Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biology (Basel) ; 13(5)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38785787

RESUMEN

The assassin bug Sycanus bifidus has a wide distribution across southern China. This study explored its distribution and evolution by analyzing mitochondrial and nuclear ribosomal RNA genes, revealing how Pleistocene climate and geological changes shaped its phylogeography. We identified two main clades, A and B, that diverged in the Middle Pleistocene. Hainan Island's populations form a unique group within Clade A, suggesting that the Qiongzhou Strait served as a dispersal corridor during glaciation. Rising sea levels likely separated the Hainan population afterward. Ecological niche modeling showed that both populations have been viable since the last interglacial period, with demographic analyses indicating possible expansions during the Middle and Late Pleistocene, driven by favorable climates. This study highlights the significant effects of Pleistocene sea-level and climatic changes on the distribution and evolution of S. bifidus in China.

2.
Sci Total Environ ; : 175872, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39218117

RESUMEN

Exploring the temporal dynamics of biological communities can offer valuable insights into the underlying mechanisms driving changes in biodiversity in the context of short and long-term effects of climate fluctuations. However, an understanding of how such changes influence the spatial patterns of the temporary ecological processes that shape the pattern of community dynamics remains unexplored. This study examined the relative importance of temporary deterministic and stochastic processes (i.e., the influence of environmental filtering compared to stochastic variation within the same community) on community dynamics across watersheds in 15 rivers of the European Iberian Peninsula using 21 years of data. This study was divided into two time periods (i.e., 1997-2006 and 2007-2017). The climatic differences between the periods included decreasing levels and heightened variability of precipitation. Additionally, there were declining minimum temperatures and rising maximum temperatures, accompanied by reduced fluctuations in both minimum and maximum temperatures. Water quality and its variations also occur along an elevation pattern and changed over the time period studied. Spatial patterns of the relative importance of the ecological processes shifted between the two decades. The significance of stochastic processes increased with elevation in the earlier period, although no clear elevation pattern emerged in the later period. At the same time, the importance of deterministic processes decreased with elevation in the earlier period, and there was no clear pattern of elevation in the later period. An understanding of the patterns in community dynamics existing at various elevations over time can lay the groundwork for predicting and mitigating the impacts of short-term climate changes on biodiversity and guide appropriate conservation actions.

3.
Front Plant Sci ; 14: 1297061, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38186605

RESUMEN

Biodiversity underpins grassland ecological functions and productive capacities. By studying the mechanisms for the maintenance of species diversity in animal communities, we can provide important theoretical guidance for the optimization of grazing management and biodiversity protection. The typical grassland of Xilingol in Inner Mongolia, China, was used as the experimental area, and a grazing intensity experiment was set up. This consisted of four gradient levels that were grazed by sheep, which were available for continuous monitoring, namely control standard sheep unit·day·hectare-1·year-1 (CK, 0 SSU·d·hm-2y-1), light grazing (LG, 170 SSU·d·hm-2·y-1), moderate grazing (MG, 340 SSU·d·hm-2·y-1), and high grazing (HG, 510 SSU·d·hm-2·y-1). Nine consecutive years of multi-indicator monitoring of vegetation was carried out from 2014-2022, using monitoring data coupled with time series and inter-annual climatic (relative moisture index, RMI) fluctuations. This was done to analyze the impacts of disturbances, such as grazing use and climatic fluctuations, on the diversity of species and above-ground productivity of the community, thereby exploring the relationship between diversity and productivity, and provide possible explanations for the emergence of a range of ecological responses. The statistical analysis methods used were One-way Analysis of Variance (ANOVA), general linear regression and mixed-effects models. The main conclusions of this study are as follows: (1) The grassland in the experimental area under CK had the highest diversity and productivity and the ecosystem was better able to buffer the negative impacts of climatic drought. Furthermore, the effect of climate on productivity and diversity weakened as the intensity of grazing increased. (2) LG to MG had a constant diversity. (3) Grazing utilization changed the relationship between community species diversity and aboveground productivity by releasing spatial community resources, altering the structure of plant communities, weakening competitive exclusion, and strengthening complementary effects. However, under all of the conditions there is a brief stage in the time series when diversity is stimulated to increase, and the higher the grazing intensity, the earlier this occurs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA