Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Environ Sci Technol ; 58(15): 6825-6834, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38567993

RESUMEN

Hg(I) may control Hg redox kinetics; however, its metastable nature hinders analysis. Herein, the stability of Hg(I) during standard preparation and analysis was studied. Gravimetric analysis showed that Hg(I) was stable in its stock solution (1000 mg L-1), yet completely disproportionated when its dilute solution (10 µg L-1) was analyzed using liquid chromatography (LC)-ICPMS. The Hg(I) dimer can form through an energetically favorable comproportionation between Hg(0) and Hg(II), as supported by density functional theory calculation and traced by the rapid isotope exchange between 199Hg(0)aq and 202Hg(II). However, the separation of Hg(0) and Hg(II) (e.g., LC process) triggered its further disproportionation. Polypropylene container, increasing headspace, decreasing pH, and increasing dissolved oxygen significantly enhanced the disproportionation or redox transformations of Hg(I). Thus, using a glass container without headspace and maintaining a slightly alkaline solution are recommended for the dilute Hg(I) stabilization. Notably, we detected elevated concentrations of Hg(I) (4.4-6.1 µg L-1) in creek waters from a heavily Hg-polluted area, accounting for 54-70% of total dissolved Hg. We also verified the reductive formation of Hg(I) in Hg(II)-spiked environmental water samples, where Hg(I) can stably exist in aquatic environments for at least 24 h, especially in seawater. These findings provide mechanistic insights into the transformation of Hg(I), which are indicative of its further environmental identification.


Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Mercurio/análisis , Agua de Mar/análisis , Agua de Mar/química , Isótopos/análisis , Contaminantes Químicos del Agua/análisis
2.
Environ Sci Technol ; 58(1): 960-969, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38150269

RESUMEN

SO2 reduction with CH4 to produce elemental sulfur (S8) or other sulfides is typically challenging due to high energy barriers and catalyst poisoning by SO2. Herein, we report that a comproportionation reaction (CR) induced by H2S recirculating significantly accelerates the reactions, altering reaction pathways and enabling flexible adjustment of the products from S8 to sulfides. Results show that SO2 can be fully reduced to H2S at a lower temperature of 650 °C, compared to the 800 °C required for the direct reduction (DR), effectively eliminating catalyst poisoning. The kinetic rate constant is significantly improved, with CR at 650 °C exhibiting about 3-fold higher value than DR at 750 °C. Additionally, the apparent activation energy decreases from 128 to 37 kJ/mol with H2S, altering the reaction route. This CR resolves the challenges related to robust sulfur-oxygen bond activation and enhances CH4 dissociation. During the process, the well-dispersed lamellar MoS2 crystallites with Co promoters (CoMoS) act as active species. H2S facilitates the comproportionation reaction, reducing SO2 to a nascent sulfur (Sx*). Subsequently, CH4 efficiently activates CoMoS in the absence of SO2, forming H2S. This shifts the mechanism from Mars-van Krevelen (MvK) in DR to sequential Langmuir-Hinshelwood (L-H) and MvK in CR. Additionally, it mitigates sulfation poisoning through this rapid activation reaction pathway. This unique comproportionation reaction provides a novel strategy for efficient sulfur resource utilization.


Asunto(s)
Metano , Dióxido de Azufre , Metano/química , Sulfuros/química , Temperatura , Azufre/química , Oxidación-Reducción
3.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38674002

RESUMEN

2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO•), a persistent nitronyl nitroxide radical, has been used for the detection and trapping of nitric oxide, as a redox mediator for batteries, for the activity estimation of antioxidants, and so on. However, there is no report on the reactivity of PTIO• in the presence of redox-inactive metal ions. In this study, it is demonstrated that the addition of scandium triflate, Sc(OTf)3 (OTf = OSO2CF3), to an acetonitrile (MeCN) solution of PTIO• resulted in an electron-transfer disproportionation to generate the corresponding cation (PTIO+) and anion (PTIO-), the latter of which is suggested to be stabilized by Sc3+ to form [(PTIO)Sc]2+. The decay of the absorption band at 361 nm due to PTIO•, monitored using a stopped-flow technique, obeyed second-order kinetics. The second-order rate constant for the disproportionation, thus determined, increased with increasing the Sc(OTf)3 concentration to reach a constant value. A drastic change in the cyclic voltammogram recorded for PTIO• in deaerated MeCN containing 0.10 M Bu4NClO4 was also observed upon addition of Sc(OTf)3, suggesting that the large positive shift of the one-electron reduction potential of PTIO• (equivalent to the one-electron oxidation potential of PTIO-) in the presence of Sc(OTf)3 may result in the disproportionation. When H2O was added to the PTIO•-Sc(OTf)3 system in deaerated MeCN, PTIO• was completely regenerated. It is suggested that the complex formation of Sc3+ with H2O may weaken the interaction between PTIO- and Sc3+, leading to electron-transfer comproportionation to regenerate PTIO•. The reversible disproportionation of PTIO• was also confirmed by electron paramagnetic resonance (EPR) spectroscopy.


Asunto(s)
Acetonitrilos , Óxidos N-Cíclicos , Escandio , Agua , Acetonitrilos/química , Agua/química , Óxidos N-Cíclicos/química , Escandio/química , Transporte de Electrón , Oxidación-Reducción , Cinética , Iones/química , Imidazoles/química
4.
Chemistry ; 29(62): e202302333, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37539653

RESUMEN

A chloroplatinum complex was arylated to obtain stimuli-responsive molecular crystals. The resulting arylplatinum complex showed polymorph-dependent emission, mechano- and thermochromic luminescence as well as comproportionation and π-bridged dimerization. Simple mixing of structurally similar arylplatinum complexes at room temperature resulted in the transfer of their aryl groups (comproportionation), which allowed their mechanochromic profiles to be tuned. We also found that recrystallization of the complex afforded a dimerized product in which two platinum ions are bridged by aryl groups resulting in a very short (3.0466(10) Å) Pt-Pt distance.

5.
Molecules ; 28(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37446663

RESUMEN

A neutral, stable radical, 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•), has been frequently used to estimate the activity of antioxidants for more than 60 years. However, the number of reports about the effect of metal ions on the reactivity of DPPH• is quite limited. We have recently reported a unique electron-transfer disproportionation of DPPH• to produce the DPPH cations (DPPH+) and anions (DPPH-) upon the addition of scandium triflate [Sc(OTf)3 (OTf = OSO2CF3)] to an acetonitrile (MeCN) solution of DPPH•. The driving force of this reaction is suggested to be an interaction between DPPH- and Sc3+. In this study, it is demonstrated that the addition of H2O to the DPPH•-Sc(OTf)3 system in MeCN resulted in an increase in the absorption band at 519 nm due to DPPH•. This indicated that an electron-transfer comproportionation occurred to regenerate DPPH•. The regeneration of DPPH• was also confirmed by electron paramagnetic resonance (EPR) spectroscopy. The amount of DPPH• increased with an increasing amount of added H2O to reach a constant value. The detailed mechanism of regeneration of DPPH• was proposed based on the detailed spectroscopic and kinetic analyses, in which the reaction of DPPH+ with [(DPPH)2Sc(H2O)3]+ generated upon the addition of H2O to [(DPPH)2Sc]+ is the rate-determining step.


Asunto(s)
Electrones , Escandio , Escandio/química , Transporte de Electrón , Iones/química
6.
Molecules ; 27(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36234726

RESUMEN

Vitamin E, a collection of lipophilic phenolic compounds based on chroman-6-ol, has a rich and fascinating oxidative chemistry involving a range of intermediate forms, some of which are proposed to be important in its biological functions. In this review, the available electrochemical and spectroscopic data on these oxidized intermediates are summarized, along with a discussion on how their lifetimes and chemical stability are either typical of similar phenolic and chroman-6-ol derived compounds, or atypical and unique to the specific oxidized isomeric form of vitamin E. The overall electrochemical oxidation mechanism for vitamin E can be summarized as involving the loss of two-electrons and one-proton, although the electron transfer and chemical steps can be controlled to progress along different pathways to prolong the lifetimes of discreet intermediates by modifying the experimental conditions (applied electrochemical potential, aqueous or non-aqueous solvent, and pH). Depending on the environment, the electrochemical reactions can involve single electron transfer (SET), proton-coupled electron transfer (PCET), as well as homogeneous disproportionation and comproportionation steps. The intermediate species produced via chemical or electrochemical oxidation include phenolates, phenol cation radicals, phenoxyl neutral radicals, dications, diamagnetic cations (phenoxeniums) and para-quinone methides. The cation radicals of all the tocopherols are atypically long-lived compared to the cation radicals of other phenols, due to their relatively weak acidity. The diamagnetic cation derived from α-tocopherol is exceptionally long-lived compared to the diamagnetic cations from the other ß-, γ- and δ-isomers of vitamin E and compared with other phenoxenium cations derived from phenolic compounds. In contrast, the lifetime of the phenoxyl radical derived from α-tocopherol, which is considered to be critical in biological reactions, is typical for what is expected for a compound with its structural features. Over longer times via hydrolysis reactions, hydroxy para-quinone hemiketals and quinones can be formed from the oxidized intermediates, which can themselves undergo reduction processes to form intermediate anion radicals and dianions. Methods for generating the oxidized intermediates by chemical, photochemical and electrochemical methods are discussed, along with a summary of how the final products vary depending on the method used for oxidation. Since the intermediates mainly only survive in solution, they are most often monitored using UV-vis spectroscopy, FTIR or Raman spectroscopies, and EPR spectroscopy, with the spectroscopic techniques sometimes combined with fast photoinitiated excitation and time-resolved spectroscopy for detection of short-lived species.


Asunto(s)
Fenol , Vitamina E , Benzoquinonas , Cromanos , Espectroscopía de Resonancia por Spin del Electrón , Oxidación-Reducción , Fenoles/química , Protones , Solventes/química , Tocoferoles , alfa-Tocoferol/química
7.
Water Res ; 263: 122164, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39096814

RESUMEN

Mercury (Hg) emissions from Hg smelting (roasting HgS ores) and artisanal small-scale gold mining predominantly include elemental Hg, in either liquid [Hg(0)l] or gaseous [Hg(0)g] form. The oxidation of Hg(0) into Hg(I) is the first step during Hg(0) oxidation, which enables Hg to enter the food web. However, this oxidation process remains poorly understood, particularly in Hg(0)l/Hg(0)g-impacted environments. Herein, we show the widespread occurrence of Hg(I) in Hg(0)l/Hg(0)g-exposed environmental matrices near an abandoned Hg smelting plant in Xunyang, Shaanxi, China, including water, sediment, soil, plant, fish, and insect. This plant produced elemental Hg by roasting HgS ore, leaving Hg(0)l in the factory area after abandonment, which continuously released Hg(0)l/Hg(0)g into the surrounding environment. In Hg(0)-impacted water, Hg(I) was one of the primary Hg species, with an average concentration of 876 (not detected to 6109) ng L-1 and an average Hg(I) to total dissolved Hg ratio of 46% (0-92%), exhibiting a decrease with increasing distance from the plant. Elevated levels of Hg(I) were observed when the upstream sample was simultaneously exposed to Hg(0)l and Hg(0)g, arising from aqueous Hg(0)l oxidation and comproportionation between Hg(II) (mainly from Hg(0)l oxidation) and dissolved Hg(0) (i.e., Hg2+ + Hg0 → Hg22+). These findings highlight the impact of Hg(0) (as Hg(0)l and Hg(0)g) on the environment, emphasizing the comproportionation formation of Hg(I) in natural waters.


Asunto(s)
Monitoreo del Ambiente , Mercurio , China , Minería , Contaminantes Químicos del Agua , Animales , Peces , Plantas/química , Sedimentos Geológicos/química
8.
Water Res ; 244: 120472, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37619304

RESUMEN

Liquid elemental mercury droplet (Hg(0)l) is an important species in heavy Hg-contaminated environments. The oxidation processes of Hg(0)l and its related mechanisms are still poorly understood. Herein, for the first time, it was verified that mercurous species [Hg(I)] was an important species in natural water contaminated by Hg(0)l as well as in the simulated dark oxidation of Hg(0)l. The formation and further transformation of Hg(I) controlled the overall oxidation process of Hg(0)l and were affected by different environmental factors. Through kinetic modeling using ACUCHEM program, oxidation of Hg(0) to Hg(I) (Hg(0) â†’ Hg(I)) was determined to be the rate-limiting step in Hg(0)l oxidation because its k value ((8.7 ± 0.21) × 10-11s-1) is seven orders of magnitude lower than that of Hg(I) oxidation (Hg(I) â†’ Hg(II), (4.7 ± 0.15) × 10-4s-1). Ligands like OH-, Cl-, and natural organic matter enhanced the formation of Hg(I) via promoting the constants of comproportionation (up to (9.5 ± 0.78) × 10-4s-1). These findings highlight the importance of Hg(I) in Hg(0)l oxidation process by controlling the transformation kinetics of Hg species, facilitating an improved understanding of the environmental redox cycles of Hg.


Asunto(s)
Mercurio , Cinética , Agua , Oxidación-Reducción , Anaerobiosis
9.
Polymers (Basel) ; 13(24)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34960952

RESUMEN

Eumelanin is a widespread biomacromolecule pigment in the biosphere and has been widely investigated for numerous bioelectronics and energetic applications. Many of these applications depend on eumelanin's ability to conduct proton current at various levels of hydration. The origin of this behavior is connected to a comproportionation reaction between oxidized and reduced monomer moieties and water. A hydration-dependent FTIR spectroscopic study on eumelanin is presented herein, which allows for the first time tracking the comproportionation reaction via the gradual increase of the overall aromaticity of melanin monomers in the course of hydration. We identified spectral features associated with the presence of specific "one and a half" C𝌁O bonds, typical for o-semiquinones. Signatures of semiquinone monomers with internal hydrogen bonds and that carboxylic groups, in contrast to semiquinones, begin to dissociate at the very beginning of melanin hydration were indicated. As such, we suggest a modification to the common hydration-dependent conductivity mechanism and propose that the conductivity at low hydration is dominated by carboxylic acid protons, whereas higher hydration levels manifest semiquinone protons.

10.
Front Microbiol ; 12: 636145, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177823

RESUMEN

Microorganisms are found in nearly every surface and near-surface environment, where they gain energy by catalyzing reactions among a wide variety of chemical compounds. The discovery of new catabolic strategies and microbial habitats can therefore be guided by determining which redox reactions can supply energy under environmentally-relevant conditions. In this study, we have explored the thermodynamic potential of redox reactions involving manganese, one of the most abundant transition metals in the Earth's crust. In particular, we have assessed the Gibbs energies of comproportionation and disproportionation reactions involving Mn2+ and several Mn-bearing oxide and oxyhydroxide minerals containing Mn in the +II, +III, and +IV oxidation states as a function of temperature (0-100°C) and pH (1-13). In addition, we also calculated the energetic potential of Mn2+ oxidation coupled to O2, NO2 -, NO3 -, and FeOOH. Results show that these reactions-none of which, except O2 + Mn2+, are known catabolisms-can provide energy to microorganisms, particularly at higher pH values and temperatures. Comproportionation between Mn2+ and pyrolusite, for example, can yield 10 s of kJ (mol Mn)-1. Disproportionation of Mn3+ can yield more than 100 kJ (mol Mn)-1 at conditions relevant to natural settings such as sediments, ferromanganese nodules and crusts, bioreactors and suboxic portions of the water column. Of the Mn2+ oxidation reactions, the one with nitrite as the electron acceptor is most energy yielding under most combinations of pH and temperature. We posit that several Mn redox reactions represent heretofore unknown microbial metabolisms.

11.
Materials (Basel) ; 11(4)2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29601522

RESUMEN

A research investigation of "ant nest" corrosion (ANC) on copper tube was conducted in terms of the variables of the corrosion potential and pH value in 10³ ppm copper formate solution over 20 days. The paper presents the surface and cross-sectional observations and examines Cu2O and H2O as the stable chemical species produced. A Cannizzaro reaction as a disproportionation reaction from formic acid and a comproportionation reaction from the metallic copper tube and copper formate solution critically influenced the ANC mechanism. The paper also categorizes the ANC attack as a rapid reaction system from the electrochemical point of view by using a polarization resistance curve.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA