Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 492
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(18): 4734-4752.e20, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34450029

RESUMEN

Immune responses to cancer are highly variable, with mismatch repair-deficient (MMRd) tumors exhibiting more anti-tumor immunity than mismatch repair-proficient (MMRp) tumors. To understand the rules governing these varied responses, we transcriptionally profiled 371,223 cells from colorectal tumors and adjacent normal tissues of 28 MMRp and 34 MMRd individuals. Analysis of 88 cell subsets and their 204 associated gene expression programs revealed extensive transcriptional and spatial remodeling across tumors. To discover hubs of interacting malignant and immune cells, we identified expression programs in different cell types that co-varied across tumors from affected individuals and used spatial profiling to localize coordinated programs. We discovered a myeloid cell-attracting hub at the tumor-luminal interface associated with tissue damage and an MMRd-enriched immune hub within the tumor, with activated T cells together with malignant and myeloid cells expressing T cell-attracting chemokines. By identifying interacting cellular programs, we reveal the logic underlying spatially organized immune-malignant cell networks.


Asunto(s)
Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Proteínas Morfogenéticas Óseas/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Compartimento Celular , Línea Celular Tumoral , Quimiocinas/metabolismo , Estudios de Cohortes , Neoplasias Colorrectales/genética , Reparación de la Incompatibilidad de ADN/genética , Células Endoteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunidad , Inflamación/patología , Monocitos/patología , Células Mieloides/patología , Neutrófilos/patología , Células del Estroma/metabolismo , Linfocitos T/metabolismo , Transcripción Genética
2.
Cell ; 177(5): 1172-1186.e14, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31031009

RESUMEN

Our bodies are equipped with powerful immune surveillance to clear cancerous cells as they emerge. How tumor-initiating stem cells (tSCs) that form and propagate cancers equip themselves to overcome this barrier remains poorly understood. To tackle this problem, we designed a skin cancer model for squamous cell carcinoma (SCC) that can be effectively challenged by adoptive cytotoxic T cell transfer (ACT)-based immunotherapy. Using single-cell RNA sequencing (RNA-seq) and lineage tracing, we found that transforming growth factor ß (TGF-ß)-responding tSCs are superior at resisting ACT and form the root of tumor relapse. Probing mechanism, we discovered that during malignancy, tSCs selectively acquire CD80, a surface ligand previously identified on immune cells. Moreover, upon engaging cytotoxic T lymphocyte antigen-4 (CTLA4), CD80-expressing tSCs directly dampen cytotoxic T cell activity. Conversely, upon CTLA4- or TGF-ß-blocking immunotherapies or Cd80 ablation, tSCs become vulnerable, diminishing tumor relapse after ACT treatment. Our findings place tSCs at the crux of how immune checkpoint pathways are activated.


Asunto(s)
Traslado Adoptivo , Carcinoma de Células Escamosas/inmunología , Inmunidad Celular , Vigilancia Inmunológica , Células Madre Neoplásicas/inmunología , Neoplasias Cutáneas/inmunología , Linfocitos T/inmunología , Animales , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/terapia , Línea Celular Tumoral , Humanos , Ratones , Ratones Transgénicos , Proteínas de Neoplasias/inmunología , Células Madre Neoplásicas/patología , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/terapia , Linfocitos T/patología
3.
Cell ; 178(3): 714-730.e22, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31348891

RESUMEN

Genome-wide association studies (GWAS) have revealed risk alleles for ulcerative colitis (UC). To understand their cell type specificities and pathways of action, we generate an atlas of 366,650 cells from the colon mucosa of 18 UC patients and 12 healthy individuals, revealing 51 epithelial, stromal, and immune cell subsets, including BEST4+ enterocytes, microfold-like cells, and IL13RA2+IL11+ inflammatory fibroblasts, which we associate with resistance to anti-TNF treatment. Inflammatory fibroblasts, inflammatory monocytes, microfold-like cells, and T cells that co-express CD8 and IL-17 expand with disease, forming intercellular interaction hubs. Many UC risk genes are cell type specific and co-regulated within relatively few gene modules, suggesting convergence onto limited sets of cell types and pathways. Using this observation, we nominate and infer functions for specific risk genes across GWAS loci. Our work provides a framework for interrogating complex human diseases and mapping risk variants to cell types and pathways.


Asunto(s)
Colitis Ulcerosa/patología , Colon/metabolismo , Adulto , Anciano , Anticuerpos Monoclonales/uso terapéutico , Bestrofinas/metabolismo , Antígenos CD8/metabolismo , Estudios de Casos y Controles , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Colon/patología , Enterocitos/citología , Enterocitos/metabolismo , Femenino , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Interleucina-17/metabolismo , Masculino , Persona de Mediana Edad , Factores de Riesgo , Linfocitos T/citología , Linfocitos T/metabolismo , Trombospondinas/metabolismo , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Adulto Joven
4.
Annu Rev Cell Dev Biol ; 35: 615-635, 2019 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-31590587

RESUMEN

Molecular cross talk between the nervous and vascular systems is necessary to maintain the correct coupling of organ structure and function. Molecular pathways shared by both systems are emerging as major players in the communication of the neuronal compartment with the endothelium. Here we review different aspects of this cross talk and how vessels influence the development and homeostasis of the nervous system. Beyond the classical role of the vasculature as a conduit to deliver oxygen and metabolites needed for the energy-demanding neuronal compartment, vessels emerge as powerful signaling systems that control and instruct a variety of cellular processes during the development of neurons and glia, such as migration, differentiation, and structural connectivity. Moreover, a broad spectrum of mild to severe vascular dysfunctions occur in various pathologies of the nervous system, suggesting that mild structural and functional changes at the neurovascular interface may underlie cognitive decline in many of these pathological conditions.


Asunto(s)
Sistema Nervioso Central/irrigación sanguínea , Neuroglía/citología , Neuronas/citología , Acoplamiento Neurovascular/fisiología , Sistema Nervioso Periférico/irrigación sanguínea , Animales , Vasos Sanguíneos/citología , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Diferenciación Celular , Movimiento Celular , Sistema Nervioso Central/citología , Sistema Nervioso Central/embriología , Sistema Nervioso Central/metabolismo , Homeostasis/fisiología , Humanos , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , Neuroglía/fisiología , Neuronas/fisiología , Sistema Nervioso Periférico/citología , Sistema Nervioso Periférico/embriología , Sistema Nervioso Periférico/metabolismo
5.
Immunity ; 55(10): 1940-1952.e5, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36223726

RESUMEN

T cells mediate antigen-specific immune responses to disease through the specificity and diversity of their clonotypic T cell receptors (TCRs). Determining the spatial distributions of T cell clonotypes in tissues is essential to understanding T cell behavior, but spatial sequencing methods remain unable to profile the TCR repertoire. Here, we developed Slide-TCR-seq, a 10-µm-resolution method, to sequence whole transcriptomes and TCRs within intact tissues. We confirmed the ability of Slide-TCR-seq to map the characteristic locations of T cells and their receptors in mouse spleen. In human lymphoid germinal centers, we identified spatially distinct TCR repertoires. Profiling T cells in renal cell carcinoma and melanoma specimens revealed heterogeneous immune responses: T cell states and infiltration differed intra- and inter-clonally, and adjacent tumor and immune cells exhibited distinct gene expression. Altogether, our method yields insights into the spatial relationships between clonality, neighboring cell types, and gene expression that drive T cell responses.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Transcriptoma , Inmunidad Adaptativa/genética , Animales , Humanos , Ratones , Linfocitos T
6.
Immunity ; 54(2): 211-224, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33567261

RESUMEN

Astrocytes play both physiological and pathological roles in maintaining central nervous system (CNS) function. Here, we review the varied functions of astrocytes and how these might change in subsets of reactive astrocytes. We review the current understanding of astrocyte interactions with microglia and the vasculature and protective barriers in the central nervous system as well as highlight recent insights into physiologic and reactive astrocyte sub-states identified by transcriptional profiling. Our goal is to stimulate inquiry into how these molecular identifiers link to specific functional changes in astrocytes and to define the implications of these heterogeneous molecular and functional changes in brain function and pathology. Defining these complex interactions has the potential to yield new therapies in CNS injury, infection, and disease.


Asunto(s)
Astrocitos/inmunología , Encéfalo/patología , Enfermedades del Sistema Nervioso Central/inmunología , Infecciones/inmunología , Inflamación/inmunología , Animales , Comunicación Celular , Humanos , Inmunidad Celular , Neuroinmunomodulación
7.
Genes Dev ; 35(7-8): 433-448, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33861719

RESUMEN

p53 is an important tumor suppressor, and the complexities of p53 function in regulating cancer cell behaviour are well established. Many cancers lose or express mutant forms of p53, with evidence that the type of alteration affecting p53 may differentially impact cancer development and progression. It is also clear that in addition to cell-autonomous functions, p53 status also affects the way cancer cells interact with each other. In this review, we briefly examine the impact of different p53 mutations and focus on how heterogeneity of p53 status can affect relationships between cells within a tumor.


Asunto(s)
Comunicación Celular/genética , Mutación/genética , Neoplasias/genética , Neoplasias/fisiopatología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Carcinogénesis/genética , Competencia Celular/genética , Desarrollo Embrionario/genética , Humanos
8.
Trends Genet ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38906738

RESUMEN

Cell-cell interactions orchestrate complex functions in multicellular organisms, forming a regulatory network for diverse biological processes. Their disruption leads to disease states. Recent advancements - including single-cell sequencing and spatial transcriptomics, coupled with powerful bioengineering and molecular tools - have revolutionized our understanding of how cells respond to each other. Notably, spatial transcriptomics allows us to analyze gene expression changes based on cell proximity, offering a unique window into the impact of cell-cell contact. Additionally, computational approaches are being developed to decipher how cell contact governs the symphony of cellular responses. This review explores these cutting-edge approaches, providing valuable insights into deciphering the intricate cellular changes influenced by cell-cell communication.

9.
Development ; 151(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38165174

RESUMEN

Cell-cell interactions are central to development, but exploring how a change in any given cell relates to changes in the neighbour of that cell can be technically challenging. Here, we review recent developments in synthetic biology and image analysis that are helping overcome this problem. We highlight the opportunities presented by these advances and discuss opportunities and limitations in applying them to developmental model systems.


Asunto(s)
Comunicación Celular , Biología Sintética
10.
Development ; 151(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38533736

RESUMEN

How complex organs coordinate cellular morphogenetic events to achieve three-dimensional (3D) form is a central question in development. The question is uniquely tractable in the late Drosophila pupal retina, where cells maintain stereotyped contacts as they elaborate the specialized cytoskeletal structures that pattern the apical, basal and longitudinal planes of the epithelium. In this study, we combined cell type-specific genetic manipulation of the cytoskeletal regulator Abelson (Abl) with 3D imaging to explore how the distinct cellular morphogenetic programs of photoreceptors and interommatidial pigment cells (IOPCs) organize tissue pattern to support retinal integrity. Our experiments show that photoreceptor and IOPC terminal differentiation is unexpectedly interdependent, connected by an intercellular feedback mechanism that coordinates and promotes morphogenetic change across orthogonal tissue planes to ensure correct 3D retinal pattern. We propose that genetic regulation of specialized cellular differentiation programs combined with inter-plane mechanical feedback confers spatial coordination to achieve robust 3D tissue morphogenesis.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Pupa , Retroalimentación , Retina , Morfogénesis/genética
11.
Proc Natl Acad Sci U S A ; 121(40): e2410269121, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39320918

RESUMEN

Organ architecture is established during development through intricate cell-cell communication mechanisms, yet the specific signals mediating these communications often remain elusive. Here, we used the anterior pituitary gland that harbors different interdigitated hormone-secreting homotypic cell networks to dissect cell-cell communication mechanisms operating during late development. We show that blocking differentiation of corticotrope cells leads to pituitary hypoplasia with a major effect on somatotrope cells that directly contact corticotropes. Gene knockout of the corticotrope-restricted transcription factor Tpit results in fewer somatotropes, with less secretory granules and a loss of cell polarity, resulting in systemic growth retardation. Single-cell transcriptomic analyses identified FGF1 as a corticotrope-specific Tpit dosage-dependent target gene responsible for these phenotypes. Consistently, genetic ablation of FGF1 in mice phenocopies pituitary hypoplasia and growth impairment observed in Tpit-deficient mice. These findings reveal FGF1 produced by the corticotrope cell network as an essential paracrine signaling molecule participating in pituitary architecture and size.


Asunto(s)
Factor 1 de Crecimiento de Fibroblastos , Ratones Noqueados , Comunicación Paracrina , Hipófisis , Animales , Ratones , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Factor 1 de Crecimiento de Fibroblastos/genética , Hipófisis/metabolismo , Hipófisis/citología , Corticotrofos/metabolismo , Transducción de Señal , Adenohipófisis/metabolismo , Adenohipófisis/citología , Diferenciación Celular , Somatotrofos/metabolismo , Comunicación Celular
12.
Development ; 150(17)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37526602

RESUMEN

Primordial germ cells (PGCs) are the early embryonic precursors of gametes - sperm and egg cells. PGC-like cells (PGCLCs) can currently be derived in vitro from pluripotent cells exposed to signalling cocktails and aggregated into large embryonic bodies, but these do not recapitulate the native embryonic environment during PGC formation. Here, we show that mouse gastruloids, a three-dimensional in vitro model of gastrulation, contain a population of gastruloid-derived PGCLCs (Gld-PGCLCs) that resemble early PGCs in vivo. Importantly, the conserved organisation of mouse gastruloids leads to coordinated spatial and temporal localisation of Gld-PGCLCs relative to surrounding somatic cells, even in the absence of specific exogenous PGC-specific signalling or extra-embryonic tissues. In gastruloids, self-organised interactions between cells and tissues, including the endodermal epithelium, enables the specification and subsequent maturation of a pool of Gld-PGCLCs. As such, mouse gastruloids represent a new source of PGCLCs in vitro and, owing to their inherent co-development, serve as a novel model to study the dynamics of PGC development within integrated tissue environments.


Asunto(s)
Células Germinativas , Semen , Masculino , Ratones , Animales , Endodermo , Células Cultivadas , Transducción de Señal , Diferenciación Celular/genética
13.
RNA ; 30(7): 749-759, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38575346

RESUMEN

Cancer cells can manipulate immune cells and escape from the immune system response. Quantifying the molecular changes that occur when an immune cell touches a tumor cell can increase our understanding of the underlying mechanisms. Recently, it became possible to perform such measurements in situ-for example, using expansion sequencing, which enabled in situ sequencing of genes with super-resolution. We systematically examined whether individual immune cells from specific cell types express genes differently when in physical proximity to individual tumor cells. First, we demonstrated that a dense mapping of genes in situ can be used for the segmentation of cell bodies in 3D, thus improving our ability to detect likely touching cells. Next, we used three different computational approaches to detect the molecular changes that are triggered by proximity: differential expression analysis, tree-based machine learning classifiers, and matrix factorization analysis. This systematic analysis revealed tens of genes, in specific cell types, whose expression separates immune cells that are proximal to tumor cells from those that are not proximal, with a significant overlap between the different detection methods. Remarkably, an order of magnitude more genes are triggered by proximity to tumor cells in CD8 T cells compared to CD4 T cells, in line with the ability of CD8 T cells to directly bind major histocompatibility complex (MHC) class I on tumor cells. Thus, in situ sequencing of an individual biopsy can be used to detect genes likely involved in immune-tumor cell-cell interactions. The data used in this manuscript and the code of the InSituSeg, machine learning, cNMF, and Moran's I methods are publicly available at doi:10.5281/zenodo.7497981.


Asunto(s)
Biología Computacional , Humanos , Biología Computacional/métodos , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Regulación Neoplásica de la Expresión Génica , Aprendizaje Automático , Perfilación de la Expresión Génica/métodos
14.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38856169

RESUMEN

Transcriptomic analysis across species is increasingly used to reveal conserved gene regulations which implicate crucial regulators. Cross-species analysis of single-cell RNA sequencing (scRNA-seq) data provides new opportunities to identify the cellular and molecular conservations, especially for cell types and cell type-specific gene regulations. However, few methods have been developed to analyze cross-species scRNA-seq data to uncover both molecular and cellular conservations. Here, we built a tool called CACIMAR, which can perform cross-species analysis of cell identities, markers, regulations, and interactions using scRNA-seq profiles. Based on the weighted sum models of the conserved features, we developed different conservation scores to measure the conservation of cell types, regulatory networks, and intercellular interactions. Using publicly available scRNA-seq data on retinal regeneration in mice, zebrafish, and chick, we demonstrated four main functions of CACIMAR. First, CACIMAR allows to identify conserved cell types even in evolutionarily distant species. Second, the tool facilitates the identification of evolutionarily conserved or species-specific marker genes. Third, CACIMAR enables the identification of conserved intracellular regulations, including cell type-specific regulatory subnetworks and regulators. Lastly, CACIMAR provides a unique feature for identifying conserved intercellular interactions. Overall, CACIMAR facilitates the identification of evolutionarily conserved cell types, marker genes, intracellular regulations, and intercellular interactions, providing insights into the cellular and molecular mechanisms of species evolution.


Asunto(s)
Análisis de Secuencia de ARN , Análisis de la Célula Individual , Pez Cebra , Animales , Análisis de la Célula Individual/métodos , Ratones , Pez Cebra/genética , Análisis de Secuencia de ARN/métodos , Especificidad de la Especie , Programas Informáticos , Redes Reguladoras de Genes , Perfilación de la Expresión Génica/métodos , Pollos , Biomarcadores/metabolismo , Biología Computacional/métodos , Regulación de la Expresión Génica
15.
Development ; 149(20)2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36317797

RESUMEN

Deconstructing and then reconstructing developmental processes ex vivo is crucial to understanding how organs assemble and how physiology can be disrupted in disease. Human 3D stem cell-derived systems, such as organoids, have facilitated this pursuit; however, they often do not capture inter-tissue or inter-lineage cellular interactions that give rise to emergent tissue properties during development. Assembloids are self-organizing 3D cellular systems that result from the integration of multiple organoids or the combination of organoids with missing cell types or primary tissue explants. Here, we outline the concept and types of assembloids and present their applications for studying the nervous system and other tissues. We describe tools that are used to probe and manipulate assembloids and delineate current challenges and the potential for this new approach to interrogate development and disease.


Asunto(s)
Organoides , Humanos
16.
Development ; 149(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35037942

RESUMEN

Generating comprehensive image maps, while preserving spatial three-dimensional (3D) context, is essential in order to locate and assess quantitatively specific cellular features and cell-cell interactions during organ development. Despite recent advances in 3D imaging approaches, our current knowledge of the spatial organization of distinct cell types in the embryonic pancreatic tissue is still largely based on two-dimensional histological sections. Here, we present a light-sheet fluorescence microscopy approach to image the pancreas in three dimensions and map tissue interactions at key time points in the mouse embryo. We demonstrate the utility of the approach by providing volumetric data, 3D distribution of three main cellular components (epithelial, mesenchymal and endothelial cells) within the developing pancreas, and quantification of their relative cellular abundance within the tissue. Interestingly, our 3D images show that endocrine cells are constantly and increasingly in contact with endothelial cells forming small vessels, whereas the interactions with mesenchymal cells decrease over time. These findings suggest distinct cell-cell interaction requirements for early endocrine cell specification and late differentiation. Lastly, we combine our image data in an open-source online repository (referred to as the Pancreas Embryonic Cell Atlas).


Asunto(s)
Imagenología Tridimensional/métodos , Páncreas/anatomía & histología , Animales , Embrión de Mamíferos/anatomía & histología , Desarrollo Embrionario , Células Endoteliales/citología , Células Endoteliales/metabolismo , Epitelio/anatomía & histología , Proteína Homeótica Nkx-2.5/deficiencia , Proteína Homeótica Nkx-2.5/genética , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente
17.
J Virol ; 98(2): e0167723, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38240590

RESUMEN

Rotavirus infection is a leading cause of gastroenteritis in children worldwide; the genome of this virus is composed of 11 segments of dsRNA packed in a triple-layered protein capsid. Here, we investigated the role of nucleolin, a protein with diverse RNA-binding domains, in rotavirus infection. Knocking down the expression of nucleolin in MA104 cells by RNA interference resulted in a remarkable 6.3-fold increase in the production of infectious rhesus rotavirus (RRV) progeny, accompanied by an elevated synthesis of viral mRNA and genome copies. Further analysis unveiled an interaction between rotavirus segment 10 (S10) and nucleolin, potentially mediated by G-quadruplex domains on the viral genome. To determine whether the nucleolin-RNA interaction regulates RRV replication, MA104 cells were transfected with AGRO100, a compound that forms G4 structures and selectively inhibits nucleolin-RNA interactions by blocking the RNA-binding domains. Under these conditions, viral production increased by 1.5-fold, indicating the inhibitory role of nucleolin on the yield of infectious viral particles. Furthermore, G4 sequences were identified in all 11 RRV dsRNA segments, and transfection of oligonucleotides representing G4 sequences in RRV S10 induced a significant increase in viral production. These findings show that rotavirus replication is negatively regulated by nucleolin through the direct interaction with the viral RNAs by sequences forming G4 structures.IMPORTANCEViruses rely on cellular proteins to carry out their replicative cycle. In the case of rotavirus, the involvement of cellular RNA-binding proteins during the replicative cycle is a poorly studied field. In this work, we demonstrate for the first time the interaction between nucleolin and viral RNA of rotavirus RRV. Nucleolin is a cellular protein that has a role in the metabolism of ribosomal rRNA and ribosome biogenesis, which seems to have regulatory effects on the quantity of viral particles and viral RNA copies of rotavirus RRV. Our study adds a new component to the current model of rotavirus replication, where cellular proteins can have a negative regulation on rotavirus replication.


Asunto(s)
Nucleolina , ARN Viral , Infecciones por Rotavirus , Rotavirus , Humanos , Nucleolina/metabolismo , ARN Viral/genética , Rotavirus/fisiología , Infecciones por Rotavirus/virología , Replicación Viral
18.
Rev Med Virol ; 34(3): e2534, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588024

RESUMEN

Since the identification of human immunodeficiency virus type 1 (HIV-1) in 1983, many improvements have been made to control viral replication in the peripheral blood and to treat opportunistic infections. This has increased life expectancy but also the incidence of age-related central nervous system (CNS) disorders and HIV-associated neurodegeneration/neurocognitive impairment and depression collectively referred to as HIV-associated neurocognitive disorders (HAND). HAND encompasses a spectrum of different clinical presentations ranging from milder forms such as asymptomatic neurocognitive impairment or mild neurocognitive disorder to a severe HIV-associated dementia (HAD). Although control of viral replication and suppression of plasma viral load with combination antiretroviral therapy has reduced the incidence of HAD, it has not reversed milder forms of HAND. The objective of this review, is to describe the mechanisms by which HIV-1 invades and disseminates in the CNS, a crucial event leading to HAND. The review will present the evidence that underlies the relationship between HIV infection and HAND. Additionally, recent findings explaining the role of neuroinflammation in the pathogenesis of HAND will be discussed, along with prospects for treatment and control.


Asunto(s)
Complejo SIDA Demencia , Enfermedades del Sistema Nervioso Central , Infecciones por VIH , VIH-1 , Humanos , Infecciones por VIH/epidemiología , Enfermedades Neuroinflamatorias , Complejo SIDA Demencia/tratamiento farmacológico , Complejo SIDA Demencia/epidemiología , Complejo SIDA Demencia/psicología , Enfermedades del Sistema Nervioso Central/etiología , Sistema Nervioso Central
19.
Nano Lett ; 24(36): 11194-11201, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39213611

RESUMEN

Natural cells can achieve specific cell-cell interactions by enriching nonspecific binding molecules on demand at intercellular contact faces, a pathway currently beyond synthetic capabilities. We are inspired to construct responsive peptide fibrils on cell surfaces, which elongate upon encountering target cells while maintaining a short length when contacting competing cells, as directed by a strand-displacement reaction arranged on target cell surfaces. With the display of ligands that bind to both target and competing cells, the contact-induced, region-selective fibril elongation selectively promotes host-target cell interactions via the accumulation of nonspecific ligands between matched cells. This approach is effective in guiding natural killer cells, the broad-spectrum effector lymphocytes, to eliminate specific cancer cells. In contrast to conventional methods relying on target cell-specific binding molecules for the desired cellular interactions, this dynamic scaffold-based approach would broaden the scope of cell combinations for manipulation and enhance the adjustability of cell behaviors for future applications.


Asunto(s)
Comunicación Celular , Células Asesinas Naturales , Nanofibras , Péptidos , Péptidos/química , Humanos , Nanofibras/química , Células Asesinas Naturales/inmunología
20.
Semin Cancer Biol ; 95: 42-51, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37454878

RESUMEN

Cell-cell interactions instruct cell fate and function. These interactions are hijacked to promote cancer development. Single-cell transcriptomics and spatial transcriptomics have become powerful new tools for researchers to profile the transcriptional landscape of cancer at unparalleled genetic depth. In this review, we discuss the rapidly growing array of computational tools to infer cell-cell interactions from non-spatial single-cell RNA-sequencing and the limited but growing number of methods for spatial transcriptomics data. Downstream analyses of these computational tools and applications to cancer studies are highlighted. We finish by suggesting several directions for further extensions that anticipate the increasing availability of multi-omics cancer data.


Asunto(s)
Neoplasias , Transcriptoma , Humanos , Perfilación de la Expresión Génica , Neoplasias/genética , Comunicación Celular/genética , Diferenciación Celular , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA