Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 272: 116047, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38301582

RESUMEN

The existence of heavy metals (especially Cr (VI)) in coal gangue has brought great safety risks to the environment. The indigenous bacteria (YZ1 bacteria) were separated and applied for removing Cr (VI) from the coal gangue, in which its tolerance to Cr (VI) was explored. The removal mechanism of Cr (VI) was investigated with pyrite in coal gangue, metabolite organic acids and extracellular polymer of YZ1 bacteria. The concentration of Cr (VI) could be stabilized around 0.012 mg/L by the treatment with YZ1 bacteria. The Cr (VI) tolerance of YZ1 bacteria reached 60 mg/L, and the removal efficiency of Cr (VI) was more than 95% by using YZ1 bacteria combined with pyrite. The organic acids had a certain reducing ability to Cr (VI) (removal efficiency of less than 10%). The extracellular polymers (EPS) were protective for the YZ1 bacteria resisting to Cr (VI). The polysaccharides and Humic-like substances in the soluble extracellular polymers (S-EPS) had strong adsorption and reduction effect on Cr (VI), in which the tryptophan and tyrosine proteins in the bound extracellular polymers (LB-EPS and TB-EPS) could effectively promote the reduction of Cr (VI). YZ1 bacteria could obviously reduce the damage of Cr (VI) from coal gangue to the environment.


Asunto(s)
Cromo , Carbón Mineral , Hierro , Cromo/metabolismo , Adsorción , Polímeros/metabolismo , Sulfuros/metabolismo , Bacterias/metabolismo , Sustancias Húmicas
2.
J Environ Manage ; 354: 120347, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38359628

RESUMEN

Owing to the abundant silicon content in coal gangue, its conversion into fertilizer can help address large-scale storage. Nonetheless, the rapid release of silicon in coal gangue poses challenges for plants to fully utilize it. A slow-release fertilizer prepared by ferric/phosphorus composite coating on coal gangue (C@SP) was developed in the study. The findings revealed that the C@SP can facilitate slow release of Si and enhance the stabilization of As, Pb, and Cr in soil. C@SP can react with As and Cr to form stable Fe-As-PO4 and Fe-Cr-PO4 compounds. The -OH in C@SP can combine with Pb, transforming it into insoluble Pb, which was then integrated into the crystal structure with ferric/phosphorus composite or Fe(III)-oxyhydroxysulfate to create a more stable form. The silicon release was promoted by the conversion of the passivation film to iron oxides. Thus, the fertilizer holds promise for application in environmental activities.


Asunto(s)
Compuestos Férricos , Silicio , Fertilizantes , Plomo , Fósforo , Carbón Mineral , Hierro , Suelo
3.
J Environ Manage ; 351: 119645, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38048711

RESUMEN

A low cost and green peroxymonosulfate (PMS) activation catalyst (CG-Ca-N) was successfully prepared with coal gangue (CG), calcium chloride, and melamine as activator. Under the optimal conditions, the CG-Ca-N can remove 100 % for benzo(a)pyrene (Bap) in an aqueous solution after 20 min and 72.06 % in soil slurry medium within 60 min, which also display excellent reuse ability toward Bap after three times. The removal of Bap is significantly decreased when the initial pH value was greater than 9 and obviously inhibited in the presence of HCO3- or SO42-. The characterization results indicated that the addition of calcium chloride could stabilize and increase the content of pyridinic N during thermal annealing, resulting in the production of •OH, SO4•- and 1O2. Based on electron paramagnetic resonance (EPR) and active radical scavenging experiments, 1O2 could be identified to be the dominant role in Bap degradation. Overall, this work opened a new perspective for the low cost and green PMS catalysts and offered great promise in the practical remediation of organic pollution of groundwater and soil.


Asunto(s)
Benzo(a)pireno , Peróxidos , Cloruro de Calcio , Peróxidos/química , Suelo
4.
Molecules ; 29(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38792045

RESUMEN

Efficient and thorough treatment of dye wastewater is essential to achieve ecological harmony. In this study, a new type of calcium-based modified coal gangue (Ca-CG) was prepared by using solid waste coal gangue as raw material and a CaCl2 modifier, which was used for the removal of malachite green, methylene blue, crystal violet, methyl violet and other dyes in water. When the dosage of Ca-CG was 1-5 g/L, the dosage of Ca-CG was the main factor affecting the dye adsorption effect. The adsorption effects of Ca-CG on four dyes were as follows: malachite green > crystal violet > methylene blue > methyl violet. Kinetics, isotherms and thermodynamic analysis showed that the adsorption of malachite green, methyl blue, crystal violet and methyl violet by Ca-CG fitted the second-order kinetic model, and adsorption with chemical reaction is the main process. The adsorption of four dyes by Ca-CG conformed to the Freundlich model, which is dominated by multi-molecular layer adsorption, and the adsorption was easy to carry out. The adsorption process of Ca-CG on the four dyes was spontaneous. The results of FTIR, XRD and SEM showed that the calcium-based materials such as lipscombite and dolomite were the key to the adsorption of malachite green by Ca-CG, and the main mechanisms for the adsorption of malachite green by Ca-CG are surface precipitation, electrostatic action, and chelation reaction. Ca-CG adsorption has great potential for the removal of dye wastewater.

5.
Environ Geochem Health ; 46(4): 120, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483685

RESUMEN

With the continual advancement of coal resource development, the comprehensive utilization of coal gangue as a by-product encounters certain constraints. A substantial amount of untreated coal gangue is openly stored, particularly acidic gangue exposed to rainfall. The leaching effect of acidic solutions, containing heavy metal ions and other pollutants, results in environmental challenges such as local soil or groundwater pollution, presenting a significant concern in the current ecological landscape of mining areas. Investigating the migration patterns of pollutants in the soil-groundwater system and elucidating the characteristics of polluted solute migration are imperative. To understand the migration dynamics of pollutants and unveil the features of solute migration, this study focuses on a coal gangue dump in a mining area in Shanxi. Utilizing indoor leaching experiments and soil column migration experiments, a two-dimensional soil-groundwater model is established using the finite element method of COMSOL. This model quantitatively delineates the migration patterns of key pollutant components leached from coal gangue into the groundwater. The findings reveal that sulfate ions can migrate and infiltrate groundwater within a mere 7 years in the vadose zone of aeration. Moreover, the average concentration of iron ions in groundwater can reach approximately 58.3 mg/L. Convection, hydrodynamic dispersion, and adsorption emerge as the primary factors influencing pollution transport. Understanding the leaching patterns and environmental impacts of major pollutants in acidic coal gangue is crucial for predicting soil-groundwater pollution and implementing effective protective measures.


Asunto(s)
Minas de Carbón , Contaminantes Ambientales , Contaminantes del Suelo , Carbón Mineral/análisis , Contaminación Ambiental , Suelo , Iones , China , Contaminantes del Suelo/análisis
6.
Environ Res ; 234: 116491, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37394168

RESUMEN

The soil microbial diversity in the gangue accumulation area is severely stressed by a variety of heavy metals, while the influence of long-term recovery of herbaceous plants on the ecological structure of gangue-contaminated soil is to be explored. Therefore, we analysed the differences in physicochemical properties, elemental changes, microbial community structure, metabolites and expression of related pathways in soils in the 10- and 20-year herbaceous remediation areas of coal gangue. Our results showed that phosphatase, soil urease, and sucrase activities of gangue soils significantly increased in the shallow layer after herbaceous remediation. However, in zone T1 (10-year remediation zone), the contents of harmful elements, such as Thorium (Th; 1.08-fold), Arsenic (As; 0.78-fold), lead (Pb; 0.99-fold), and uranium (U; 0.77-fold), increased significantly, whereas the soil microbial abundance and diversity also showed a significant decreasing trend. Conversely, in zone T2 (20-year restoration zone), the soil pH significantly increased by 1.03- to 1.06-fold and soil acidity significantly improved. Moreover, the abundance and diversity of soil microorganisms increased significantly, the expression of carbohydrates in soil was significantly downregulated, and sucrose content was significantly negatively correlated with the abundance of microorganisms, such as Streptomyces. A significant decrease in heavy metals was observed in the soil, such as U (1.01- to 1.09-fold) and Pb (1.13- to 1.25-fold). Additionally, the thiamin synthesis pathway was inhibited in the soil of the T1 zone; the expression level of sulfur (S)-containing histidine derivatives (Ergothioneine) was significantly up-regulated by 0.56-fold in the shallow soil of the T2 zone; and the S content in the soil significantly reduced. Aromatic compounds were significantly up-regulated in the soil after 20 years of herbaceous plant remediation in coal gangue soil, and microorganisms (Sphingomonas) with significant positive correlations with benzene ring-containing metabolites, such as Sulfaphenazole, were identified.


Asunto(s)
Metales Pesados , Microbiota , Contaminantes del Suelo , Uranio , Carbón Mineral , Plomo/toxicidad , Plomo/análisis , Metales Pesados/análisis , Plantas , Suelo/química , Metaboloma , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis
7.
Environ Res ; 217: 114871, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36423666

RESUMEN

High-sulfur coal gangue (HS-CG) is extremely unstable in the environment, releasing acid mine drainage with high concentrations of harmful heavy metals (HMs). The effects of HS-CG particle size, leaching solution pH, Fe3+ and acidophilic microorganisms on the release of HMs from the HS-CG and their kinetic behavior were studied using static leaching tests. The results showed that the smaller the particle size of HS-CG and the more acidic the leaching solution, the greater the release of HMs. As the chemical catalyst, the external addition of 300 mg/L Fe3+ can make the leaching amount of Fe, Mn, Cu, Zn, Ni, Cr reached 10,224.93, 93.88, 52.25, 11.56, 7.55, 2.97 mg/kg respectively, and the release of HMs was 1.36-2.60 times of the tests without the addition of iron. However, the concentration of Fe3+ above 800 mg/L promoted the production of jarosite on the surface of HS-CG, which led to decrease in the release of HMs. The HMs forms in HS-CG were different, while the effect of microorganisms on the leaching of Zn (54.99%) and Mn (52.35%) in the higher acid soluble fraction was more obvious, their leaching amount reached 87.21 and 107.58 mg/kg respectively. The kinetic analysis indicated that the rate-controlling step was mainly redox reaction at first, and then gradually controlled by the diffusion of ash layer. So, the kinetic equation controlled jointly by two rate-controlling stages has been proposed to describe the dissolution of HS-CG. This work help develop pertinent strategies for mine area remediation via controlling the HMs generation path.


Asunto(s)
Carbón Mineral , Metales Pesados , Cinética , Metales Pesados/análisis , Hierro , Azufre , Ceniza del Carbón
8.
Biodegradation ; 34(2): 125-138, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36593315

RESUMEN

Coal gangue (CG), one of the world's largest industrial solid wastes produced during coal mining, is extremely difficult to be used owing to its combined contents of clay minerals and organic macromolecules. This study explored a novel process of degrading the harmful organic compounds in the CG into humic acid using a biological method characterized by scanning electron microscope-energy dispersive spectrometer, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and elemental analyzer. The results reveal that adding selected Bacillus sp. to the CG for 40 days can increase the humic acid content by ~ 17 times, reaching 17338.17 mg/kg, which is also the best level for promoting plant growth. FTIR and XPS spectra show that the organic compounds in the CG transforms primarily from C=C to C=O, COOH, and O-H groups, indicating that the organic compounds are gradually oxidized and activated, improving the humic acid concentration of soil. In addition, Bacillus sp. decreases pH and benzo[a]pyrene contents, and increases the content of available nutrients. After microbial degradation, coal gangue can be turned into ecological restoration materials.


Asunto(s)
Bacillus , Carbón Mineral , Carbón Mineral/análisis , Sustancias Húmicas/análisis , Compuestos Orgánicos , Suelo , Residuos Industriales/análisis
9.
Sensors (Basel) ; 23(22)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38005501

RESUMEN

Coal gangue image recognition is a critical technology for achieving automatic separation in coal processing, characterized by its rapid, environmentally friendly, and energy-saving nature. However, the response characteristics of coal and gangue vary greatly under different illuminance conditions, which poses challenges to the stability of feature extraction and recognition, especially when strict illuminance requirements are necessary. This leads to fluctuating coal gangue recognition accuracy in industrial environments. To address these issues and improve the accuracy and stability of image recognition under variable illuminance conditions, we propose a novel coal gangue recognition method based on laser speckle images. Firstly, we studied the inter-class separability and intra-class compactness of the collected laser speckle images of coal and gangue by extracting gray and texture features from the laser speckle images, and analyzed the performance of laser speckle images in representing the differences between coal and gangue minerals. Subsequently, coal gangue recognition was achieved using an SVM classifier based on the extracted features from the laser speckle images. The fusion feature approach achieved a recognition accuracy of 94.4%, providing further evidence of the feasibility of this method. Lastly, we conducted a comparative experiment between natural images and laser speckle images for coal gangue recognition using the same features. The average accuracy of coal gangue laser speckle image recognition under various lighting conditions is 96.7%, with a standard deviation of the recognition accuracy of 1.7%. This significantly surpasses the recognition accuracy obtained from natural coal and gangue images. The results showed that the proposed laser speckle image features can facilitate more stable coal gangue recognition with illumination factors, providing a new, reliable method for achieving accurate classification of coal and gangue in the industrial environment of mines.

10.
Sensors (Basel) ; 23(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37430824

RESUMEN

Aiming at the problems of long detection time and low detection accuracy in the existing coal gangue recognition, this paper proposes a method to collect the multispectral images of coal gangue using spectral technology and match with the improved YOLOv5s (You Only Look Once Version-5s) neural network model to apply it to coal gangue target recognition and detection, which can effectively reduce the detection time and improve the detection accuracy and recognition effect of coal gangue. In order to take the coverage area, center point distance and aspect ratio into account at the same time, the improved YOLOv5s neural network replaces the original GIou Loss loss function with CIou Loss loss function. At the same time, DIou NMS replaces the original NMS, which can effectively detect overlapping targets and small targets. In the experiment, 490 sets of multispectral data were obtained through the multispectral data acquisition system. Using the random forest algorithm and the correlation analysis of bands, the spectral images of the sixth, twelfth and eighteenth bands from twenty-five bands were selected to form a pseudo RGB image. A total of 974 original sample images of coal and gangue were obtained. Through two image noise reduction methods, namely, Gaussian filtering algorithm and non-local average noise reduction, 1948 images of coal gangue were obtained after preprocessing the dataset. This was divided into a training set and test set according to an 8:2 ratio and trained in the original YOLOv5s neural network, improved YOLOv5s neural network and SSD neural network. By identifying and detecting the three neural network models obtained after training, the results can be obtained, the loss value of the improved YOLOv5s neural network model is smaller than the original YOLOv5s neural network and SSD neural network, the recall rate is closer to 1 than the original YOLOv5s neural network and SSD neural network, the detection time is the shortest, the recall rate is 100% and the average detection accuracy of coal and gangue is the highest. The average precision of the training set is increased to 0.995, which shows that the improved YOLOv5s neural network has a better effect on the detection and recognition of coal gangue. The detection accuracy of the improved YOLOv5s neural network model test set is increased from 0.73 to 0.98, and all overlapping targets can also be accurately detected without false detection or missed detection. At the same time, the size of the improved YOLOv5s neural network model after training is reduced by 0.8 MB, which is conducive to hardware transplantation.

11.
Environ Geochem Health ; 45(10): 7215-7236, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36933105

RESUMEN

The pollution of heavy metals in soil caused by exposed coal gangue and its prevention and control has become a hot issue restricting the green mining of coal in China. Nemerow integrated pollution index (NIPI), potential ecological risk index (RI) and human health risk assessment model were used to evaluate the pollution and risk of heavy metals (Cu, Cr, As, Pb) in the soil around the typical coal gangue hill in Fengfeng mining area of China. The results show that: firstly, the accumulation of coal gangue leads to the enrichment of four heavy metals in the surrounding shallow soil, and NIPI and RI were 1.0-4.4 and 21.63-91.28, respectively. The comprehensive pollution level of heavy metals in soil reached the warning line and above, and the potential ecological risk level reached slightly and above. When the horizontal distance exceeded 300 m, 300 m and 200 m, respectively, the influence of coal gangue hill on the heavy metal content in shallow soil, the comprehensive pollution level of heavy metals and the potential ecological risk level basically disappeared. In addition, based on the potential ecological risk assessment results and main risk factors, the ecological risk configuration of the study area was divided into five categories: "strong ecological risk + As," "intermediate ecological risk + As + Cu," "intermediate ecological risk + As + Cu or Pb," "minor ecological risk + As + Cu" and "minor ecological risk + As + Cu or Pb." The hazard index (HI) and total carcinogenic risk (TCR) of shallow soil polluted by heavy metals in the study area were 0.24-1.07 and 0.41 × 10-4-1.78 × 10-4, respectively, which posed non-carcinogenic and carcinogenic risks to children, but the risks were controllable. This study will help to take strategic measures to accurately control and repair the heavy metal pollution in the soil around the coal gangue hill and provide a scientific basis for solving the safe use of agricultural land and realizing the construction of ecological civilization.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Niño , Humanos , Monitoreo del Ambiente/métodos , Carbón Mineral , Plomo , Contaminantes del Suelo/análisis , Metales Pesados/toxicidad , Metales Pesados/análisis , Medición de Riesgo , Suelo , China
12.
Environ Geochem Health ; 45(6): 2935-2948, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36121570

RESUMEN

Alkyl polycyclic aromatic hydrocarbons (APAHs) are more toxic and persistent than their parent compounds. In this study, the concentrations of polycyclic aromatic compounds (PACs) in dust, topsoil and coal gangue from Huaibei Coal mine, China were analyzed by gas chromatography-mass spectrometry, confirming APAHs were the dominant pollutants. The mean concentrations of APAHs were substantially higher than those of 16 PAHs in both dust and topsoil. The mean concentration of APAHs in dust was 9197 µg kg-1, accounting for 80% of the total mean concentration of PACs. The mean concentration of APAHs in topsoil was 2835 µg kg-1, accounting for 77% of the mean concentration of PACs. Alkyl naphthalenes and alkyl phenanthrenes were the primary pollutants in APAHs. Their mean concentrations in dust and topsoil were 7782 µg kg-1 and 2333 µg kg-1, respectively. This accounted for 85% and 82% of the concentration of APAHs, respectively. Additionally, low-molecular-weight APAHs dominated the PACs of the coal mine, exhibiting petrogenic characteristics; distribution of C1-C4 NAP and C1-C4 PHE exhibited "bell shape" pattern indicated as petrogenic source. Source identification indicated that the PACs were mainly derived from petrogenic sources and vehicle emissions, followed by biomass and coal burning. Fingerprinting information of dust and topsoil were consistent with coal gangue, indicating that PACs are most likely derived from coal gangue. Coalfields comparable to our study area are widely distributed in China. Therefore, investigating PAC pollution derived from coal gangue warrants further attention.


Asunto(s)
Contaminantes Ambientales , Hidrocarburos Policíclicos Aromáticos , Compuestos Policíclicos , Polvo/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Compuestos Policíclicos/análisis , Carbón Mineral/análisis , Suelo/química , China , Medición de Riesgo
13.
Environ Res ; 214(Pt 1): 113786, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35798269

RESUMEN

The increasing requirement and consumption of coal has resulted in a large accumulation of coal gangue. The reuse and recycling of coal gangue have become a high priority for sustainable development. A sustainable and efficient ceramsite adsorbent was prepared for copper ions adsorption by using coal gangue, coal fly ash, and copper slag as the main materials. The appropriate performance of the ceramsite could be obtained at a mixture of coal gangue, coal fly ash, and copper slag at a weight ratio of 3:4:1. The optimal sintering temperature and time were 1050 °C and 20 min, respectively. The main crystalline phases of ceramsite were quartz, mullite, and anorthite. Many micropores are connecting the interior on the surface of ceramsite under scanning electron microscope. The maximum copper ions adsorption capacity reached up to 20.6 mg/g at 303 K when pH and time were 5 and 1440 min, respectively. The adsorption kinetics and isotherm could be described by the pseudo-second-order model and Freundlich model, respectively. The adsorption mechanisms of Cu2+ with ceramsite were attributed to Cu(OH)2 precipitation formed on the alkaline surface of ceramsite and complexation reactions occurred between the O-containing groups (including C-O, Fe-O, and Si-O) from ceramsite and Cu2+. The prepared ceramsite may be also applied to other heavy metal wastewater treatments.


Asunto(s)
Residuos Industriales , Contaminantes Químicos del Agua , Adsorción , Carbón Mineral , Ceniza del Carbón , Mezclas Complejas , Cobre , Iones , Cinética
14.
Sensors (Basel) ; 22(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36298338

RESUMEN

The existing multi-manipulator sorting method for gangue that utilizes a multi-task allocation strategy is not satisfactory. The single manipulator working space is fixed, lowering the cooperation degree between the manipulators and leading to a low sorting rate. Therefore, this paper proposes a multi-manipulator cooperative sorting method that can work globally. First, a benefit function based on the sorting time and quality of the gangue is constructed by combining the gangue flow information and the manipulator state. The time parameter is obtained via the manipulator's dynamic target tracking trajectory planning algorithm based on PID control. Secondly, the benefits matrix is standardized and updated many times to improve the Hungarian algorithm to achieve task allocation, and the initial solution with priority is obtained. Finally, the solutions are analyzed and processed cooperatively in order of priority. The conflicts between multiple robotic arms are eliminated through task cooperation and trajectory cooperation until the sorting task that the robot arm can execute is obtained from the allocation results. Experiments involving different sorting methods were completed on a multi-arm coal and gangue sorting experimental robot platform. The experimental results show that the sorting efficiency of the proposed method is about 10% and 20% higher than that of the fixed space dynamic and designated space fixed points methods, respectively, under different belt speeds. This method can guarantee system benefits, effectively implements cooperative control of multi-manipulator operations in the whole area, and improves the efficiency of coal gangue sorting.


Asunto(s)
Algoritmos , Carbón Mineral , Hungría
15.
J Environ Manage ; 305: 114400, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34995941

RESUMEN

The soil ecological health risks and toxic effects of coal gangue accumulation were examined after 10 years of elm/poplar phytoremediation. The changes in soil enzyme activities, ionome metabolism, and microbial community structure were analyzed at shallow (5-15 cm), intermediate (25-35 cm), and deep (45-55 cm) soil depths. Soil acid phosphatase activity in the restoration area increased significantly by 4.36-7.18 fold (p < 0.05). Soil concentrations of the metal ions Cu, Pb, Ni, Co, Bi, U, and Th were significantly reduced, as were concentrations of the non-metallic element S. The repair effect was shallow > middle > deep. The soil community structure, determined by 16S diversity results, was changed significantly in the restoration area, and the abundance of microorganisms increased at shallow soil depths. Altererythrobacter and Sphingomonas species were at the center of the microbial weight network in the restoration area. Redundancy analysis (RDA) showed that S and Na are important driving forces for the microbial community distributions at shallow soil depths. The KEGG function prediction indicated enhancement of the microbial function of the middle depth soil layers in the restoration area. Overall, phytoremediation enhanced the biotransformation of soil phosphorus in the coal gangue restoration area, reduced the soil content of several harmful metal elements, significantly changed the structure and function of the microbial community, and improved the overall soil ecological environment.


Asunto(s)
Minas de Carbón , Contaminantes del Suelo , Biodegradación Ambiental , China , Carbón Mineral/análisis , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis
16.
J Environ Manage ; 314: 115044, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35427943

RESUMEN

In this study, coal gangue (CG) was applied as media in bioretention system to remove runoff pollutant. CG modified bioretention systems show good removal efficiency towards runoff pollutant due to the high adsorption capacity of CG. The removal of total phosphorus (TP), total nitrogen (TN), ammonia (NH4+-N) and chemical oxygen demand (COD) by CG modified bioretention systems was influenced by diverse rainfall conditions including rainfall concentration, recurrence period and drying period, and their removal rate ranged 94-99%, 30-70%, 83-97% and 33-86%, respectively. The effluent concentration of Zn, Pb and Cu was as low as 3.14-10.99 µg/L, 0.66-2.56 µg/L and 0.60-3.15 µg/L, respectively. In addition, CG could promote the plant heavy metal uptake and thus decrease their accumulation in soil to a certain extent. Meanwhile, Malondialdehyde (MDA) content and peroxidases (POD) activities of plants in CG modified bioretention were lower than that in tradition bioretention, indicating that CG could help plants recovery and lessened the oxidative stress for the negative impact of high heavy metals accumulation. CG-based media alleviated the inhibitory effect of rainwater runoff pollutant accumulation (especially heavy metals) on microbial diversity and the enhancement of the dominant bacteria (such as Proteobacteria and Bacteroidota) could conduce the nutrients removal in the bioretention systems. In overall, this study demonstrated that the CG modified bioretention systems show an excellent removal performance combine with biological effects.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Contaminantes Químicos del Agua , Carbón Mineral , Fósforo , Lluvia , Contaminantes Químicos del Agua/análisis
17.
J Environ Manage ; 320: 115865, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35944325

RESUMEN

The coal gangue has occupied the farmland and caused severe pollution to the surrounding environment, which was discharged with vast amount as a by-product of coal mining and washing. A sustainable and ecological microorganism activation method was proposed to disposal coal gangue as mineral fertilizer. A Stenotrophomonas maltophilia YZ1 bacteria was separated and found to be useful in solubilizing nutrient elements in coal gangue. The contents of available P, available K and available Si in the treated coal gangue reached 278.4 mg/kg, 1305.3 mg/kg and 522.7 mg/kg, respectively. The YZ1 bacteria dissolved the minerals of monetite (CaHPO4), muscovite and annite by the organic acids, which were the metabolism product of YZ1 bacteria. The solubilizing mechanisms of phosphate minerals included the release of protic and the chelation of organic acid with calcium. The microbial activation method can provide nutrient elements for soil, which may realize the reclamation of coal gangue in a harmless way.


Asunto(s)
Suelo , Stenotrophomonas maltophilia , Bacterias , China , Carbón Mineral/análisis , Nutrientes , Compuestos Orgánicos
18.
Molecules ; 27(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36364094

RESUMEN

To effectively utilize coal gangue (CG) with low Al/Si ratio, the thermal activation method was used. The activated CG, as supplementary cementitious materials (SCMs), was added into ordinary Portland cement (OPC) to study its physical properties. The XRD results show that CG undergoes a phase transition from kaolinite to metakaolinite during activation. The NMR tests reveal that the low polymerization state Q3 is continuously broadened, and the Al coordination gradually changes from Al VI to Al V and Al IV. The CG particles are scale-like and glassy with a loose structure. By mixing the activated CG (under 800 °C) with cement (mass ratio = 3:7), the water demand of normal consistency increases by 7.2% and the initial and final setting times extend by 67 min and 81 min, respectively. The rough surface and loose structure of activated CG are the main factors contributing to the higher water demand of normal consistency. The micro-aggregate effect of the activated CG reduces the contact rate between the cement particles and water, and the interparticles, thus slowing down the process of hydration reaction, and leading to longer setting times.

19.
Molecules ; 26(20)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34684772

RESUMEN

Both the accumulation of coal gangue and potentially toxic elements in aqueous solution have caused biological damage to the surrounding ecosystem of the Huainan coal mining field. In this study, coal gangue was used to synthesize calcium silicate hydrate (C-S-H) to remove Cr(VI) and Cu(II)from aqueous solutions and aqueous solution. The optimum parameters for C-S-H synthesis were 700 °C for 1 h and a Ca/Si molar ratio of 1.0. Quantitative sorption analysis was done at variable temperature, C-S-H dosages, solution pH, initial concentrations of metals, and reaction time. The solution pH was precisely controlled by a pH meter. The adsorption temperature was controlled by a thermostatic gas bath oscillator. The error of solution temperature was controlled at ± 0.3, compared with the adsorption temperature. For Cr(VI) and Cu(II), the optimum initial concentration, temperature, and reaction time were 200 mg/L, 40 °C and 90 min, pH 2 and 0.1 g C-S-H for Cr(VI), pH 6 and 0.07 g C-S-H for Cu(II), respectively. The maximum adsorption capacities of Cr(VI) and Cu(II) were 68.03 and 70.42 mg·g-1, respectively. Furthermore, the concentrations of Cu(II) and Cr(VI) in aqueous solution could meet the surface water quality standards in China. The adsorption mechanism of Cu(II) and Cr(VI) onto C-S-H were reduction, electrostatic interaction, chelation interaction, and surface complexation. It was found that C-S-H is an environmentally friendly adsorbent for effective removal of metals from aqueous solution through different mechanisms.

20.
Ecotoxicol Environ Saf ; 191: 110244, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-32004946

RESUMEN

The purpose of this research was to examine the influence of hydrothermally treated coal gangue (HTCG) with and without biochar (BC) on the leaching, bioavailability, and redistribution of chemical fractions of heavy metals (HMs) in copper mine tailing (Cu-MT). An increase in pH, water holding capacity (WHC) and soil organic carbon (SOC) were observed due to the addition of BC in combination with raw coal gangue (RCG) and HTCG. A high Cu and other HMs concentration in pore water (PW) and amended Cu-MT were reduced by the combination of BC with RCG and/or HTCG, whereas individual application of RCG slightly increased the Cu, Cd, and Zn leaching and bioavailability, compared to the unamended Cu-MT. Sequential extractions results showed a reduction in the exchangeable fraction of Cu, Cd, Pb, and Zn and elevation in the residual fraction following the addition of BC-2% and BC-HTCG. However, individual application of RCG slightly increased the Cu, Cd, and Zn exchangeable fractions assessed by chemical extraction method. Rapeseed was grown for the following 45 days during which physiological parameters, metal uptake transfer rate (TR), bioconcentration factor (BCF), and translocation factor (TF) were measured after harvesting. In the case of plant biomass, no significant difference between applied amendments was observed for the fresh biomass (FBM) and dry biomass (DBM) of shoots and roots of rapeseed. However, BC-2% and BC-HTCG presented the lowest HMs uptake, TR, BCF (BCFroot and BCFshoot), and TF for Cu, Cd, Cr, Ni, Pb, and Zn in rapeseed among the other amendments compared to the unamended Cu-MT. Overall, these findings are indicative that using biochar in combination with RCG and/or HTCG led to a larger reduction in HMs leaching and bioavailability, due to their higher sorption capacity and could be a suitable remediation strategy for heavy metals in a Cu-MT.


Asunto(s)
Brassica napus/efectos de los fármacos , Carbón Orgánico/farmacología , Carbón Mineral/análisis , Metales Pesados/metabolismo , Minería , Contaminantes del Suelo/metabolismo , Adsorción , Disponibilidad Biológica , Brassica napus/metabolismo , Carbón Orgánico/química , Cobre/análisis , Cobre/metabolismo , Metales Pesados/análisis , Suelo/química , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA