RESUMEN
CONTEXT: The Tongmai Yangxin pill (TMYX) has potential clinical effects on no-reflow (NR); however, the effective substances and mechanisms remain unclear. OBJECTIVE: This study evaluates the cardioprotective effects and molecular mechanisms of TMYX against NR. MATERIALS AND METHODS: We used a myocardial NR rat model to confirm the effect and mechanism of action of TMYX in alleviating NR. Sprague-Dawley (SD) rats were divided into Control (Con), sham, NR, TMYX (4.0 g/kg), and sodium nitroprusside (SNP, 5.0 mg/kg), and received their treatments once a day for one week. In vitro studies in isolated coronary microvasculature of NR rats and in silico network pharmacology analyses were performed to reveal the underlying mechanisms of TMYX and determine the main components, targets, and pathways of TMYX, respectively. RESULTS: TMYX (4.0 g/kg) showed therapeutic effects on NR by improving the cardiac structure and function, reducing NR, ischemic areas, and cardiomyocyte injury, and decreasing the expression of cardiac troponin I (cTnI). Moreover, the mechanism of TMYX predicted by network pharmacology is related to the HIF-1, NF-κB, and TNF signaling pathways. In vivo, TMYX decreased the expression of MPO, NF-κB, and TNF-α and increased the expression of GPER, p-ERK, and HIF-1α. In vitro, TMYX enhanced the diastolic function of coronary microvascular cells; however, this effect was inhibited by G-15, H-89, L-NAME, ODQ and four K+ channel inhibitors. CONCLUSIONS: TMYX exerts its pharmacological effects in the treatment of NR via multiple targets. However, the contribution of each pathway was not detected, and the mechanisms should be further investigated.
Asunto(s)
FN-kappa B , Canales de Potasio , Animales , Ratas , Isquemia , Miocitos Cardíacos , FN-kappa B/metabolismo , Canales de Potasio/metabolismo , Ratas Sprague-Dawley , Medicamentos Herbarios Chinos/farmacologíaRESUMEN
Breast cancer radiotherapy increases the risk of heart failure with preserved ejection fraction (HFpEF). Cardiomyocytes are highly radioresistant, but radiation specifically affects coronary microvascular endothelial cells, with subsequent microvascular inflammation and rarefaction. The effects of radiation on left ventricular (LV) diastolic function are poorly characterized. We hypothesized that cardiac radiation exposure may result in diastolic dysfunction without reduced EF. Global cardiac expression of the sodium-iodide symporter (NIS) was induced by cardiotropic gene (adeno-associated virus serotype 9) delivery to 5-wk-old rats. SPECT/CT (125I) measurement of cardiac iodine uptake allowed calculation of the 131I doses needed to deliver 10- or 20-Gy cardiac radiation at 10 wk of age. Radiated (Rad; 10 or 20 Gy) and control rats were studied at 30 wk of age. Body weight, blood pressure, and heart rate were similar in control and Rad rats. Compared with control rats, Rad rats had impaired exercise capacity, increased LV diastolic stiffness, impaired LV relaxation, and elevated filling pressures but similar LV volume, EF, end-systolic elastance, preload recruitable stroke work, and peak +dP/dt Pathology revealed reduced microvascular density, mild concentric cardiomyocyte hypertrophy, and increased LV fibrosis in Rad rats compared with control rats. In the Rad myocardium, oxidative stress was increased and in vivo PKG activity was decreased. Experimental cardiac radiation exposure resulted in diastolic dysfunction without reduced EF. These data provide insight into the association between cardiac radiation exposure and HFpEF risk and lend further support for the importance of inflammation-related coronary microvascular compromise in HFpEF.NEW & NOTEWORTHY Cardiac radiation exposure during radiotherapy increases the risk of heart failure with preserved ejection fraction. In a novel rodent model, cardiac radiation exposure resulted in coronary microvascular rarefaction, oxidative stress, impaired PKG signaling, myocardial fibrosis, mild cardiomyocyte hypertrophy, left ventricular diastolic dysfunction, and elevated left ventricular filling pressures despite preserved ejection fraction.
Asunto(s)
Traumatismos Experimentales por Radiación/etiología , Volumen Sistólico/efectos de los fármacos , Disfunción Ventricular Izquierda/etiología , Función Ventricular Izquierda/efectos de los fármacos , Animales , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Dependovirus/genética , Diástole , Relación Dosis-Respuesta en la Radiación , Vectores Genéticos , Masculino , Miocardio/metabolismo , Miocardio/patología , Estrés Oxidativo/efectos de la radiación , Traumatismos Experimentales por Radiación/genética , Traumatismos Experimentales por Radiación/metabolismo , Traumatismos Experimentales por Radiación/fisiopatología , Ratas Sprague-Dawley , Transducción de Señal/efectos de la radiación , Simportadores/genética , Simportadores/metabolismo , Factores de Tiempo , Transducción Genética , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/fisiopatologíaRESUMEN
This review focuses on clinical studies concerning assessment of coronary microvascular and conduit vessel function primarily in the context of acute and sub acute myocardial infarction (MI). The ability of quantitative PET measurements of myocardial blood flow (MBF) to delineate underlying pathophysiology and assist in clinical decision making in this setting is discussed. Likewise, considered are physiological metrics fractional flow reserve, coronary flow reserve, index of microvascular resistance (FFR, CFR, IMR) obtained from invasive studies performed in the cardiac catheterization laboratory, typically at the time of PCI for MI. The role both of invasive studies and cardiac magnetic resonance (CMR) imaging in assessing microvascular function, a key determinant of prognosis, is reviewed. The interface between quantitative PET MBF measurements and underlying pathophysiology, as demonstrated both by invasive and CMR methodology, is discussed in the context of optimal interpretation of the quantitative PET MBF exam and its potential clinical applications.
Asunto(s)
Circulación Coronaria , Imagen por Resonancia Magnética/métodos , Infarto del Miocardio/fisiopatología , Tomografía de Emisión de Positrones/métodos , Reserva del Flujo Fraccional Miocárdico , Humanos , Resistencia VascularRESUMEN
Among its many cardiovascular benefits, exercise training improves heart function and protects the heart against age-related decline, pathological stress, and injury. Here, we focus on cardiac benefits with an emphasis on more recent updates to our understanding. While the cardiomyocyte continues to play a central role as both a target and effector of exercise's benefits, there is a growing recognition of the important roles of other, noncardiomyocyte lineages and pathways, including some that lie outside the heart itself. We review what is known about mediators of exercise's benefits-both those intrinsic to the heart (at the level of cardiomyocytes, fibroblasts, or vascular cells) and those that are systemic (including metabolism, inflammation, the microbiome, and aging)-highlighting what is known about the molecular mechanisms responsible.
RESUMEN
BACKGROUND: To evaluate, in a cohort study, whether coronary microvasculature and myocardial structure differ between people with and without coronary artery disease (CAD). METHODS AND RESULTS: We performed histological analysis of left ventricle free wall obtained at autopsy from 25 men and 23 women with ≥1 coronary artery with ≥75% area stenosis, and 25 men and 25 women without (no or minimal) CAD, matched for sex and age, who died suddenly from noncardiac causes. Decedents with myocardial infarction or other cardiac abnormality were excluded. Decedents with and without CAD had similar height and weight. Heart weight of decedents with CAD was higher than that of decedents without CAD (mean, 391 versus 364 g; mean difference, 27 g [95% CI, 0.3-54.0], P=0.048). Decedents with CAD had lower arteriole density (mean, 1.4 per mm2 versus 1.8 per mm2; mean difference, -0.4 per mm2 [95% CI, -0.6 to -0.2], P=0.0001), lower capillary length density (mean, 3164 versus 3701 mm/mm3; mean difference, -537 [95% CI, -787 to -286], P<0.0001), and higher total myocardial fibrosis (mean, 7.5% versus 5.7%; mean difference, 1.7% [95% CI, 1.0-2.5], P<0.0001), than decedents without CAD. CONCLUSIONS: CAD was associated with coronary microvascular rarefaction and increased myocardial fibrosis. The association of CAD with coronary microvascular rarefaction and increased myocardial fibrosis may contribute to the increased risks of death, myocardial infarction and heart failure that accompany CAD, and may attenuate the impact of percutaneous coronary intervention on cardiovascular risk in people with stable angina.
RESUMEN
Novel immune and targeted therapies approved over the past 2 decades have resulted in dramatic improvements in cancer-specific outcomes for many cancer patients. However, many of these agents can induce cardiovascular toxicity in a subset of patients. The field of cardio-oncology was established based on observations that anti-neoplastic chemotherapies and mantle radiation can lead to premature cardiomyopathy in cancer survivors. While conventional chemotherapy, targeted therapy, and immune therapies can all result in cardiovascular adverse events, the mechanisms, timing, and incidence of these events are inherently different. Many of these effects converge upon the coronary microvasculature to involve, through endocardial endothelial cells, a more direct effect through close proximity to cardiomyocyte with cellular communication and signaling pathways. In this review, we will provide an overview of emerging paradigms in the field of Cardio-Oncology, particularly the role of the coronary microvasculature in mediating cardiovascular toxicity of important cancer targeted and immune therapies. As the number of cancer patients treated with novel immune and targeted therapies grows exponentially and subsequently the number of long-term cancer survivors dramatically increases, it is critical that cardiologists and cardiology researchers recognize the unique potential cardiovascular toxicities of these agents.
RESUMEN
Dipeptidyl peptidase 4 inhibitors (DPP4i) may be cardioprotective based on several small animal and clinical studies, though randomized control trials have demonstrated limited benefit. Given these discrepant findings, the role of these agents in chronic myocardial disease, particularly in the absence of diabetes, is still poorly understood. The purpose of this study was to determine the effects of sitagliptin, a DPP4i, on myocardial perfusion and microvessel density in a clinically relevant large animal model of chronic myocardial ischemia. Normoglycemic Yorkshire swine underwent ameroid constrictor placement to the left circumflex artery to induce chronic myocardial ischemia. Two weeks later, pigs received either no drug (CON, n = 8) or 100 mg oral sitagliptin (SIT) daily (n = 5). Treatment continued for 5 weeks, followed by hemodynamic measurements, euthanasia, and tissue harvest of ischemic myocardium. There were no significant differences in myocardial function between CON and SIT as measured by stroke work (p > 0.5), cardiac output (p = 0.22), and end-systolic elastance (p = 0.17). SIT was associated with increased absolute blood flow at rest (17% increase, IQR 12-62, p = 0.045) and during pacing (89% increase, IQR 83-105, p = 0.002). SIT was also associated with improved arteriolar density (p = 0.045) compared with CON, without changes in capillary density (p = 0.72). SIT was associated with increased expression of pro-arteriogenic markers MCP-1 (p = 0.003), TGFß (p = 0.03), FGFR1 (p = 0.002), and ICAM-1 (p = 0.03), with a trend toward an increase in the ratio of phosphorylated/active PLCγ1 to total PLCγ1 (p = 0.11) compared with CON. In conclusion, in chronically ischemic myocardium, sitagliptin improves myocardial perfusion and arteriolar collateralization via the activation of pro-arteriogenic signaling pathways.
Asunto(s)
Inhibidores de la Dipeptidil-Peptidasa IV , Isquemia Miocárdica , Porcinos , Animales , Fosfato de Sitagliptina/farmacología , Fosfato de Sitagliptina/uso terapéutico , Proyectos Piloto , Circulación Coronaria/fisiología , Neovascularización Fisiológica , Isquemia Miocárdica/complicaciones , Miocardio/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Perfusión , Modelos Animales de EnfermedadRESUMEN
Background Although the critical role of pericytes in maintaining vascular integrity has been extensively demonstrated in the brain and the retina, little is known about their role in the heart. We aim to investigate structural and functional consequences of partial pericyte depletion (≈60%) in the heart of adult mice. Methods and Results To deplete pericytes in adult mice, we used platelet-derived growth factor receptor ß-Cre/ERT2; RosaDTA mice and compared their phenotype with that of control mice (RosaDTA) chosen among their littermates. Cardiac function was assessed via echocardiography and left ventricular catheterization 1 month after the first tamoxifen injection. We found mice depleted with pericytes had a reduced left ventricular ejection fraction and an increased end-diastolic pressure, demonstrating both systolic and diastolic dysfunction. Consistently, mice depleted with pericytes presented a decreased left ventricular contractility and an increased left ventricular relaxation time (dP/dtmin). At the tissue level, mice depleted of pericytes displayed increased coronary endothelium leakage and activation, which was associated with increased CD45+ cell infiltration. Consistent with systolic dysfunction, pericyte depletion was associated with an increased expression of myosin heavy chain 7 and decreased expression of ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2 and connexin 43. More important, coculture assays demonstrated, for the first time, that the decreased expression of connexin 43 is likely attributable to a direct effect of pericytes on cardiomyocytes. Besides, this study reveals that cardiac pericytes may undergo strong remodeling on injury. Conclusions Cardiac pericyte depletion induces both systolic and diastolic dysfunction, suggesting that pericyte dysfunction may contribute to the occurrence of cardiac diseases.
Asunto(s)
Cardiomiopatías , Conexina 43 , Ratones , Animales , Conexina 43/metabolismo , Volumen Sistólico , Función Ventricular Izquierda , Cardiomiopatías/metabolismo , Corazón , PericitosRESUMEN
Introduction: Sodium-glucose cotransporter-2 inhibitors (SGLT2i) are cardioprotective, and canagliflozin (CANA), an SGLT2i, has been shown to improve perfusion, AMPK signaling, and oxidative stress in chronically ischemic myocardium. The aim of this study is to determine the effects of CANA in nonischemic myocardium on coronary collateralization, oxidative stress, and other molecular pathways determined by proteomic profiling. Methods: Yorkshire swine underwent placement of an ameroid constrictor to the left circumflex artery. Two weeks later, pigs received no drug (CON, n = 8) or 300 mg CANA daily (n = 8). Treatment continued for five weeks, followed by tissue harvest of nonischemic myocardium. Results: CANA was associated with decreased capillary density (p = 0.05) compared to CON, without changes in arteriolar density. Reduced capillary density did not correlate with reduced perfusion. Oxidative stress was reduced with CANA (22 % decrease). In the CANA group, there was a trend towards increased p-eNOS and eNOS, without a change in p-eNOS/eNOS ratio, p-Akt, Akt, and p-Akt/Akt ratio. There was no change in p-ERK1/2, but a decrease in total ERK1/2 and increase in p-ERK1/2/ERK1/2 ratio. There were no changes in expression of p-AMPK, AMPK, with a trend towards increased ratio of p-AMPK/AMPK. Proteomics analysis identified 2819 common proteins, of which 120 were upregulated and 425 were downregulated with CANA. Pathway analysis demonstrated wide regulation of metabolic proteins. Conclusions: The effects of CANA on myocardial perfusion and AMPK signaling in chronically ischemic myocardium are not found in nonischemic territory, despite attenuation of oxidative stress. Metabolic proteins are widely regulated in nonischemic myocardium with CANA.
RESUMEN
We review the current understanding of formation and development of the coronary microvasculature which supplies oxygen and nutrients to the heart myocardium and removes waste. We emphasize the close relationship, mutual development, and communication between microvasculature endothelial cells and surrounding cardiomyocytes. The first part of the review is focused on formation of microvasculature during embryonic development. We summarize knowledge about establishing the heart microvasculature density based on diffusion distance. Then signaling mechanisms which are involved in forming the microvasculature are discussed. This includes details of cardiomyocyte-endothelial cell interactions involving hypoxia, VEGF, NOTCH, angiopoietin, PDGF, and other signaling factors. The microvasculature is understudied due to difficulties in its visualization. Therefore, currently available imaging methods to delineate the coronary microvasculature in development and in adults are discussed. The second part of the review is dedicated to the importance of the coronary vasculature in disease. Coronary microvasculature pathologies are present in many congenital heart diseases (CHD), especially in pulmonary atresia, and worsen outcomes. In CHDs, where the development of the myocardium is impaired, microvasculature is also affected. In adult patients coronary microvascular disease is one of the main causes of sudden cardiac death, especially in women. Coronary microvasculature pathologies affect myocardial ischemia and vice versa; myocardial pathologies such as cardiomyopathies are closely connected with coronary microvasculature dysfunction. Microvasculature inflammation also worsens the outcomes of COVID-19 disease. Our review stresses the importance of coronary microvasculature and provides an overview of its formation and signaling mechanisms and the importance of coronary vasculature pathologies in CHDs and adult diseases. This article is categorized under: Cardiovascular Diseases > Stem Cells and Development Congenital Diseases > Molecular and Cellular Physiology Cardiovascular Diseases > Molecular and Cellular Physiology.
Asunto(s)
Enfermedades Cardiovasculares , Miocardio , Miocitos Cardíacos , Adulto , COVID-19 , Enfermedades Cardiovasculares/metabolismo , Células Endoteliales , Femenino , Humanos , Microvasos/diagnóstico por imagen , Miocardio/metabolismo , Miocitos Cardíacos/metabolismoRESUMEN
Background Hearts procured from circulatory death donors (DCD) are predominantly maintained by machine perfusion (MP) with normothermic donor blood. Currently, DCD heart function is evaluated by lactate and visual inspection. We have shown that MP with the cardioplegic, crystalloid Custodiol-N solution is superior to blood perfusion to maintain porcine DCD hearts. However, no method has been developed yet to predict the contractility of DCD hearts after cardioplegic MP. We hypothesize that the shift of microvascular flow during continuous MP with a cardioplegic preservation solution predicts the contractility of DCD hearts. Methods and Results In a pig model, DCD hearts were harvested and maintained by MP with hypothermic, oxygenated Custodiol-N for 4 hours while myocardial microvascular flow was measured by Laser Doppler Flow (LDF) technology. Subsequently, hearts were perfused with blood for 2 hours, and left ventricular contractility was measured after 30 and 120 minutes. Various novel parameters which represent the LDF shift were computed. We used 2 combined LDF shift parameters to identify bivariate prediction models. Using the new prediction models based on LDF shifts, highest r2 for end-systolic pressure was 0.77 (P=0.027), for maximal slope of pressure increment was 0.73 (P=0.037), and for maximal slope of pressure decrement was 0.75 (P=0.032) after 30 minutes of reperfusion. After 120 minutes of reperfusion, highest r2 for end-systolic pressure was 0.81 (P=0.016), for maximal slope of pressure increment was 0.90 (P=0.004), and for maximal slope of pressure decrement was 0.58 (P=0.115). Identical prediction models were identified for maximal slope of pressure increment and for maximal slope of pressure decrement at both time points. Lactate remained constant and therefore was unsuitable for prediction. Conclusions Contractility of DCD hearts after continuous MP with a cardioplegic preservation solution can be predicted by the shift of LDF during MP.
Asunto(s)
Trasplante de Corazón , Donantes de Tejidos , Animales , Porcinos , Humanos , Ácido LácticoRESUMEN
Endothelial cells (ECs) constitute the innermost layer in all blood vessels to maintain the structural integrity and microcirculation function for coronary microvasculature. Impaired endothelial function is demonstrated in various cardiovascular diseases including myocardial infarction (MI), which is featured by reduced myocardial blood flow as a result of epicardial coronary obstruction, thrombogenesis, and inflammation. In this context, understanding the cellular and molecular mechanisms governing the function of coronary ECs is essential for the early diagnosis and optimal treatment of MI. Although ECs contain relatively fewer mitochondria compared with cardiomyocytes, they function as key sensors of environmental and cellular stress, in the regulation of EC viability, structural integrity and function. Mitochondrial quality control (MQC) machineries respond to a broad array of stress stimuli to regulate fission, fusion, mitophagy and biogenesis in mitochondria. Impaired MQC is a cardinal feature of EC injury and dysfunction. Hence, medications modulating MQC mechanisms are considered as promising novel therapeutic options in MI. Here in this review, we provide updated insights into the key role of MQC mechanisms in coronary ECs and microvascular dysfunction in MI. We also discussed the option of MQC as a novel therapeutic target to delay, reverse or repair coronary microvascular damage in MI. Contemporary available MQC-targeted therapies with potential clinical benefits to alleviate coronary microvascular injury during MI are also summarized.
Asunto(s)
Células Endoteliales/metabolismo , Microvasos/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Infarto del Miocardio/metabolismo , Animales , Humanos , Inflamación/metabolismo , Microvasos/patología , Mitocondrias/genética , Dinámicas Mitocondriales/genética , Mitofagia/genética , Infarto del Miocardio/patología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genéticaRESUMEN
BACKGROUND: Machine perfusion (MP) is a novel method for donor heart preservation. The coronary microvascular function is important for the transplantation outcome. However, current research on MP in heart transplantation focuses mainly on contractile function. OBJECTIVE: We aim to present the application of Laser-Doppler-Flowmetry to investigate coronary microvascular function during MP. Furthermore, we will discuss the importance of microcirculation monitoring for perfusion-associated studies in HTx research. METHODS: Porcine hearts were cardioplegically arrested and harvested (Control group, Nâ=â4). In an ischemia group (Nâ=â5), we induced global ischemia of the animal by the termination of mechanical ventilation before harvesting. All hearts were mounted on an MP system for blood perfusion. After 90 minutes, we evaluated the effect of coronary perfusion pressures from 20 to 100âmmHg while coronary laser-doppler-flow (LDF) was measured. RESULTS: Ischemic hearts showed a significantly decreased relative LDF compared to control hearts (1.07±0.06 vs. 1.47±0.15; pâ=â0.034). In the control group, the coronary flow was significantly lower at 100âmmHg of perfusion pressure than in the ischemia group (895±66âml vs. 1112±32âml; pâ=â0.016). CONCLUSIONS: Laser-Doppler-Flowmetry is able to reveal coronary microvascular dysfunction during machine perfusion of hearts and is therefore of substantial interest for perfusion-associated research in heart transplantation.
Asunto(s)
Trasplante de Corazón , Animales , Humanos , Rayos Láser , Microcirculación , Perfusión , Porcinos , Donantes de TejidosRESUMEN
BACKGROUND: During thermodilution-based assessment of volumetric coronary blood flow, we observed that intracoronary infusion of saline increased coronary flow. This study aims to quantify the extent and unravel the mechanisms of saline-induced hyperemia. METHODS AND RESULTS: Thirty-three patients were studied; in 24 patients, intracoronary Doppler flow velocity measurements were performed at rest, after intracoronary adenosine, and during increasing infusion rates of saline at room temperature through a dedicated catheter with 4 lateral side holes. In 9 patients, global longitudinal strain and flow propagation velocity were assessed by transthoracic echocardiography during a prolonged intracoronary saline infusion. Taking adenosine-induced maximal hyperemia as reference, intracoronary infusion of saline at rates of 5, 10, 15, and 20 mL/min induced 6%, 46%, 111%, and 112% of maximal hyperemia, respectively. There was a close agreement of maximal saline- and adenosine-induced coronary flow reserve (intraclass correlation coefficient, 0.922; P<0.001). The same infusion rates given through 1 end hole (n=6) or in the contralateral artery (n=6) did not induce a significant increase in flow velocity. Intracoronary saline given on top of an intravenous infusion of adenosine did not further increase flow. Intracoronary saline infusion did not affect blood pressure, systolic, or diastolic left ventricular function. Heart rate decreased by 15% during saline infusion (P=0.021). CONCLUSIONS: Intracoronary infusion of saline at room temperature through a dedicated catheter for coronary thermodilution induces steady-state maximal hyperemia at a flow rate ≥15 mL/min. These findings open new possibilities to measure maximal absolute coronary blood flow and minimal microcirculatory resistance.
Asunto(s)
Velocidad del Flujo Sanguíneo/fisiología , Enfermedad de la Arteria Coronaria/fisiopatología , Circulación Coronaria/fisiología , Vasos Coronarios/fisiopatología , Microcirculación/efectos de los fármacos , Cloruro de Sodio/administración & dosificación , Función Ventricular Izquierda/fisiología , Velocidad del Flujo Sanguíneo/efectos de los fármacos , Enfermedad de la Arteria Coronaria/diagnóstico , Circulación Coronaria/efectos de los fármacos , Vasos Coronarios/diagnóstico por imagen , Ecocardiografía Doppler , Femenino , Humanos , Hiperemia/fisiopatología , Inyecciones Intraarteriales , Masculino , Persona de Mediana Edad , Termodilución/métodosRESUMEN
The objective of this study is to test the hypothesis that increased muscle mass has positive effects on cardiovascular function. Specifically, we tested the hypothesis that increases in lean body mass caused by deletion of myostatin improves cardiac performance and vascular function. Echocardiography was used to quantify left ventricular function at baseline and after acute administration of propranolol and isoproterenol to assess ß-adrenergic reactivity. Additionally, resistance vessels in several beds were removed, cannulated, pressurized to 60 mmHg and reactivity to vasoactive stimuli was assessed. Hemodynamics were measured using in vivo radiotelemetry. Myostatin deletion results in increased fractional shortening at baseline. Additionally, arterioles in the coronary and muscular microcirculations are more sensitive to endothelial-dependent dilation while nonmuscular beds or the aorta were unaffected. ß-adrenergic dilation was increased in both coronary and conduit arteries, suggesting a systemic effect of increased muscle mass on vascular function. Overall hemodynamics and physical characteristics (heart weight and size) remained unchanged. Myostatin deletion mimics in part the effects of exercise on cardiovascular function. It significantly increases lean muscle mass and results in muscle-specific increases in endothelium-dependent vasodilation. This suggests that increases in muscle mass may serve as a buffer against pathological states that specifically target cardiac function (heart failure), the ß-adrenergic system (age), and nitric oxide bio-availability (atherosclerosis). Taken together, pharmacological inhibition of the myostatin pathway could prove an excellent mechanism by which the benefits of exercise can be conferred in patients that are unable to exercise.
Asunto(s)
Vasos Coronarios/metabolismo , Corazón/fisiología , Microvasos/metabolismo , Miostatina/genética , Vasodilatación , Agonistas Adrenérgicos beta/farmacología , Antagonistas Adrenérgicos beta/farmacología , Animales , Presión Sanguínea , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/fisiología , Eliminación de Gen , Frecuencia Cardíaca , Isoproterenol/farmacología , Masculino , Ratones , Ratones Endogámicos ICR , Microvasos/efectos de los fármacos , Microvasos/fisiología , Músculo Esquelético/crecimiento & desarrollo , Propranolol/farmacología , Función VentricularRESUMEN
Fractional flow reserve (FFR)-guided percutaneous intervention is superior to standard assessment but remains underused. The authors have developed a novel "pseudotransient" analysis protocol for computing virtual fractional flow reserve (vFFR) based upon angiographic images and steady-state computational fluid dynamics. This protocol generates vFFR results in 189 s (cf >24 h for transient analysis) using a desktop PC, with <1% error relative to that of full-transient computational fluid dynamics analysis. Sensitivity analysis demonstrated that physiological lesion significance was influenced less by coronary or lesion anatomy (33%) and more by microvascular physiology (59%). If coronary microvascular resistance can be estimated, vFFR can be accurately computed in less time than it takes to make invasive measurements.
RESUMEN
BACKGROUND: Myocardial microvascular dysfunction has been implicated in the pathogenesis of myocardial infarction (MI). We tested the hypothesis that patients with MI have lower microvasculature density in myocardium remote from the site of infarction than patients with similar extent of coronary artery disease (CAD) without MI and examined the relationship between myocardial capillary length density and plasma levels of angiogenesis-related biomarkers. METHODS: We analyzed biopsies from non-ischemic left ventricular (LV) myocardium and measured plasma levels of angiogenesis-related biomarkers in patients undergoing coronary artery bypass graft surgery, 57 without previous MI (no-MI) and 27 with recent non-ST-segment-elevation MI (NSTEMI). Comparison was made with biopsies from 31 aortic stenosis (AS) patients and 6 patients with "normal" LV without CAD. RESULTS: Myocardial microvascular density of NSTEMI patients was approximately half the density of no-MI patients, and similar to AS patients. Whereas the reduced microvascular density of AS patients was accounted for by their cardiomyocyte hypertrophy, this was not the case for NSTEMI patients, who had higher diffusion radius/cardiomyocyte width ratio than no-MI, "normal" LV, and AS patients. NSTEMI patients had lower plasma levels of carboxymethyl lysine and low molecular weight fluorophores, higher vascular endothelial growth factor (VEGF) receptor-1/VEGF-A ratio, and higher endostatin and hepatocyte growth factor levels than no-MI patients. CONCLUSIONS: Recent MI was associated with reduced microvasculature density in myocardium remote from the site of infarction and alteration in plasma levels of angiogenesis-related biomarkers.