNA decline 3.18 log10 IU/mL). A 25 mg JNJ-6379-treated patient had on-treatment enrichment of Y118F variant (HBV DNA decline 2.13 log10 IU/mL). In conclusion, baseline polymorphisms and enrichment of substitutions reducing JNJ-6379 in vitro activity were rare, with no consistent impact on virological response during a 4-week phase 1b study. Emergence of resistance to longer treatments of JNJ-6379 will be evaluated in phase 2 studies.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B Crónica , Antivirales/uso terapéutico , Cápside , ADN Viral , Antígenos e de la Hepatitis B , Virus de la Hepatitis B/genética , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/virología , Humanos , Resultado del Tratamiento
13.
J Hepatol ; 70(6): 1093-1102, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30794889

RESUMEN

BACKGROUND & AIMS: Tenofovir disoproxil fumarate (TDF) is one the most potent nucleot(s)ide analogues for treating chronic hepatitis B virus (HBV) infection. Phenotypic resistance caused by genotypic resistance to TDF has not been reported. This study aimed to characterize HBV mutations that confer tenofovir resistance. METHODS: Two patients with viral breakthrough during treatment with TDF-containing regimens were prospectively enrolled. The gene encoding HBV reverse transcriptase was sequenced. Eleven HBV clones harboring a series of mutations in the reverse transcriptase gene were constructed by site-directed mutagenesis. Drug susceptibility of each clone was determined by Southern blot analysis and real-time PCR. The relative frequency of mutants was evaluated by ultra-deep sequencing and clonal analysis. RESULTS: Five mutations (rtS106C [C], rtH126Y [Y], rtD134E [E], rtM204I/V, and rtL269I [I]) were commonly found in viral isolates from 2 patients. The novel mutations C, Y, and E were associated with drug resistance. In assays for drug susceptibility, the IC50 value for wild-type HBV was 3.8 ±â€¯0.6 µM, whereas the IC50 values for CYE and CYEI mutants were 14.1 ±â€¯1.8 and 58.1 ±â€¯0.9 µM, respectively. The IC90 value for wild-type HBV was 30 ±â€¯0.5 µM, whereas the IC90 values for CYE and CYEI mutants were 185 ±â€¯0.5 and 790 ±â€¯0.2 µM, respectively. Both tenofovir-resistant mutants and wild-type HBV had similar susceptibility to the capsid assembly modulator NVR 3-778 (IC50 <0.4 µM vs. IC50 = 0.4 µM, respectively). CONCLUSIONS: Our study reveals that the quadruple (CYEI) mutation increases the amount of tenofovir required to inhibit HBV by 15.3-fold in IC50 and 26.3-fold in IC90. These results demonstrate that tenofovir-resistant HBV mutants can emerge, although the genetic barrier is high. LAY SUMMARY: Tenofovir is the most potent nucleotide analogue for the treatment of chronic hepatitis B virus infection and there has been no hepatitis B virus mutation that confers >10-fold resistance to tenofovir up to 8 years. Herein, we identified, for the first time, a quadruple mutation that conferred 15.3-fold (IC50) and 26.3-fold (IC90) resistance to tenofovir in 2 patients who experienced viral breakthrough during tenofovir treatment.


Asunto(s)
Antivirales/uso terapéutico , Virus de la Hepatitis B/genética , Hepatitis B Crónica/tratamiento farmacológico , Mutación , ADN Polimerasa Dirigida por ARN/genética , Inhibidores de la Transcriptasa Inversa/uso terapéutico , Tenofovir/uso terapéutico , Anciano , Línea Celular Tumoral , Farmacorresistencia Viral/genética , Humanos , Masculino
14.
Artículo en Inglés | MEDLINE | ID: mdl-30373799

RESUMEN

NVR 3-778 is the first capsid assembly modulator (CAM) that has demonstrated antiviral activity in hepatitis B virus (HBV)-infected patients. NVR 3-778 inhibited the generation of infectious HBV DNA-containing virus particles with a mean antiviral 50% effective concentration (EC50) of 0.40 µM in HepG2.2.15 cells. The antiviral profile of NVR 3-778 indicates pan-genotypic antiviral activity and a lack of cross-resistance with nucleos(t)ide inhibitors of HBV replication. The combination of NVR 3-778 with nucleos(t)ide analogs in vitro resulted in additive or synergistic antiviral activity. Mutations within the hydrophobic pocket at the dimer-dimer interface of the core protein could confer resistance to NVR 3-778, which is consistent with the ability of the compound to bind to core and to induce capsid assembly. By targeting core, NVR 3-778 inhibits pregenomic RNA encapsidation, viral replication, and the production of HBV DNA- and HBV RNA-containing particles. NVR 3-778 also inhibited de novo infection and viral replication in primary human hepatocytes with EC50 values of 0.81 µM against HBV DNA and between 3.7 and 4.8 µM against the production of HBV antigens and intracellular HBV RNA. NVR 3-778 showed favorable pharmacokinetics and safety in animal species, allowing serum levels in excess of 100 µM to be achieved in mice and, thus, enabling efficacy studies in vivo The overall preclinical profile of NVR 3-778 predicts antiviral activity in vivo and supports its further evaluation for safety, pharmacokinetics, and antiviral activity in HBV-infected patients.


Asunto(s)
Antivirales/farmacología , Benzamidas/farmacología , Cápside/efectos de los fármacos , ADN Viral/antagonistas & inhibidores , Virus de la Hepatitis B/efectos de los fármacos , Hepatitis B/tratamiento farmacológico , Piperidinas/farmacología , ARN Viral/antagonistas & inhibidores , Animales , Antígenos Virales/genética , Antígenos Virales/metabolismo , Antivirales/sangre , Antivirales/química , Antivirales/farmacocinética , Benzamidas/sangre , Benzamidas/química , Benzamidas/farmacocinética , Cápside/química , Cápside/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , Evaluación Preclínica de Medicamentos , Femenino , Células Hep G2 , Hepatitis B/virología , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Hepatocitos/virología , Humanos , Masculino , Ratones , Pruebas de Sensibilidad Microbiana , Piperidinas/sangre , Piperidinas/química , Piperidinas/farmacocinética , Cultivo Primario de Células , ARN Viral/genética , ARN Viral/metabolismo , Proteínas del Núcleo Viral/antagonistas & inhibidores , Proteínas del Núcleo Viral/genética , Proteínas del Núcleo Viral/metabolismo , Replicación Viral/efectos de los fármacos
15.
Artículo en Inglés | MEDLINE | ID: mdl-28584155

RESUMEN

Hepatitis B virus (HBV) capsid assembly is a critical step in the propagation of the virus and is mediated by the core protein. Due to its multiple functions in the viral life cycle, core became an attractive target for new antiviral therapies. Capsid assembly modulators (CAMs) accelerate the kinetics of capsid assembly and prevent encapsidation of the polymerase-pregenomic RNA (Pol-pgRNA) complex, thereby blocking viral replication. CAM JNJ-632 is a novel and potent inhibitor of HBV replication in vitro across genotypes A to D. It induces the formation of morphologically intact viral capsids, as demonstrated by size exclusion chromatography and electron microscopy studies. Antiviral profiling in primary human hepatocytes revealed that CAMs prevented formation of covalently closed circular DNA in a dose-dependent fashion when the compound was added together with the viral inoculum, whereas nucleos(t)ide analogues (NAs) did not. This protective effect translated into a dose-dependent reduction of intracellular HBV RNA levels as well as reduced HBe/cAg and HBsAg levels in the cell culture supernatant. The same observation was made with another CAM (BAY41-4109), suggesting that mechanistic rather than compound-specific effects play a role. Our data show that CAMs have a dual mechanism of action, inhibiting early and late steps of the viral life cycle. These effects clearly differentiate CAMs from NAs and may translate into higher functional cure rates in a clinical setting when given alone or in combination with the current standard of care.


Asunto(s)
Antivirales/farmacología , Benzamidas/farmacología , Cápside/metabolismo , Guanina/análogos & derivados , Virus de la Hepatitis B/crecimiento & desarrollo , Hepatitis B/tratamiento farmacológico , Sulfonamidas/farmacología , Ensamble de Virus/efectos de los fármacos , Proteínas de la Cápside/metabolismo , Línea Celular , ADN Circular/biosíntesis , Guanina/farmacología , Células Hep G2 , Antígenos de Superficie de la Hepatitis B/metabolismo , Antígenos e de la Hepatitis B/metabolismo , Virus de la Hepatitis B/efectos de los fármacos , Hepatocitos/virología , Humanos , Pruebas de Sensibilidad Microbiana , Proteínas del Núcleo Viral/metabolismo
16.
Artículo en Inglés | MEDLINE | ID: mdl-28559265

RESUMEN

The hepatitis B virus (HBV) core protein serves multiple essential functions in the viral life cycle, and antiviral agents that target the core protein are being developed. Capsid assembly modulators (CAMs) are compounds that target core and misdirect capsid assembly, resulting in the suppression of HBV replication and virion production. Besides HBV DNA, circulating HBV RNA has been detected in patient serum and can be associated with the treatment response. Here we studied the effect of HBV CAMs on the production of extracellular HBV RNA using infected HepaRG cells and primary human hepatocytes. Representative compounds from the sulfonamide carboxamide and heteroaryldihydropyrimidine series of CAMs were evaluated and compared to nucleos(t)ide analogs as inhibitors of the viral polymerase. The results showed that CAMs blocked extracellular HBV RNA with efficiencies similar to those with which they blocked pregenomic RNA (pgRNA) encapsidation, HBV DNA replication, and Dane particle production. Nucleos(t)ide analogs inhibited viral replication and virion production but not encapsidation or production of extracellular HBV RNA. Profiling of HBV RNA from both culture supernatants and patient serum showed that extracellular viral RNA consisted of pgRNA and spliced pgRNA variants with an internal deletion(s) but still retained the sequences at both the 5' and 3' ends. Similar variants were detected in the supernatants of infected cells with and without nucleos(t)ide analog treatment. Overall, our data demonstrate that HBV CAMs represent direct antiviral agents with a profile differentiated from that of nucleos(t)ide analogs, including the inhibition of extracellular pgRNA and spliced pgRNA.


Asunto(s)
Antivirales/farmacología , Proteínas de la Cápside/metabolismo , Virus de la Hepatitis B/efectos de los fármacos , Proteínas de la Nucleocápside/metabolismo , Ensamble de Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Línea Celular , ADN Viral/sangre , ADN Polimerasa Dirigida por ADN/metabolismo , Virus de la Hepatitis B/crecimiento & desarrollo , Hepatocitos/virología , Humanos , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , ARN Viral/sangre , Sulfonamidas/farmacología , Proteínas del Núcleo Viral/metabolismo
17.
Antiviral Res ; 231: 106010, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39326502

RESUMEN

HBV capsid assembly modulators (CAMs) target the core protein and inhibit pregenomic RNA encapsidation and viral replication. HBV CAMs also interfere with cccDNA formation during de novo infection, which in turn suppresses transcription and production of HBV antigens. In this report, we describe the antiviral activities of AB-836, a potent and highly selective HBV CAM. AB-836 inhibited viral replication (EC50 = 0.010 µM) in HepDE19 cells, and cccDNA formation (EC50 = 0.18 µM) and HBsAg production (EC50 = 0.20 µM) in HepG2-NTCP cells during de novo infection. AB-836 showed broad genotype coverage, remained active against variants resistant to nucleos(t)ide analogs, and demonstrated improved antiviral potency against core variants resistant to other CAMs. AB-836 also mediated potent inhibition of HBV replication in a hydrodynamic injection mouse model, reducing both serum and liver HBV DNA. In a Phase 1 clinical study, 28 days of once-daily AB-836 oral dosing at 50, 100, and 200 mg resulted in mean serum HBV DNA declines of 2.57, 3.04, and 3.55 log10 IU/mL from baseline, respectively. Neither on-treatment viral rebound nor the emergence of viral resistance was observed during the 28-day treatment period. Furthermore, HBV DNA sequence analysis of baseline samples from the Phase 1 study revealed that 51.4% of the chronic hepatitis B participants contained at least one core polymorphism within the CAM-binding pocket, suggesting that genetic variations exist at this site. While AB-836 was discontinued due to clinical safety findings, data from the preclinical and clinical studies could help inform future optimization of HBV CAMs.

18.
Clin Mol Hepatol ; 30(2): 191-205, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38190830

RESUMEN

BACKGROUND/AIMS: Four-week treatment of linvencorvir (RO7049389) was generally safe and well tolerated, and showed anti-viral activity in chronic hepatitis B (CHB) patients. This study evaluated the efficacy, safety, and pharmacokinetics of 48-week treatment with linvencorvir plus standard of care (SoC) in CHB patients. METHODS: This was a multicentre, non-randomized, non-controlled, open-label phase 2 study enrolling three cohorts: nucleos(t)ide analogue (NUC)-suppressed patients received linvencorvir plus NUC (Cohort A, n=32); treatment-naïve patients received linvencorvir plus NUC without (Cohort B, n=10) or with (Cohort C, n=30) pegylated interferon-α (Peg-IFN-α). Treatment duration was 48 weeks, followed by NUC alone for 24 weeks. RESULTS: 68 patients completed the study. No patient achieved functional cure (sustained HBsAg loss and unquantifiable HBV DNA). By Week 48, 89% of treatment-naïve patients (10/10 Cohort B; 24/28 Cohort C) reached unquantifiable HBV DNA. Unquantifiable HBV RNA was achieved in 92% of patients with quantifiable baseline HBV RNA (14/15 Cohort A, 8/8 Cohort B, 22/25 Cohort C) at Week 48 along with partially sustained HBV RNA responses in treatment-naïve patients during follow-up period. Pronounced reductions in HBeAg and HBcrAg were observed in treatment-naïve patients, while HBsAg decline was only observed in Cohort C. Most adverse events were grade 1-2, and no linvencorvir-related serious adverse events were reported. CONCLUSION: 48-week linvencorvir plus SoC was generally safe and well tolerated, and resulted in potent HBV DNA and RNA suppression. However, 48-week linvencorvir plus NUC with or without Peg-IFN did not result in the achievement of functional cure in any patient.


Asunto(s)
Antivirales , Hepatitis B Crónica , Imidazoles , Pirazinas , Humanos , Antivirales/efectos adversos , Cápside , ADN Viral , Antígenos e de la Hepatitis B , Antígenos de Superficie de la Hepatitis B , Virus de la Hepatitis B/genética , Hepatitis B Crónica/tratamiento farmacológico , Polietilenglicoles , ARN , Nivel de Atención , Resultado del Tratamiento
19.
ACS Nano ; 18(32): 21024-21037, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39087909

RESUMEN

Virus-like particles (VLPs) have untapped potential for packaging and delivery of macromolecular cargo. To be a broadly useful platform, there needs to be a strategy for attaching macromolecules to the inside or the outside of the VLP with minimal modification of the platform or cargo. Here, we repurpose antiviral compounds that bind to hepatitis B virus (HBV) capsids to create a chemical tag to noncovalently attach cargo to the VLP. Our tag consists of a capsid assembly modulator, HAP13, connected to a linker terminating in maleimide. Our cargo is a green fluorescent protein (GFP) with a single addressable cysteine, a feature that can be engineered in many proteins. The HAP-GFP construct maintained HAP's intrinsic ability to bind HBV capsids and accelerate assembly. We investigated the capacity of HAP-GFP to coassemble with HBV capsid protein and bind to preassembled capsids. HAP-GFP binding was concentration-dependent, sensitive to capsid stability, and dependent on linker length. Long linkers had the greatest activity to bind capsids, while short linkers impeded assembly and damaged intact capsids. In coassembly reactions, >20 HAP-GFP molecules were presented on the outside and inside of the capsid, concentrating the cargo by more than 100-fold compared to bulk solution. We also tested an HAP-GFP with a cleavable linker so that external GFP molecules could be removed, resulting in exclusive internal packaging. These results demonstrate a generalizable strategy for attaching cargo to a VLP, supporting development of HBV as a modular VLP platform.


Asunto(s)
Cápside , Proteínas Fluorescentes Verdes , Virus de la Hepatitis B , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/química , Cápside/química , Cápside/metabolismo , Ensamble de Virus , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Virión/metabolismo , Virión/química , Propiedades de Superficie
20.
Eur J Med Chem ; 249: 115141, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36709646

RESUMEN

The hepatitis B virus (HBV) capsid assembly modulators (CAMs) have been developed as effective anti-HBV agents in the treatment of chronic HBV infection by targeting the HBV core protein and inducing the formation of aberrant or morphologically normal capsid. However, some CAMs have been observed adverse events such as ALT flares and rash. Therefore, finding new CAMs is of great importance. In this report, we synthesized N-sulfonylpiperidine-3-carboxamides (SPCs) derivatives and evaluated their anti-HBV activities. Among the SPC derivatives, compound C-49 notably suppressed HBV replication in HepAD38, HepG2-HBV1.3 and HepG2-NTCP cells. Moreover, treatment with C-49 for 12 days exhibited potent anti-HBV activity (100 mg/kg; 2.42 log reduction of serum HBV DNA) in HBV-transgenic mice without apparent hepatotoxicity. Our findings provided a new SPC derivative as HBV capsid assembly modulator for developing safe and efficient anti-HBV therapy.


Asunto(s)
Cápside , Virus de la Hepatitis B , Ratones , Animales , Virus de la Hepatitis B/metabolismo , Cápside/metabolismo , Ratones Transgénicos , Antivirales/farmacología , Antivirales/metabolismo , Proteínas de la Cápside/metabolismo , Ensamble de Virus , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA