Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Microbiol ; 74: 835-853, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32706633

RESUMEN

Chromosome segregation during the cell cycle is an evolutionarily conserved, fundamental biological process. Dynamic interaction between spindle microtubules and the kinetochore complex that assembles on centromere DNA is required for faithful chromosome segregation. The first artificial minichromosome was constructed by cloning the centromere DNA of the budding yeast Saccharomyces cerevisiae. Since then, centromeres have been identified in >60 fungal species. The DNA sequence and organization of the sequence elements are highly diverse across these fungal centromeres. In this article, we provide a comprehensive view of the evolution of fungal centromeres. Studies of this process facilitated the identification of factors influencing centromere specification, maintenance, and propagation through many generations. Additionally, we discuss the unique features and plasticity of centromeric chromatin and the involvement of centromeres in karyotype evolution. Finally, we discuss the implications of recurrent loss of RNA interference (RNAi) and/or heterochromatin components on the trajectory of the evolution of fungal centromeres and propose the centromere structure of the last common ancestor of three major fungal phyla-Ascomycota, Basidiomycota, and Mucoromycota.


Asunto(s)
División Celular , Centrómero/genética , Centrómero/metabolismo , Evolución Molecular , Hongos/genética , Segregación Cromosómica , Hongos/clasificación , Heterocromatina/genética , Cariotipo , Cinetocoros/metabolismo , Interferencia de ARN
2.
Proc Natl Acad Sci U S A ; 113(12): E1663-72, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26951677

RESUMEN

Conformation capture technologies (e.g., Hi-C) chart physical interactions between chromatin regions on a genome-wide scale. However, the structural variability of the genome between cells poses a great challenge to interpreting ensemble-averaged Hi-C data, particularly for long-range and interchromosomal interactions. Here, we present a probabilistic approach for deconvoluting Hi-C data into a model population of distinct diploid 3D genome structures, which facilitates the detection of chromatin interactions likely to co-occur in individual cells. Our approach incorporates the stochastic nature of chromosome conformations and allows a detailed analysis of alternative chromatin structure states. For example, we predict and experimentally confirm the presence of large centromere clusters with distinct chromosome compositions varying between individual cells. The stability of these clusters varies greatly with their chromosome identities. We show that these chromosome-specific clusters can play a key role in the overall chromosome positioning in the nucleus and stabilizing specific chromatin interactions. By explicitly considering genome structural variability, our population-based method provides an important tool for revealing novel insights into the key factors shaping the spatial genome organization.


Asunto(s)
Cromosomas/ultraestructura , Imagenología Tridimensional/métodos , Metagenómica/métodos , Animales , Evolución Biológica , Línea Celular , Centrómero/ultraestructura , Cromatina/genética , Cromatina/ultraestructura , Posicionamiento de Cromosoma , Cromosomas/genética , Cromosomas Humanos/genética , Cromosomas Humanos/ultraestructura , Diploidia , Genoma Humano , Heterocromatina/ultraestructura , Humanos , Hibridación Fluorescente in Situ , Funciones de Verosimilitud , Linfocitos/ultraestructura , Primates/genética , Análisis de la Célula Individual , Procesos Estocásticos , Tomografía por Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA