Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 44(4)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38050120

RESUMEN

The insular cortex (IC) integrates sensory and interoceptive cues to inform downstream circuitry executing adaptive behavioral responses. The IC communicates with areas involved canonically in stress and motivation. IC projections govern stress and ethanol recruitment of bed nucleus of the stria terminalis (BNST) activity necessary for the emergence of negative affective behaviors during alcohol abstinence. Here, we assess the impact of the chronic drinking forced abstinence (CDFA) volitional home cage ethanol intake paradigm on synaptic and excitable properties of IC neurons that project to the BNST (IC→BNST). Using whole-cell patch-clamp electrophysiology, we investigated IC→BNST circuitry 24 h or 2 weeks following forced abstinence (FA) in female C57BL6/J mice. We find that IC→BNST cells are transiently more excitable following acute ethanol withdrawal. In contrast, in vivo ethanol exposure via intraperitoneal injection, ex vivo via ethanol wash, and acute FA from a natural reward (sucrose) all failed to alter excitability. In situ hybridization studies revealed that at 24 h post FA BK channel mRNA expression is reduced in IC. Further, pharmacological inhibition of BK channels mimicked the 24 h FA phenotype, while BK activation was able to decrease AP firing in control and 24 h FA subjects. All together these data suggest a novel mechanism of homeostatic plasticity that occurs in the IC→BNST circuitry following chronic drinking.


Asunto(s)
Etanol , Núcleos Septales , Humanos , Ratones , Animales , Femenino , Etanol/farmacología , Corteza Insular , Núcleos Septales/fisiología , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Neuronas/fisiología
2.
Curr Issues Mol Biol ; 45(2): 1655-1680, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36826052

RESUMEN

Experimental models of a clinical, pathophysiological context are used to understand molecular mechanisms and develop novel therapies. Previous studies revealed better outcomes for spinal cord injury chronic ethanol-consuming patients. This study evaluated cellular and molecular changes in a model mimicking spinal cord injury (hypoxic stress induced by treatment with deferoxamine or cobalt chloride) in chronic ethanol-consuming patients (ethanol-exposed neural cultures (SK-N-SH)) in order to explain the clinical paradigm of better outcomes for spinal cord injury chronic ethanol-consuming patients. The results show that long-term ethanol exposure has a cytotoxic effect, inducing apoptosis. At 24 h after the induction of hypoxic stress (by deferoxamine or cobalt chloride treatments), reduced ROS in long-term ethanol-exposed SK-N-SH cells was observed, which might be due to an adaptation to stressful conditions. In addition, the HIF-1α protein level was increased after hypoxic treatment of long-term ethanol-exposed cells, inducing fluctuations in its target metabolic enzymes proportionally with treatment intensity. The wound healing assay demonstrated that the cells recovered after stress conditions, showing that the ethanol-exposed cells that passed the acute step had the same proliferation profile as the cells unexposed to ethanol. Deferoxamine-treated cells displayed higher proliferative activity than the control cells in the proliferation-migration assay, emphasizing the neuroprotective effect. Cells have overcome the critical point of the alcohol-induced traumatic impact and adapted to ethanol (a chronic phenomenon), sustaining the regeneration process. However, further experiments are needed to ensure recovery efficiency is more effective in chronic ethanol exposure.

3.
Exp Parasitol ; 242: 108399, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36228703

RESUMEN

Liver fluke infections disrupt the bile-excreting function of the human liver. Worldwide, excessive alcohol consumption also leads primarily to liver diseases. Our aim was to comprehensively assess the liver state in mice in parallel with the characterization of inflammation when the two adverse factors were combined. C57BL/6 mice were used for the experimental modeling; half of them beforehand were gradually accustomed to consumption of increasing doses of ethanol (from 5% to 20%). Then, half of the animals in each subgroup was infected with Opisthorchis felineus helminths. Finally, the infected (OF), 20% ethanol-consuming (Eth), and subjected to both factors (Eth + OF) mice were compared with no-treatment control. In OF and especially Eth + OF mice, relative liver weight was greater, activities of alanine aminotransferase and aspartate aminotransferase were higher, and bile ducts were considerably enlarged. Eth + OF mice contained noticeably more helminths in the liver than OF mice did. Massive cholangiofibrosis and periductal fibrosis were noted in the liver of the infected mice, especially Eth + OF ones. The liver fluke infection caused inflammatory infiltration and bile duct proliferation. Splenomegaly due to structural changes in the spleen as well as increased levels of interleukin 6 and leukocyte and monocyte counts in the blood reflected substantial inflammation in Eth + OF mice. Thus, in the proposed experimental model, it is shown that a double hit to the liver, i.e., the combination of O. felineus infection with prolonged alcoholization, can be detrimental to both the liver and whole body.


Asunto(s)
Consumo de Bebidas Alcohólicas , Opistorquiasis , Opisthorchis , Animales , Humanos , Ratones , Alanina Transaminasa , Aspartato Aminotransferasas , Modelos Animales de Enfermedad , Etanol , Inflamación , Interleucina-6 , Ratones Endogámicos C57BL , Opistorquiasis/complicaciones , Consumo de Bebidas Alcohólicas/efectos adversos
4.
J Cell Mol Med ; 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33837638

RESUMEN

Chronic ethanol consumption is a well-established independent risk factor for type 2 diabetes mellitus (T2DM). Recently, increasing studies have confirmed that excessive heavy ethanol exerts direct harmful effect on pancreatic ß-cell mass and function, which may be a mechanism of pancreatic ß-cell failure in T2DM. In this study, we evaluated the effect of Lentinan (LNT), an active ingredient purified from the bodies of Lentinus edodes, on pancreatic ß-cell apoptosis and dysfunction caused by ethanol and the possible mechanisms implicated. Functional studies reveal that LNT attenuates chronic ethanol consumption-induced impaired glucose metabolism in vivo. In addition, LNT ameliorates chronic ethanol consumption-induced ß-cell dysfunction, which is characterized by reduced insulin synthesis, defected insulin secretion and increased cell apoptosis. Furthermore, mechanistic assays suggest that LNT enhances ß-cell antioxidant capacity and ameliorates ethanol-induced oxidative stress by activating Nrf-2 antioxidant pathway. Our results demonstrated that LNT prevents ethanol-induced pancreatic ß-cell dysfunction and apoptosis, and therefore may be a potential pharmacological agent for preventing pancreatic ß-cell failure associated with T2DM and stress-induced diabetes.

5.
J Neurochem ; 157(4): 1118-1137, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32998179

RESUMEN

Chronic exposure to ethanol is associated with enhanced leakiness in the brain microvessel endothelial cells that form the blood-brain barrier (BBB). As previous studies suggested Wnt/ß-catenin signaling could improve the BBB phenotype of brain endothelial cells, we examined the extent to which Wnt signaling is altered following ethanol exposure, using both a cell culture model of the BBB and mice exposed to ethanol, and the ability of Wnt activation to reverse the permeability effects of ethanol. The human brain endothelial cells, hCMEC/D3, were exposed to ethanol (17-200 mM) for various periods of time (0-96 hr) and Wnt signaling, as well as expression of downstream genes influencing BBB integrity in the cell monolayers were monitored. Determination of Wnt signaling in both brain homogenates and brain microvessels from mice exposed to ethanol was also performed. The effects of ethanol on the permeability of the hCMEC/D3 monolayers were examined using both small molecular weight (sodium fluorescein) and large molecular weight (IRdye 800CW PEG) fluorescent markers. Exposure of hCMEC/D3 to ethanol (50 mM) caused a down-regulation of Wnt/ß-catenin signaling, a reduction of tight junction protein expression and up-regulation of plasmalemma vesicle associated protein (PLVAP). A similar reduction in Wnt/ß-catenin activity in both cortical brain homogenates and isolated cortical cerebral microvessels were observed in mice. Other areas such as cerebellum and striatum displayed as much as 3-6 fold increases in Dkk-1, an endogenous Wnt inhibitor. Ethanol exposure caused significant changes in both sodium fluorescein and IRdye 800CW PEG permeability (2-fold compared to control). The ethanol-induced increases in permeability were attenuated by treatment with known Wnt activators (i.e. LiCl or Wnt3a). Additional screens of CNS active agents with possible Wnt activity indicated fluoxetine could also prevent the permeability effects of ethanol. These studies suggest that ethanol-induced changes in brain microvessel permeability can be reversed through activation of Wnt signaling.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Etanol/toxicidad , Vía de Señalización Wnt/fisiología , Animales , Permeabilidad Capilar/efectos de los fármacos , Permeabilidad Capilar/fisiología , Humanos , Masculino , Ratones Endogámicos C57BL
6.
Addict Biol ; 26(5): e13021, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33942443

RESUMEN

The nucleus accumbens core (NAcc) has been repeatedly demonstrated to be a key component of the circuitry associated with excessive ethanol consumption. Previous studies have illustrated that in a nonhuman primate (NHP) model of chronic ethanol consumption, there is significant epigenetic remodeling of the NAcc. In the current study, RNA-Seq was used to examine genome-wide gene expression in eight each of control, low/binge (LD*), and high/very high (HD*) rhesus macaque drinkers. Using an FDR < 0.05, zero genes were significantly differentially expressed (DE) between LD* and controls, six genes between HD* and LD*, and 734 genes between HD* and controls. Focusing on HD* versus control DE genes, the upregulated genes (N = 366) were enriched in genes with annotations associated with signal recognition particle (SRP)-dependent co-translational protein targeting to membrane (FDR < 3 × 10-59 ), structural constituent of ribosome (FDR < 3 × 10-47 ), and ribosomal subunit (FDR < 5 × 10-48 ). Downregulated genes (N = 363) were enriched in annotations associated with behavior (FDR < 2 × 10-4 ), membrane organization (FDR < 1 × 10-4 ), inorganic cation transmembrane transporter activity (FDR < 2 × 10-3 ), synapse part (FDR < 4 × 10-10 ), glutamatergic synapse (FDR < 1 × 10-6 ), and GABAergic synapse (FDR < 6 × 10-4 ). Ingenuity Pathway Analysis (IPA) revealed that EIF2 signaling and mTOR pathways were significantly upregulated in HD* animals (FDR < 3 × 10-33 and <2 × 10-16 , respectively). Overall, the data supported our working hypothesis; excessive consumption would be associated with transcriptional differences in GABA/glutamate-related genes.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Macaca mulatta/genética , Núcleo Accumbens/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Animales , Etanol/farmacología , Perfilación de la Expresión Génica , Masculino , Autoadministración , Transducción de Señal/efectos de los fármacos
7.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34638588

RESUMEN

BACKGROUND: carbenoxolone, which is a derivative of glyceretic acid, is actively used in pharmacology for the treatment of diseases of various etiologies. In addition, we have shown carbenoxolone as an effective inducer of mitochondrial permeability transition pore in rat brain and liver mitochondria. METHODS: in the course of this work, comparative studies were carried out on the effect of carbenoxolone on the parameters of mPTP functioning in mitochondria isolated from the liver of control and alcoholic rats. RESULTS: within the framework of this work, it was found that carbenoxolone significantly increased its effect in the liver mitochondria of rats with chronic intoxication. In particular, this was expressed in a reduction in the lag phase, a decrease in the threshold calcium concentration required to open a pore, an acceleration of high-amplitude cyclosporin-sensitive swelling of mitochondria, as well as an increase in the effect of carbenoxolone on the level of mitochondrial membrane-bound proteins. Thus, as a result of the studies carried out, it was shown that carbenoxolone is involved in the development/modulation of alcohol tolerance and dependence in rats.


Asunto(s)
Alcoholismo/tratamiento farmacológico , Alcoholismo/metabolismo , Carbenoxolona/farmacología , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Animales , Calcio/metabolismo , Ciclosporina/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Ratas
8.
Biol Pharm Bull ; 43(3): 554-557, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31915312

RESUMEN

The mechanism underlying the improvement in hepatic function by liver hydrolysate (LH) after ethanol-induced hepatic injury is unclear. Therefore, we investigated the effects of LH administration on chronic ethanol-induced hepatic injury in normal rats and the mechanism underlying the improvement of its symptoms by LH. LH attenuated liver damage and reduced oxidative stress after chronic ethanol-induced hepatic injury in normal rats. LH treatment reduced hepatic injury biomarkers of plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT). LH treatment also decreased levels of 8-hydroxy-deoxyguanosine (8-OHdG) as oxidative stress marker. LH may prove beneficial to prevent the liver damage of chronic ethanol, at least in part, by alleviating oxidative stress.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Etanol/farmacología , Hígado/metabolismo , Alanina Transaminasa/sangre , Alanina Transaminasa/metabolismo , Animales , Aspartato Aminotransferasas/sangre , Aspartato Aminotransferasas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Femenino , Masculino , Malondialdehído/sangre , Malondialdehído/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Superóxido Dismutasa/sangre , Superóxido Dismutasa/metabolismo
9.
Mol Biol Rep ; 46(3): 2867-2875, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30903572

RESUMEN

Patients with alcohol use disorder may develop acute ethanol withdrawal syndrome (EWS). Previous studies showed that an epigenetic modification of the N-methyl-D-aspartate (NMDA) receptor, especially NMDA receptor 2B subunit (NR2B), was involved in the pathological process of EWS. However, the relationship between the epigenetic regulation of the NR2B gene in the rat hippocampus region and EWS were inconsistent. The purpose of this study was to explore the role of the histone H3K9 acetylation of the NR2B gene in the rat hippocampus region in EWS. A rat model of chronic ethanol exposure was established. EWS score and the behavioral changes were recorded at different time points. The NR2B expression levels and the histone H3K9 acetylation level in the NR2B gene promoter region were measured using qRT-PCR, Western blot, immunofluorescence, and chromatin immunoprecipitation, respectively. Finally, the relationship between the epigenetic modification of histone H3K9 acetylation of NR2B gene promoter and EWS were examined. Our ultimate results showed that the EWS score was increased at 2 h, peaked at 6 h after withdrawal of ethanol, and reduced to the level parallel to the normal control group at day 3 after ethanol withdrawal. The NR2B mRNA expression and protein levels showed similar patterns. Further correlation analyses indicted that both histone H3K9 acetylation in NR2B gene promoter and the expression levels of NR2B were positively associated with EWS. Our results suggest that chronic ethanol exposure may result in epigenetic modification of histone H3K9 acetylation in NR2B gene promoter in rat hippocampus, and the expression levels of NR2B were found to be positively correlated with ethanol withdrawal syndrome.


Asunto(s)
Histonas/genética , Receptores de N-Metil-D-Aspartato/genética , Síndrome de Abstinencia a Sustancias/genética , Acetilación , Consumo de Bebidas Alcohólicas/genética , Alcoholismo/genética , Animales , China , Metilación de ADN , Modelos Animales de Enfermedad , Epigénesis Genética/genética , Epigenómica/métodos , Etanol/metabolismo , Hipocampo/metabolismo , Masculino , Regiones Promotoras Genéticas/genética , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo
10.
Alcohol Clin Exp Res ; 42(1): 12-20, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29112774

RESUMEN

BACKGROUND: Neuroactive steroids such as (3α,5α)3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone) are potent neuromodulators that enhance GABAergic neurotransmission and produce inhibitory neurobehavioral and anti-inflammatory effects. Chronic ethanol (EtOH) consumption reduces 3α,5α-THP levels in human plasma, but has brain region- and species-specific effects on central nervous system levels of 3α,5α-THP. We explored the relationship between 3α,5α-THP levels in the hippocampus and voluntary EtOH consumption in the cynomolgus monkey following daily self-administration of EtOH for 12 months and further examined the relationship with hypothalamic-pituitary-adrenal (HPA) axis function prior to EtOH exposure. We simultaneously explored hippocampus levels of monocyte chemoattractant protein 1 (MCP-1), a pro-inflammatory cytokine that plays an important role in the neuroimmune response to EtOH, following chronic self-administration. METHODS: Monkeys were subjected to scheduled induction of water and EtOH consumption (0 to 1.5 g/kg) over 4 months, followed by free access to EtOH or water for 22 h/d over 12 months. Immunohistochemistry was performed using an anti-3α,5α-THP or anti-MCP-1 antibody. Prolonged voluntary drinking resulted in individual differences in EtOH consumption that ranged from 1.2 to 4.2 g/kg/d over 12 months. RESULTS: Prolonged EtOH consumption increased cellular 3α,5α-THP immunoreactivity by 12 ± 2% (p < 0.05) and reduced MCP-1 immunoreactivity by 23 ± 9% (p < 0.05) in the hippocampus CA1. In both cases, the effect of EtOH was most pronounced in heavy drinkers that consumed ≥3 g/kg for ≥20% of days. 3α,5α-THP immunoreactivity was positively correlated with average daily EtOH intake (Spearman r = 0.76, p < 0.05) and dexamethasone inhibition of HPA axis function (Spearman r = 0.9, p < 0.05). In contrast, MCP-1 immunoreactivity was negatively correlated with average daily EtOH intake (Spearman r = -0.78, p < 0.05) and dexamethasone suppression of HPA axis function (Spearman r = -0.76, p < 0.05). Finally, 3α,5α-THP and MCP-1 immunoreactivity were inversely correlated with each other (Spearman r = -0.68, p < 0.05). CONCLUSIONS: These data indicate that voluntary, long-term EtOH consumption results in higher levels of 3α,5α-THP, while decreasing levels of MCP-1 in the CA1 hippocampus, and that both changes may be linked to HPA axis function and the magnitude of voluntary EtOH consumption.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Región CA1 Hipocampal/metabolismo , Quimiocina CCL2/metabolismo , Pregnanolona/metabolismo , Consumo de Bebidas Alcohólicas/psicología , Animales , Biomarcadores/metabolismo , Macaca fascicularis
11.
Int J Med Sci ; 15(7): 682-688, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29910672

RESUMEN

Background: Chronic alcohol consumption is a major cause of liver injury. However, the molecular mechanisms by which alcohol impairs hepatocellular function and induces cell death remain unclear. Macroautophagy (hereafter called 'autophagy') is a degradation pathway involved in the survival or death of cells during conditions of cellular stress. This study examines the effect of chronic alcohol consumption on hepatocellular autophagy in an animal model. Methods: During a 12-week period male Wistar rats were fed a Lieber-DeCarli diet containing 5% alcohol (EtOH group; n=10), or an isocaloric diet (control group; n=10). Hepatic expression of key regulatory autophagy proteins (e.g. Beclin-1, ATG-3, ATG-5, p62/SQSTM1 and LC3) were detected by real-time polymerase chain reaction and Western blot analysis. Markers of cellular stress and apoptotic cell death (e.g. HO-1, caspase-3, PARP-1 and Bcl-2) were determined, and levels of reduced and oxidized glutathione were measured. Results: Chronic alcohol consumption caused cellular and oxidative stress in the liver. Transcriptional and translational expression of Beclin-1 and ATG-5 was significantly impaired. The protein expression of LC3-I and LC3-II was significantly increased, while the ratio of LC3I/II remained unchanged in the EtOH group compared with controls. Hepatocellular expression of p62/SQSTM1 and markers of apoptotic cell death (such as cleaved caspase-3 and cleaved PARP-1) were significantly increased in the EtOH group indicating a disrupted autophagic flux and increased rate of apoptosis in the liver. Conclusions: In this model, chronic alcohol consumption impaired hepatocellular autophagy and induced apoptotic cell death. It appears that changes in autophagy might contribute to alcohol-induced structural and functional hepatocellular injury.


Asunto(s)
Alcoholismo/fisiopatología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Hígado/efectos de los fármacos , Animales , Alemania , Hígado/patología , Masculino , Ratas , Ratas Wistar
12.
Addict Biol ; 23(3): 889-903, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28840972

RESUMEN

Chronic ethanol consumption stimulates neuroimmune signaling in the brain, and Toll-like receptor (TLR) activation plays a key role in ethanol-induced inflammation. However, it is unknown which of the TLR signaling pathways, the myeloid differentiation primary response gene 88 (MyD88) dependent or the TIR-domain-containing adapter-inducing interferon-ß (TRIF) dependent, is activated in response to chronic ethanol. We used voluntary (every-other-day) chronic ethanol consumption in adult C57BL/6J mice and measured expression of TLRs and their signaling molecules immediately following consumption and 24 hours after removing alcohol. We focused on the prefrontal cortex where neuroimmune changes are the most robust and also investigated the nucleus accumbens and amygdala. Tlr mRNA and components of the TRIF-dependent pathway (mRNA and protein) were increased in the prefrontal cortex 24 hours after ethanol and Cxcl10 expression increased 0 hour after ethanol. Expression of Tlr3 and TRIF-related components increased in the nucleus accumbens, but slightly decreased in the amygdala. In addition, we demonstrate that the IKKε/TBK1 inhibitor Amlexanox decreases immune activation of TRIF-dependent pathway in the brain and reduces ethanol consumption, suggesting the TRIF-dependent pathway regulates drinking. Our results support the importance of TLR3 and the TRIF-dependent pathway in ethanol-induced neuroimmune signaling and suggest that this pathway could be a target in the treatment of alcohol use disorders.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/efectos de los fármacos , Encéfalo/efectos de los fármacos , Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Neuroinmunomodulación/efectos de los fármacos , Receptor Toll-Like 3/efectos de los fármacos , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/inmunología , Aminopiridinas/farmacología , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/inmunología , Animales , Encéfalo/inmunología , Quimiocina CXCL10/efectos de los fármacos , Quimiocina CXCL10/inmunología , Quinasa I-kappa B/antagonistas & inhibidores , Receptores de Lipopolisacáridos/efectos de los fármacos , Receptores de Lipopolisacáridos/inmunología , Ratones , Ratones Endogámicos C57BL , Neuroinmunomodulación/inmunología , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/inmunología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/inmunología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Transducción de Señal , Receptor Toll-Like 2/efectos de los fármacos , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 3/genética , Receptor Toll-Like 3/inmunología , Receptor Toll-Like 4/efectos de los fármacos , Receptor Toll-Like 4/inmunología
13.
Addict Biol ; 22(2): 318-330, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26625954

RESUMEN

Neuroactive steroids such as (3α,5α)3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone) enhance the gamma-aminobutyric acid (GABA)-ergic effects of ethanol and modulate excessive drinking in rodents. Moreover, chronic ethanol consumption reduces 3α,5α-THP levels in human plasma, rat hippocampus and mouse limbic regions. We explored the relationship between 3α,5α-THP levels in limbic brain areas and voluntary ethanol consumption in the cynomolgus monkey following daily self-administration of ethanol for 12 months and further examined the relationship to hypothalamic-pituitary-adrenal (HPA) axis function prior to ethanol exposure. Monkeys were subjected to scheduled induction of ethanol consumption followed by free access to ethanol or water for 22 h/day over 12 months. Immunohistochemistry was performed using an anti-3α,5α-THP antibody. Prolonged voluntary drinking resulted in individual differences in ethanol consumption that ranged from 1.2 to 4.2 g/kg/day over 12 months. Prolonged ethanol consumption reduced cellular 3α,5α-THP immunoreactivity by 13 ± 2 percent (P < 0.05) in the lateral amygdala and 17 ± 2 percent (P < 0.05) in the basolateral amygdala. The effect of ethanol was most pronounced in heavy drinkers that consumed ≥3 g/kg ≥ 20 percent of days. Consequently, 3α,5α-THP immunoreactivity in both the lateral and basolateral amygdala was inversely correlated with average daily ethanol intake (Spearman r = -0.87 and -0.72, respectively, P < 0.05). However, no effect of ethanol and no correlation between drinking and 3α,5α-THP immunoreactivity were observed in the basomedial amygdala. 3α,5α-THP immunoreactivity following ethanol exposure was also correlated with HPA axis function prior to ethanol exposure. These data indicate that voluntary ethanol drinking reduces amygdala levels of 3α,5α-THP in non-human primates and that amygdala 3α,5α-THP levels may be linked to HPA axis function.


Asunto(s)
Amígdala del Cerebelo/efectos de los fármacos , Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Pregnanolona/metabolismo , Amígdala del Cerebelo/metabolismo , Animales , Conducta Animal , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Depresores del Sistema Nervioso Central/administración & dosificación , Relación Dosis-Respuesta a Droga , Etanol/administración & dosificación , Inmunohistoquímica , Macaca fascicularis , Masculino , Autoadministración
14.
Addict Biol ; 20(2): 259-62, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24397780

RESUMEN

The neural and genetic factors underlying chronic tolerance to alcohol are currently unclear. The GluN2A N-methyl-D-aspartate receptors (NMDAR) subunit and the NMDAR-anchoring protein PSD-95 mediate acute alcohol intoxication and represent putative mechanisms mediating tolerance. We found that chronic intermittent ethanol exposure (CIE) did not produce tolerance [loss of righting reflex (LORR)] or withdrawal-anxiety in C57BL/6J, GluN2A or PSD-95 knockout mice assayed 2-3 days later. However, significant tolerance to LORR was evident 1 day after CIE in C57BL/6J and PSD-95 knockouts, but absent in GluN2A knockouts. These data suggest a role for GluN2A in tolerance, extending evidence that human GluN2A gene variation is involved in alcohol dependence.


Asunto(s)
Intoxicación Alcohólica/genética , Ansiedad/genética , Depresores del Sistema Nervioso Central/farmacología , Tolerancia a Medicamentos/genética , Etanol/farmacología , Guanilato-Quinasas/genética , Proteínas de la Membrana/genética , Receptores de N-Metil-D-Aspartato/genética , Síndrome de Abstinencia a Sustancias/genética , Animales , Homólogo 4 de la Proteína Discs Large , Ratones , Ratones Noqueados
15.
Addict Biol ; 20(2): 336-44, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24571199

RESUMEN

Previous studies suggest that acetaldehyde generated from ethanol in the brain is reinforcing. The present studies tested the feasibility of achieving a long-term reduction of chronic and post-deprivation binge ethanol drinking by a single administration into the brain ventral tegmental area (VTA) of a lentiviral vector that codes for aldehyde dehydrogenase-2 (ALDH2), which degrades acetaldehyde. The ALDH2 gene coding vector or a control lentiviral vector were microinjected into the VTA of rats bred for their alcohol preference. In the chronic alcohol administration model, naïve animals administered the control vector and subsequently offered 10% ethanol and water ingested 8-9 g ethanol/kg body weight/day. The single administration of the ALDH2-coding vector prior to allowing ethanol availability reduced ethanol drinking by 85-90% (P < 0.001) for the 45 days tested. In the post-deprivation binge-drinking model, animals that had previously consumed ethanol chronically for 81 days were administered the lentiviral vector and were thereafter deprived of ethanol for three 7-day periods, each interrupted by a single 60-minute ethanol re-access after the last day of each deprivation period. Upon ethanol re-access, control vector-treated animals consumed intoxicating 'binge' amounts of ethanol, reaching intakes of 2.7 g ethanol/kg body weight in 60 minutes. The administration of the ALDH2-coding vector reduced re-access binge drinking by 75-80% (P < 0.001). This study shows that endowing the ventral tegmental with an increased ability to degrade acetaldehyde greatly reduces chronic alcohol consumption and post-deprivation binge drinking for prolonged periods and supports the hypothesis that brain-generated acetaldehyde promotes alcohol drinking.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Aldehído Deshidrogenasa/genética , Consumo Excesivo de Bebidas Alcohólicas/genética , Proteínas Mitocondriales/genética , Área Tegmental Ventral/metabolismo , Acetaldehído/metabolismo , Consumo de Bebidas Alcohólicas/metabolismo , Alcoholismo/genética , Alcoholismo/metabolismo , Aldehído Deshidrogenasa/metabolismo , Aldehído Deshidrogenasa Mitocondrial , Animales , Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Comportamiento de Búsqueda de Drogas , Vectores Genéticos , Lentivirus , Proteínas Mitocondriales/metabolismo , Ratas , Refuerzo en Psicología
16.
Alcohol Clin Exp Res ; 38(9): 2403-13, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25160044

RESUMEN

BACKGROUND: It is well established that chronic ethanol (EtOH) consumption is associated with increased incidence and disease severity of respiratory infections. Our recent work demonstrates this increase in disease severity to influenza A virus (IAV) infections is due, in part, to a failure to mount a robust IAV-specific CD8 T cell response along with a specific impairment in the ability of these T cells to produce interferon γ (IFNγ). However, the full extent of the lesion in the effector CD8 T cell compartment during chronic EtOH consumption remains unknown. METHODS: Utilizing the Meadows-Cook murine model of chronic alcohol consumption, mice received EtOH in their drinking water for 8 or 12 weeks. Mice were challenged intranasally with IAV, and the activation and effector functions of IAV-specific CD8 T cells were determined in both the lung-draining lymph nodes (dLN) and lungs. RESULTS: Our results confirm the defect in IFNγ production; however, the ability of IAV-specific T cells to produce tumor necrosis factor α (TNFα) and interleukin-2 (IL-2) in EtOH-consuming mice remains unaltered. In contrast, EtOH consumption significantly reduces the ability of CD8 T cells to degranulate and kill IAV-specific targets. Finally, our findings suggest the lesion begins during the initial activation of CD8 T cells, as we observe early defects in proliferation in the dLN of IAV-infected, EtOH-consuming mice. CONCLUSIONS: These findings highlight the previously unrecognized depth of the lesion in the IAV-specific CD8 T cell response during chronic EtOH consumption. Given the important role CD8 T cell immunity plays in control of IAV, these findings may aid in the development of vaccination and/or therapeutic strategies to reverse these defects in the CD8 T cell response and reduce serious disease outcomes associated with IAV infections in alcoholics.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Etanol/administración & dosificación , Virus de la Influenza A/efectos de los fármacos , Infecciones por Orthomyxoviridae/metabolismo , Consumo de Bebidas Alcohólicas/efectos adversos , Animales , Etanol/toxicidad , Mediadores de Inflamación/metabolismo , Virus de la Influenza A/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos
17.
Alcohol Clin Exp Res ; 38(2): 401-8, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24428663

RESUMEN

BACKGROUND: Alcohol (EtOH [ethanol]) is an antinociceptive agent, working in part, by reducing sensitivity to painful stimuli. The transcription factor Kruppel-like factor 11 (KLF11), a human diabetes-causing gene that also regulates the neurotransmitter metabolic enzymes monoamine oxidase (MAO), has recently been identified as an EtOH-inducible gene. However, its role in antinociception remains unknown. Consequently, we investigated the function of KLF11 in chronic EtOH-induced antinociception using a genetically engineered knockout mouse model. METHODS: Wild-type (Klf11(+/+) ) and KLF11 knockout (Klf11(-/-) ) mice were fed a liquid diet containing EtOH for 28 days with increasing amounts of EtOH from 0% up to a final concentration of 6.4%, representing a final diet containing 36% of calories primarily from EtOH. Control mice from both genotypes were fed liquid diet without EtOH for 28 days. The EtOH-induced antinociceptive effect was determined using the tail-flick test before and after EtOH exposure (on day 29). In addition, the enzyme activity and mRNA levels of MAO A and MAO B were measured by real-time RT-PCR and enzyme assays, respectively. RESULTS: EtOH produced an antinociceptive response to thermal pain in Klf11(+/+) mice, as expected. In contrast, deletion of KLF11 in the Klf11(-/-) mice abolished the EtOH-induced antinociceptive effect. The mRNA and protein levels of KLF11 were significantly increased in the brain prefrontal cortex of Klf11(+/+) mice exposed to EtOH compared with control Klf11(+/+) mice. Furthermore, MAO enzyme activities were affected differently in Klf11 wild-type versus Klf11 knockout mice exposed to chronic EtOH. Chronic EtOH intake significantly increased MAO B activity in Klf11(+/+) mice. CONCLUSIONS: The data show KLF11 modulation of EtOH-induced antinociception. The KLF11-targeted MAO B enzyme may contribute more significantly to EtOH-induced antinociception. Thus, this study revealed a new role for the KLF11 gene in the mechanisms underlying the antinociceptive effects of chronic EtOH exposure.


Asunto(s)
Alcoholismo/genética , Alcoholismo/psicología , Analgésicos , Depresores del Sistema Nervioso Central/farmacología , Proteínas de Unión al ADN/fisiología , Diabetes Mellitus/genética , Etanol/farmacología , Nocicepción/efectos de los fármacos , Factores de Transcripción/fisiología , Animales , Proteínas Reguladoras de la Apoptosis , Western Blotting , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Masculino , Ratones , Ratones Noqueados , Monoaminooxidasa/genética , Monoaminooxidasa/metabolismo , Dimensión del Dolor/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/enzimología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Tiempo de Reacción/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Represoras , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
18.
Hepatol Res ; 44(7): 788-97, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23710581

RESUMEN

AIM: Chronic ethanol consumption is associated with persistent hepatitis C viral (HCV) infection. This study explores the role of the host cellular immune response to HCV core protein in a murine model and how chronic ethanol consumption alters T-cell regulatory (Treg) populations. METHODS: BALB/c mice were fed an isocaloric control or ethanol liquid diet. Dendritic cells (DC) were isolated after expansion with a hFl3tL-expression plasmid and subsequently transfected with HCV core protein. Core-containing DC (1 × 10(6) ) were s.c. injected (×3) in mice every 2 weeks. Splenocytes from immunized mice were isolated and stimulated with HCV core protein to measure generation of viral antigen-specific Treg, as well as secretion of interleukin (IL)-2, tumor necrosis factor (TNF)-α and IL-4. Cytotoxicity was measured by lactate dehydrogenase release from HCV core-expressing syngeneic SP2/19 myeloma cells. RESULTS: Splenocytes from mice immunized with ethanol-derived and HCV core-loaded DC exhibited significantly lower in vitro cytotoxicity compared to mice immunized with HCV core-loaded DC derived from isocaloric pair-fed controls. Stimulation with HCV core protein triggered higher IL-2, TNF-α and IL-4 release in splenocytes following immunization with core-loaded DC derived from controls as compared to chronic ethanol-fed mice. Splenocytes derived from mice immunized with core-loaded DC isolated from ethanol-fed mice exhibited a significantly higher CD25(+) FOXP3(+) and CD4(+) FOXP3(+) Treg population. CONCLUSION: These results suggest that immunization with HCV core-containing DC from ethanol-fed mice induces an increase in the CD25(+) FOXP3(+) and CD4(+) FOXP3(+) Treg population and may suppress HCV core-specific CD4(+) and CD8(+) T-cell immune responses.

19.
Biopharm Drug Dispos ; 35(5): 284-95, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24619946

RESUMEN

Pharmacokinetic studies concerning d-penicillamine (an acetaldehyde sequestering agent) are scarce and have not evaluated the influence of chronic ethanol consumption and age on its disposition. Since recent preclinical studies propose d-penicillamine as a promising treatment for alcohol relapse, the main aim of the present work was to evaluate the influence of these two factors on d-penicillamine disposition in order to guide future clinical studies on the anti-relapse efficacy of this drug in alcoholism. Additionally, the effect of the administered dose was also evaluated. To this end, three studies were carried out. Study 1 assessed the influence of dose on d-penicillamine disposition, whereas studies 2 and 3 evaluated, respectively, the influence of chronic alcohol consumption and age. Rapid intravenous administrations of 2, 10 and 30 mg/kg of d-penicillamine were performed using young or adult ethanol-naïve rats or adult ethanol-experienced (subjected to a long-term ethanol self-administration protocol) rats. Pharmacokinetic parameters were derived from the biexponential model. Statistical analysis of CL, normalized AUC0 (∞) , V1 and k10 revealed that disposition, in the range plasma concentrations assayed, is non-linear both in young ethanol-naïve and in adult ethanol-experienced rats. Notably, no significant changes in t1/2 were detected. Chronic ethanol consumption significantly reduced CL values by 35% without affecting t1/2 . d-Penicillamine disposition was equivalent in young and adult animals. In conclusion, although DP pharmacokinetics is non-linear, the lack of significant alterations of the t1/2 would potentially simplify the clinical use of this drug. Chronic consumption of ethanol also alters d-penicillamine disposition but, again, does not modify t1/2.


Asunto(s)
Alcoholismo/fisiopatología , Quelantes/farmacocinética , Etanol/administración & dosificación , Penicilamina/farmacocinética , Factores de Edad , Animales , Área Bajo la Curva , Quelantes/administración & dosificación , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Semivida , Masculino , Dinámicas no Lineales , Penicilamina/administración & dosificación , Ratas , Ratas Wistar
20.
J Inflamm Res ; 17: 4791-4810, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39051052

RESUMEN

Background: Ischemic stroke (IS) is one of the leading causes of death and disability in the world, and alcohol consumption has been gaining attention as an independent risk factor for IS. Blood-brain barrier (BBB) dysfunction and neuroinflammation are the core of cerebral ischemia/reperfusion (I/R) injury, and pericytes play a crucial role in the structure and function. This study is to explore the effects of long-term alcohol consumption on IS and the potential mechanisms of pericytes. Methods: Rat models of long-term alcohol intake followed by transient middle cerebral artery occlusion stroke (EtOH+tMCAO) and cell models of oxygen-glucose deprivation/reoxygenation (OGD/R) with alcohol pre-treatment were constructed. Results: Worsened infarct volume, neurological scores, and BBB disruption were observed in the EtOH+tMCAO group compared with the tMCAO group, and immunofluorescence staining showed increased pericytes NLPR3 inflammasome activation at the ischemic penumbra. In vitro, pericyte mortality and LDH release elevated pre-treated by alcohol after OGD/R, and amplified expression of NLRP3 inflammasome was detected by Western blotting and qPCR. Alcohol pre-treatment activated the TLR4/NF-κB pathway, and transfecting pericytes with TLR4-small interfering RNA (siRNA) to block TLR4 signaling markedly restrained NLRP3 inflammasome over-activation. Injecting TAK-242 in rats alleviated neurological impairment caused by alcohol. Conclusion: Long-term alcohol pre-treatment aggravated ischemic stroke-induced brain damage by activating NLRP3 inflammasome via TLR4/NF-κB signaling pathway in the pericytes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA