Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 621
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Trends Biochem Sci ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39271417

RESUMEN

Small heat shock proteins (sHsps) are an important part of the cellular system maintaining protein homeostasis under physiological and stress conditions. As molecular chaperones, they form complexes with different non-native proteins in an ATP-independent manner. Many sHsps populate ensembles of energetically similar but different-sized oligomers. Regulation of chaperone activity occurs by changing the equilibrium of these ensembles. This makes sHsps a versatile and adaptive system for trapping non-native proteins in complexes, allowing recycling with the help of ATP-dependent chaperones. In this review, we discuss progress in our understanding of the structural principles of sHsp oligomers and their functional principles, as well as their roles in aging and eye lens transparency.

2.
Proc Natl Acad Sci U S A ; 119(48): e2212051119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36417439

RESUMEN

Crystallins comprise the protein-rich tissue of the eye lens. Of the three most common vertebrate subtypes, ß-crystallins exhibit the widest degree of polydispersity due to their complex multimerization properties in situ. While polydispersity enables precise packing densities across the concentration gradient of the lens for vision, it is unclear why there is such a high degree of structural complexity within the ß-crystallin subtype and what the role of this feature is in the lens. To investigate this, we first characterized ß-crystallin polydispersity and then established a method to dynamically disrupt it in a process that is dependent on isoform composition and the presence of divalent cationic salts (CaCl2 or MgCl2). We used size-exclusion chromatography together with dynamic light scattering and mass spectrometry to show how high concentrations of divalent cations dissociate ß-crystallin oligomers, reduce polydispersity, and shift the overall protein surface charge-properties that can be reversed when salts are removed. While the direct, physiological relevance of these divalent cations in the lens is still under investigation, our results support that specific isoforms of ß-crystallin modulate polydispersity through multiple chemical equilibria and that this native state is disrupted by cation binding. This dynamic process may be essential to facilitating the molecular packing and optical function of the lens.


Asunto(s)
Cristalino , beta-Cristalinas , Cationes Bivalentes , Calcio , Sales (Química) , Calcio de la Dieta
3.
J Biol Chem ; 299(8): 104953, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37356717

RESUMEN

Crystallin proteins are a class of main structural proteins of the vertebrate eye lens, and their solubility and stability directly determine transparency and refractive power of the lens. Mutation in genes that encode these crystallin proteins is the most common cause for congenital cataracts. Despite extensive studies, the pathogenic and molecular mechanisms that effect congenital cataracts remain unclear. In this study, we identified a novel mutation in CRYBB1 from a congenital cataract family, and demonstrated that this mutation led to an early termination of mRNA translation, resulting in a 49-residue C-terminally truncated CRYßB1 protein. We show this mutant is susceptible to proteolysis, which allowed us to determine a 1.2-Å resolution crystal structure of CRYßB1 without the entire C-terminal domain. In this crystal lattice, we observed that two N-terminal domain monomers form a dimer that structurally resembles the WT monomer, but with different surface characteristics. Biochemical analyses and cell-based data also suggested that this mutant is significantly more liable to aggregate and degrade compared to WT CRYßB1. Taken together, our results provide an insight into the mechanism regarding how a mutant crystalin contributes to the development of congenital cataract possibly through alteration of inter-protein interactions that result in protein aggregation.


Asunto(s)
Catarata , Cristalinas , Cristalino , Humanos , Catarata/metabolismo , Cristalinas/genética , Cristalino/metabolismo , Mutación , Agregado de Proteínas
4.
J Biol Chem ; 299(8): 104935, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37331601

RESUMEN

Connexin mutant mice develop cataracts containing calcium precipitates. To test whether pathologic mineralization is a general mechanism contributing to the disease, we characterized the lenses from a nonconnexin mutant mouse cataract model. By cosegregation of the phenotype with a satellite marker and genomic sequencing, we identified the mutant as a 5-bp duplication in the γC-crystallin gene (Crygcdup). Homozygous mice developed severe cataracts early, and heterozygous animals developed small cataracts later in life. Immunoblotting studies showed that the mutant lenses contained decreased levels of crystallins, connexin46, and connexin50 but increased levels of resident proteins of the nucleus, endoplasmic reticulum, and mitochondria. The reductions in fiber cell connexins were associated with a scarcity of gap junction punctae as detected by immunofluorescence and significant reductions in gap junction-mediated coupling between fiber cells in Crygcdup lenses. Particles that stained with the calcium deposit dye, Alizarin red, were abundant in the insoluble fraction from homozygous lenses but nearly absent in wild-type and heterozygous lens preparations. Whole-mount homozygous lenses were stained with Alizarin red in the cataract region. Mineralized material with a regional distribution similar to the cataract was detected in homozygous lenses (but not wild-type lenses) by micro-computed tomography. Attenuated total internal reflection Fourier-transform infrared microspectroscopy identified the mineral as apatite. These results are consistent with previous findings that loss of lens fiber cell gap junctional coupling leads to the formation of calcium precipitates. They also support the hypothesis that pathologic mineralization contributes to the formation of cataracts of different etiologies.


Asunto(s)
Catarata , Cristalinas , Minerales , Animales , Ratones , Calcio/metabolismo , Catarata/genética , Catarata/fisiopatología , Conexinas/genética , Conexinas/metabolismo , Cristalinas/genética , Cristalinas/metabolismo , Cristalino/patología , Minerales/metabolismo , Microtomografía por Rayos X , Modelos Animales de Enfermedad
5.
Biochem Biophys Res Commun ; 690: 149096, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37988924

RESUMEN

Electron-driven process helps the living organism in the generations of energy, biomass production and detoxification of synthetic compounds. Soluble quinone oxidoreductases (QORs) mediate the transfer of an electron from NADPH to various quinone and other compounds, helping in the detoxification of quinones. QORs play a crucial role in cellular metabolism and are thus potential targets for drug development. Here we report the crystal structure of the NADPH-dependent QOR from Leishmania donovani (LdQOR) at 2.05 Å. The enzyme exists as a homo-dimer, with each protomer consisting of two domains, responsible for binding NADPH cofactor and the substrate. Interestingly, the human QOR exists as a tetramer. Comparative analysis of the oligomeric interfaces of LdQOR with HsQOR shows no significant differences in the protomer/dimer assembly. The tetrameric interface of HsQOR is stabilized by salt bridges formed between Arg 169 and Glu 271 which is non-existent in LdQOR, with an Alanine replacing the glutamate. This distinct feature is conserved across other dimeric QORs, indicating the importance of this interaction for tetramer association. Among the homologs, the sequences of the loop region involved in the stabilization and binding of the adenine ring of the NADPH shows significant differences except for an Arginine & glycine residues. In dimer QORs, this Arginine acts as a gate to the co-factor, while the NADPH binding mode in the human homolog is distinct, stabilized by His 200 and Asn 229, which are not conserved in LdQOR. These distinct features have the potential to be utilized for therapeutic interventions.


Asunto(s)
NAD(P)H Deshidrogenasa (Quinona) , Quinona Reductasas , Humanos , NADP/metabolismo , Subunidades de Proteína , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Quinona Reductasas/química , Quinona Reductasas/metabolismo , Quinonas , Arginina , Sitios de Unión , Cristalografía por Rayos X
6.
Biochem Biophys Res Commun ; 739: 150585, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39186870

RESUMEN

Congenital cataract is one of the most common causes of childhood blindness, typically resulting from genetic mutations. Over a hundred gene mutations associated with congenital cataract have been identified, with approximately half occurring in the Crystallin genes. In this study, we identified a novel γA-crystallin pathogenic mutation (c. 29G > C, p. Arg10Pro (R10P)), from a four-generation Chinese family with congenital cataract, and investigated its potential molecular mechanisms underlying congenital cataracts. We compared the protein structure and stability of purified the wild type (WT) and R10P under physiological conditions and environmental stresses (UV irradiation, pH imbalance, heat shock, and chemical denaturation) using spectroscopic experiments, SEC analysis, and the UNcle protein analysis system. The results demonstrate that γA-R10P has no significant impact on the structure of γA-crystallin on normal condition. However, it is more sensitive to UV irradiation at high concentrations and prone to aggregation at high temperatures. Therefore, our study reveals the crucial role of the conserved site mutation R10P in maintaining protein structure and stability, providing new insights into the mechanisms of cataract formation.

7.
Clin Genet ; 106(4): 403-412, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38840272

RESUMEN

The current genetic diagnostic workup of congenital cataract (CC) is mainly based on NGS panels, whereas exome sequencing (ES) has occasionally been employed. In this multicentre study, we investigated by ES the detection yield, mutational spectrum and genotype-phenotype correlations in a CC cohort recruited between 2020 and mid-2022. The cohort consisted of 67 affected individuals from 51 unrelated families and included both non-syndromic (75%) and syndromic (25%) phenotypes, with extra-CC ocular/visual features present in both groups (48% and 76%, respectively). The functional effect of variants was predicted by 3D modelling and hydropathy properties changes. Variant clustering was used for the in-depth assessment of genotype-phenotype correlations. A diagnostic (pathogenic or likely pathogenic) variant was identified in 19 out of 51 probands/families (~37%). In a further 14 probands/families a candidate variant was identified: in 12 families a VUS was detected, of which 9 were considered plausibly pathogenic (i.e., 4 or 5 points according to ACMG criteria), while in 2 probands ES identified a single variant in an autosomal recessive gene associated with CC. Eighteen probands/families, manifesting primarily non-syndromic CC (15/18, 83%), remained unsolved. The identified variants (8 P, 12 LP, 10 VUS-PP, and 5 VUS), half of which were unreported in the literature, affected five functional categories of genes involved in transcription/splicing, lens formation/homeostasis (i.e., crystallin genes), membrane signalling, cell-cell interaction, and immune response. A phenotype-specific variant clustering was observed in four genes (KIF1A, MAF, PAX6, SPTAN1), whereas variable expressivity and potential phenotypic expansion in two (BCOR, NHS) and five genes (CWC27, KIF1A, IFIH1, PAX6, SPTAN1), respectively. Finally, ES allowed to detect variants in six genes not commonly included in commercial CC panels. These findings broaden the genotype-phenotype correlations in one of the largest CC cohorts tested by ES, providing novel insights into the underlying pathogenetic mechanisms and emphasising the power of ES as first-tier test.


Asunto(s)
Catarata , Secuenciación del Exoma , Estudios de Asociación Genética , Mutación , Fenotipo , Humanos , Catarata/genética , Catarata/congénito , Catarata/patología , Italia , Femenino , Masculino , Estudios de Asociación Genética/métodos , Estudios de Cohortes , Linaje , Niño , Predisposición Genética a la Enfermedad , Preescolar , Lactante
8.
Electrophoresis ; 45(17-18): 1618-1629, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38700120

RESUMEN

Post-translational modifications (PTMs), such as phosphorylation and O-N-acetyl-ß-d-glucosaminylation (O-GlcNAcylation), are involved in the fine spatiotemporal regulation of protein functions, and their dynamic interplay is at the heart of protein language. The coexistence of phosphorylation and O-GlcNAcylation on a protein leads to the diversification of proteoforms. It is therefore essential to decipher the phosphorylation/O-GlcNAcylation interplay on protein species that orchestrates cellular processes in a specific physiological or pathophysiological context. However, simultaneous visualization of phosphorylation and O-GlcNAcylation patterns on a protein of interest remains a challenge. To map the proteoforms of a protein, we have developed an easy-to-use two-dimensional electrophoresis method with a single sample processing permitting simultaneous visualization of the phosphorylated and the O-GlcNAcylated forms of the protein of interest. This method, we termed 2D-WGA-Phos-tag-PAGE relies on proteoforms retardation by affinity gel electrophoresis. With this novel approach, we established the cartography of phospho- and glycoforms of αB-crystallin and desmin in the whole extract and the cytoskeleton protein subfraction in skeletal muscle cells. Interestingly, we have shown that the pattern of phosphorylation and O-GlcNAcylation depends of the subcellular subfraction. Moreover, we have also shown that proteotoxic stress condition increased the complexity of the pattern of PTMs on αB-crystallin.


Asunto(s)
Electroforesis en Gel Bidimensional , Procesamiento Proteico-Postraduccional , Fosforilación , Electroforesis en Gel Bidimensional/métodos , Animales , Desmina/metabolismo , Desmina/química , Desmina/análisis , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Acetilglucosamina/análisis , Humanos , Glicosilación
9.
Exp Eye Res ; 245: 109984, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945517

RESUMEN

Aging changes the responsiveness of our immune defense, and this decline in immune reactivity plays an important role in the increased susceptibility to infections that marks progressing age. Aging is also the most pronounced risk factor for development of age-related macular degeneration (AMD), a disease that is characterized by dysfunctional retinal pigment epithelial (RPE) cells and loss of central vision. We have previously shown that acute systemic viral infection has a large impact on the retina in young mice, leading to upregulation of chemokines in the RPE/choroid (RPE/c) and influx of CD8 T cells in the neuroretina. In this study, we sought to investigate the impact of systemic infection on the RPE/c in aged mice to evaluate whether infection in old age could play a role in the pathogenesis of AMD. We found that systemic infection in mice led to upregulation of genes from the crystallin family in the RPE/c from aged mice, but not in the RPE/c from young mice. Crystallin alpha A (CRYAA) was the most upregulated gene, and increased amounts of CRYAA protein were also detected in the aged RPE/c. Increased CRYAA gene and protein expression has previously been found in drusen and choroid from AMD patients, and this protein has also been linked to neovascularization. Since both drusen and neovascularization are important hallmarks of advanced AMD, it is interesting to speculate if upregulation of crystallins in response to infection in old age could be relevant for the pathogenesis of AMD.


Asunto(s)
Envejecimiento , Coroides , Degeneración Macular , Ratones Endogámicos C57BL , Epitelio Pigmentado de la Retina , Regulación hacia Arriba , Animales , Ratones , Coroides/metabolismo , Coroides/patología , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Degeneración Macular/metabolismo , Degeneración Macular/genética , Modelos Animales de Enfermedad , Western Blotting , Infecciones Virales del Ojo/metabolismo , Infecciones Virales del Ojo/virología , Reacción en Cadena en Tiempo Real de la Polimerasa
10.
Exp Eye Res ; 248: 110115, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39368693

RESUMEN

Stable isotope labeled standards of all major human lens crystallins were created to measure the abundance of lens endogenous crystallins from birth to adulthood. All major human crystallins (αA, αB, ßA2, ßA3/A1, ßA4, ßB1, ßB2, ßB3, γA, γB, γC, γD, γS) were cloned with N-terminal 6 x His tagged SUMO for ease of purification and the ability to generate natural N-termini by SUMO protease cleavage when producing crystallins for structure/function studies. They were then expressed in 15N-enriched media, quantified by mass spectrometry, and mixed in proportions found in young human lens to act as an artificial lens standard. The absolute quantification method was tested using soluble protein from 5-day, 23-day, 18-month, and 18-year-old human lenses spiked with the 15N artificial lens standard. Proteins were trypsinized, relative ratios of light and heavy labeled peptides determined using high-resolution precursor and data independent MS2 scans, and data analysis performed using Skyline software. Crystallin abundances were measured in both human donor lenses and in transgenic mouse αA N101D cataract lenses. Technical replicates of human crystallin abundance measurements were performed with average coefficients of variation of approximately 2% across all 13 crystallins. αA crystallin comprised 27% of the soluble protein of 5-day-old lens and decreased to 16% by 18-years of age. Over this time period αB increased from 6% to 9% and the αA/αB ratio decreased from 4.5/1 to 2/1. γS-crystallin also increased nearly 2-fold from 7% to 12%, becoming the 3rd most abundant protein in adult lens, while ßB1 increased from 14% to 20%, becoming the most abundant crystallin of adult lens. Minor crystallins ßA2, ßB3, and γA comprised only about 1% each of the newborn lens soluble protein, and their abundance dropped precipitously by adulthood. While 9 of the SUMO tagged crystallins were useful for purification of crystallins for structural studies, γA, γB, γC, and γD were resistant to cleavage by SUMO protease. The abundance of WT and N101D human αA in transgenic mouse lenses was approximately 40-fold lower than endogenous mouse αA, but the deamidation mimic human αA N101D was less soluble than human WT αA. The high content of αA and the transient abundance of ßA2, ßB3, and γA in young lens suggest these crystallins play a role in early lens development and growth. ßB1 becoming the most abundant crystallin may result from its role in promoting higher order ß-crystallin oligomerization in mature lens. The full set of human crystallin expression vectors in the Addgene repository should be a useful resource for future crystallin studies. 15N labeling of these crystallins will be useful to accurately quantify crystallins in lens anatomic regions, as well as measure the composition of insoluble light scattering crystallin aggregates. The standards will also be useful to measure the abundance of crystallins expressed in transgenic animal models.

11.
Exp Eye Res ; 244: 109918, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38705506

RESUMEN

The vertebrate eye lens is an unusual organ in that most of its cells lack nuclei and the ability to replace aging protein. The small heat shock protein α-crystallins evolved to become key components of this lens, possibly because of their ability to prevent aggregation of aging protein that would otherwise lead to lens opacity. Most vertebrates express two α-crystallins, αA- and αB-crystallin, and mutations in each are linked to human cataract. In a mouse knockout model only the loss of αA-crystallin led to early-stage lens cataract. We have used the zebrafish as a model system to investigate the role of α-crystallins during lens development. Interestingly, while zebrafish express one lens-specific αA-crystallin gene (cryaa), they express two αB-crystallin genes, with one evolving lens specificity (cryaba) and the other retaining the broad expression of its mammalian ortholog (cryabb). In this study we used individual mutant zebrafish lines for all three α-crystallin genes to determine the impact of their loss on age-related cataract. Surprisingly, unlike mouse knockout models, we found that the loss of the αBa-crystallin gene cryaba led to an increase in lens opacity compared to cryaa null fish at 24 months of age. Loss of αA-crystallin did not increase the prevalence of cataract. We also used single cell RNA-Seq and RT-qPCR data to show a shift in the lens expression of zebrafish α-crystallins between 5 and 10 days post fertilization (dpf), with 5 and 6 dpf lenses expressing cryaa almost exclusively, and expression of cryaba and cryabb becoming more prominent after 10 dpf. These data show that cryaa is the primary α-crystallin during early lens development, while the protective role for cryaba becomes more important during lens aging. This study is the first to quantify cataract prevalence in wild-type aging zebrafish, showing that lens opacities develop in approximately 25% of fish by 18 months of age. None of the three α-crystallin mutants showed a compensatory increase in the expression of the remaining two crystallins, or in the abundant ßB1-crystallin. Overall, these findings indicate an ontogenetic shift in the functional importance of individual α-crystallins during zebrafish lens development. Our finding that the lens-specific zebrafish αBa-crystallin plays the leading role in preventing age-related cataract adds a new twist to our understanding of vertebrate lens evolution.


Asunto(s)
Envejecimiento , Catarata , Cristalino , Pez Cebra , Cadena A de alfa-Cristalina , Animales , Catarata/metabolismo , Catarata/genética , Catarata/patología , Cristalino/metabolismo , Cadena A de alfa-Cristalina/genética , Cadena A de alfa-Cristalina/metabolismo , Modelos Animales de Enfermedad , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
12.
BMC Neurol ; 24(1): 237, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971757

RESUMEN

PURPOSE: Glioma-associated epilepsy affects a significant proportion of glioma patients, contributing to disease progression and diminished survival rates. However, the lack of a reliable preoperative seizure predictor hampers effective surgical planning. This study investigates the potential of Alpha B crystallin protein (CRYAB) plasma levels as a predictive biomarker for epilepsy seizures in glioma patients. METHODS: Plasma samples were obtained from 75 participants, including 21 glioma patients with pre-operative epilepsy, 14 glioma patients without pre-operative epilepsy, and 21 age- and sex-matched control subjects. Additionally, 11 idiopathic epilepsy patients and 8 intractable epilepsy patients served as positive disease control groups. The study utilized ELISA to accurately quantify the circulating levels of CRYAB in the plasma samples of all participants. RESULTS: The analysis revealed a significant reduction in plasma CRYAB levels in glioma patients with pre-operative epilepsy and idiopathic epilepsy. The receiver operating characteristic (ROC) curve analysis displayed an impressive performance, indicating an AUC of 0.863 (95% CI, 0.810-0.916) across the entire patient cohort. Furthermore, plasma CRYAB levels exhibited a robust diagnostic capability, with an AUC of 0.9135, a sensitivity of 100.0%, and a specificity of 73.68%, effectively distinguishing glioma patients with preoperative epilepsy from those without epilepsy. The Decision Curve Analysis (DCA) underscored the clinical relevance of plasma CRYAB levels in predicting pre-operative epilepsy in glioma. CONCLUSION: The findings imply that the reduced levels of CRYAB may assist in prediction of seizure occurrence in glioma patients, although future large-scale prospective studies are warranted.


Asunto(s)
Neoplasias Encefálicas , Glioma , Convulsiones , Cadena B de alfa-Cristalina , Humanos , Masculino , Femenino , Glioma/cirugía , Glioma/sangre , Glioma/complicaciones , Adulto , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/sangre , Neoplasias Encefálicas/complicaciones , Persona de Mediana Edad , Convulsiones/sangre , Convulsiones/diagnóstico , Convulsiones/etiología , Cadena B de alfa-Cristalina/sangre , Biomarcadores/sangre , Adulto Joven , Biomarcadores de Tumor/sangre
13.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474073

RESUMEN

Alpha-B-crystallin, a member of the small heat shock family of proteins, has been implicated in a variety of cardiomyopathies and in normal cardiac homeostasis. It is known to function as a molecular chaperone, particularly for desmin, but also interacts with a wide variety of additional proteins. The molecular chaperone function is also enhanced by signal-dependent phosphorylation at specific residues under stress conditions. Naturally occurring mutations in CRYAB, the gene that encodes alpha-B-crystallin, have been suggested to alter ionic intermolecular interactions that affect dimerization and chaperone function. These mutations have been associated with myofibrillar myopathy, restrictive cardiomyopathy, and hypertrophic cardiomyopathy and promote pathological hypertrophy through different mechanisms such as desmin aggregation, increased reductive stress, or activation of calcineurin-NFAT signaling. This review will discuss the known mechanisms by which alpha-B-crystallin functions in cardiac homeostasis and the pathogenesis of cardiomyopathies and provide insight into potential future areas of exploration.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Restrictiva , Humanos , Desmina/genética , Cardiomiopatías/patología , Mutación , Cardiomiopatía Restrictiva/complicaciones , Chaperonas Moleculares/genética
14.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38339200

RESUMEN

α-Crystallin (αABc) is a major protein comprised of αA-crystallin (αAc) and αB-crystallin (αBc) that is found in the human eye lens and works as a molecular chaperone by preventing the aggregation of proteins and providing tolerance to stress. However, with age and cataract formation, the concentration of αABc in the eye lens cytoplasm decreases, with a corresponding increase in the membrane-bound αABc. This study uses the electron paramagnetic resonance (EPR) spin-labeling method to investigate the role of cholesterol (Chol) and Chol bilayer domains (CBDs) in the binding of αAc, αBc, and αABc to the Chol/model of human lens-lipid (Chol/MHLL) membranes. The maximum percentage of membrane surface occupied (MMSO) by αAc, αBc, and αABc to Chol/MHLL membranes at a mixing ratio of 0 followed the trends: MMSO (αAc) > MMSO (αBc) ≈ MMSO (αABc), indicating that a higher amount of αAc binds to these membranes compared to αBc and αABc. However, with an increase in the Chol concentration in the Chol/MHLL membranes, the MMSO by αAc, αBc, and αABc decreases until it is completely diminished at a mixing ratio of 1.5. The Ka of αAc, αBc, and αABc to Chol/MHLL membranes at a mixing ratio of 0 followed the trend: Ka (αBc) ≈ Ka (αABc) > Ka (αAc), but it was close to zero with the diminished binding at a Chol/MHLL mixing ratio of 1.5. The mobility near the membrane headgroup regions decreased with αAc, αBc, and αABc binding, and the Chol antagonized the capacity of the αAc, αBc, and αABc to decrease mobility near the headgroup regions. No significant change in membrane order near the headgroup regions was observed, with an increase in αAc, αBc, and αABc concentrations. Our results show that αAc, αBc, and αABc bind differently with Chol/MHLL membranes at mixing ratios of 0 and 0.5, decreasing the mobility and increasing hydrophobicity near the membrane headgroup region, likely forming the hydrophobic barrier for the passage of polar and ionic molecules, including antioxidants (glutathione), creating an oxidative environment inside the lens, leading to the development of cataracts. However, all binding was completely diminished at a mixing ratio of 1.5, indicating that high Chol and CBDs inhibit the binding of αAc, αBc, and αABc to membranes, preventing the formation of hydrophobic barriers and likely protecting against cataract formation.


Asunto(s)
Catarata , Cristalinas , Cristalino , alfa-Cristalinas , Humanos , Cristalino/metabolismo , Catarata/metabolismo , Cristalinas/metabolismo , Colesterol/metabolismo , Lípidos
15.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38339214

RESUMEN

Eye lens α-crystallin has been shown to become increasingly membrane-bound with age and cataract formation; however, to our knowledge, no studies have investigated the membrane interactions of α-crystallin throughout the development of cataracts in separated cortical membrane (CM) and nuclear membrane (NM) from single human lenses. In this study, four pairs of human lenses from age-matched male and female donors and one pair of male lenses ranging in age from 64 to 73 years old (yo) were obtained to investigate the interactions of α-crystallin with the NM and CM throughout the progression of cortical cataract (CC) and nuclear cataract (NC) using the electron paramagnetic resonance spin-labeling method. Donor health history information (diabetes, smoker, hypertension, radiation treatment), sex, and race were included in the data analysis. The right eye lenses CM and NM investigated were 64 yo male (CC: 0), 68 yo male (CC: 3, NC: 2), 73 yo male (CC: 1, NC: 2), 68 yo female (CC: 3, NC: 2), and 73 yo female (CC: 1, NC: 3). Similarly, left eye lenses CM and NM investigated were 64 yo male (CC: 0), 68 yo male (CC: 3, NC: 2), 73 yo male (CC: 2, NC: 3), 68 yo female (CC: 3, NC: 2), and 73 yo female (CC: 1, NC: 3). Analysis of α-crystallin binding to male and female eye lens CM and NM revealed that the percentage of membrane surface occupied (MSO) by α-crystallin increases with increasing grade of CC and NC. The binding of α-crystallin resulted in decreased mobility, increased order, and increased hydrophobicity on the membrane surface in male and female eye lens CM and NM. CM mobility decreased with an increase in cataracts for both males and females, whereas the male lens NM mobility showed no significant change, while female lens NM showed increased mobility with an increase in cataract grade. Our data shows that a 68 yo female donor (long-term smoker, pre-diabetic, and hypertension; grade 3 CC) showed the largest MSO by α-crystallin in CM from both the left and right lens and had the most pronounced mobility changes relative to all other analyzed samples. The variation in cholesterol (Chol) content, size and amount of cholesterol bilayer domains (CBDs), and lipid composition in the CM and NM with age and cataract might result in a variation of membrane surface mobility, membrane surface hydrophobicity, and the interactions of α-crystallin at the surface of each CM and NM. These findings provide insight into the effect of decreased Chol content and the reduced size and amount of CBDs in the cataractous CM and NM with an increased binding of α-crystallin with increased CC and NC grade, which suggests that Chol and CBDs might be a key component in maintaining lens transparency.


Asunto(s)
Catarata , Hipertensión , Cristalino , alfa-Cristalinas , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Membrana Nuclear/metabolismo , Cristalino/metabolismo , Catarata/patología , Colesterol/metabolismo , Hipertensión/metabolismo
16.
Curr Issues Mol Biol ; 45(6): 5145-5163, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37367076

RESUMEN

Hereditary cataracts are characterized by significant clinical and genetic heterogeneity, which can pose challenges for early DNA diagnosis. To comprehensively address this problem, it is essential to investigate the epidemiology of the disease, perform population studies to determine the spectrum and frequencies of mutations in the responsible genes, and examine clinical and genetic correlations. Based on modern concepts, non-syndromic hereditary cataracts are predominantly caused by genetic disease forms associated with mutations in crystallin and connexin genes. Therefore, a comprehensive approach to studying hereditary cataracts is necessary for early diagnosis and improved treatment outcomes. The crystallin (CRYAA, CRYAB, CRYGC, CRYGD, and CRYBA1) and connexin (GJA8, GJA3) genes were analyzed in 45 unrelated families from the Volga-Ural Region (VUR) with hereditary congenital cataracts. Pathogenic and probably pathogenic nucleotide variants were identified in ten unrelated families, nine of which had cataracts in an autosomal dominant pattern of inheritance. Two previously undescribed likely pathogenic missense variants were identified in the CRYAA gene: c.253C > T (p.L85F) in one family and c.291C > G (p.H97Q) in two families. The known mutation c.272_274delGAG (p.G91del) was found in the CRYBA1 gene in one family, while no pathogenic variants were found in the CRYAB, CRYGC, or CRYGD genes in the examined patients. In the GJA8 gene, the known mutation c.68G > C (p.R23T) was found in two families, and previously undescribed variants were identified in two other families: a c.133_142del deletion (p.W45Sfs*72) and a missense variant, c.179G > A (p.G60D). In one patient with a recessive form of cataract, two compound-heterozygous variants were identified-a previously undescribed likely pathogenic missense variant, c.143A > G (p.E48G), and a known variant with uncertain pathogenetic significance, c.741T > G (p.I24M). Additionally, a previously undescribed deletion, c.del1126_1139 (p.D376Qfs*69), was identified in the GJA3 gene in one family. In all families where mutations were identified, cataracts were diagnosed either immediately after birth or during the first year of life. The clinical presentation of the cataracts varied depending on the type of lens opacity, resulting in various clinical forms. This information emphasizes the importance of early diagnosis and genetic testing for hereditary congenital cataracts to guide appropriate management and improve outcomes.

17.
Clin Exp Immunol ; 214(1): 1-17, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37410892

RESUMEN

Multiple sclerosis (MS) is characterized by the chronic inflammatory destruction of myelinated axons in the central nervous system. Several ideas have been put forward to clarify the roles of the peripheral immune system and neurodegenerative events in such destruction. Yet, none of the resulting models appears to be consistent with all the experimental evidence. They also do not answer the question of why MS is exclusively seen in humans, how Epstein-Barr virus contributes to its development but does not immediately trigger it, and why optic neuritis is such a frequent early manifestation in MS. Here we describe a scenario for the development of MS that unifies existing experimental evidence as well as answers the above questions. We propose that all manifestations of MS are caused by a series of unfortunate events that usually unfold over a longer period of time after a primary EBV infection and involve periodic weakening of the blood-brain barrier, antibody-mediated CNS disturbances, accumulation of the oligodendrocyte stress protein αB-crystallin and self-sustaining inflammatory damage.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Esclerosis Múltiple , Humanos , Infecciones por Virus de Epstein-Barr/complicaciones , Herpesvirus Humano 4 , Sistema Nervioso Central , Barrera Hematoencefálica/patología
18.
Exp Eye Res ; 235: 109629, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37625574

RESUMEN

Chrysanthemum tea is commonly consumed by Chinese consumers mainly due to the Chrysanthemum flower being a potential source of antioxidants. The current study investigates the effects of extraction time and temperature on Chrysanthemum flower aqueous extract (CFAE) antioxidant capacity, including Trolox equivalent antioxidant capacity (TEAC), ferrous iron-chelating activity, and superoxide radical scavenging capacity (SRSC) using a two-factor, three-level factorial design of the response surface method (RSM). The TEAC and SRSC of CFAE are higher at higher temperatures and longer times up to a certain point, and the highest TEAC and SRSC are achieved at a 100 °C extraction temperature for 45 min. The fructose induced-αA-crystallin (Cry) glycation model system was used to evaluate the effects of the CFAE on anti-glycoxidation activities. The antioxidant ingredients obtained from CFAE significantly impede the production of advanced glycation end products from protein glycoxidation products (dityrosine, kynurenine, and N'-methylkynurenine) in the glycation process of αA-Cry and exhibit strong anti-glycating activity. The glycation inhibitory effects of CFAE are concentration-dependent. C. indicum L. exhibits greater potential for preventing cataracts compared to C. morifolium Ramat CFAE's antioxidant and anti-glycation properties suggest its potential application as a natural ingredient in the development of agents to combat glycation.


Asunto(s)
Chrysanthemum , Cristalinas , Humanos , Antioxidantes/farmacología , Extractos Vegetales/farmacología , Flores
19.
J Fluoresc ; 33(4): 1347-1358, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36648626

RESUMEN

The aggregation of lens proteins induced by glycation is one of the key drivers of diabetic retinopathy and development of diabetic cataracts. Moreover, glycation also causes numerous alterations not only to the tertiary structure of lens proteins but also to serum proteins. There are also evidences of covalent crosslinking among lens crystallins resulting in development of cataract. In this article, the inhibitory potential of butein was tested against the glucose induced glycation and the aggregation α-crystallin (α-cry). The results showed that there was inhibition of advanced glycation products (78.28%) and early glycation products (86.30%) following the treatment of butein. Additionally, the presence of butein caused a significant improvement in the tested biochemical markers of glycation. The treatment with butein reduced the free lysine modification to 23.67%. The secondary and tertiary structural distortions of α-cry were also protected. The mechanism of inhibition further investigated at the molecular level using biophysical and computational techniques. The interaction data showed the butein exhibited strong affinity towards the α-cry. The binding event was entropically driven and energetically favourable. The Gibb's free energy of the interaction was found to be -5.99 to -7.17 kcal mol-1. The binding site of butein in α-cry was deciphered by molecular docking and the dynamics was studied using molecular dynamics (MD) simulations. The simulation data showed that butein formed stable complex with α-cry under physiological conditions. Most of the tested parameters from molecular simulations, such as secondary structure, was found to be stable. The data clearly show the potential of butein in inhibiting the glycation induced aggregation of α-cry and hence can be developed as useful inhibitor in the management of diabetic cataract and retinopathy.


Asunto(s)
Catarata , Cristalinas , Diabetes Mellitus , Enfermedades de la Retina , alfa-Cristalinas , Humanos , alfa-Cristalinas/química , alfa-Cristalinas/metabolismo , Reacción de Maillard , Simulación del Acoplamiento Molecular , Glicosilación , Cristalinas/química , Cristalinas/metabolismo , Catarata/etiología , Catarata/metabolismo , Catarata/prevención & control , Enfermedades de la Retina/complicaciones , Productos Finales de Glicación Avanzada/metabolismo
20.
Biochemistry (Mosc) ; 88(2): 179-188, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37072329

RESUMEN

Age-related macular degeneration (AMD) is a complex neurodegenerative disease and a major cause of irreversible visual impairment in patients in developed countries. Although age is the greatest risk factor in AMD, molecular mechanisms involved in AMD remain unknown. Growing evidence shows that dysregulation of MAPK signaling contributes to aging and neurodegenerative diseases; however, the information on the role of MAPK upregulation in these processes is controversial. ERK1 and ERK2 participate in the maintenance of proteostasis through the regulation of protein aggregation induced by the endoplasmic reticulum stress and other stress-mediated cell responses. To assess the contribution of alterations in the ERK1/2 signaling to the AMD development, we compared age-associated changes in the activity of ERK1/2 signaling pathway in the retina of Wistar rats (control) and OXYS rats that develop AMD-like retinopathy spontaneously. The activity of the ERK1/2 signaling increased during physiological aging in the retina of Wistar rats. The manifestation and progression of the AMD-like pathology in the retina of OXYS rats was accompanied by hyperphosphorylation of ERK1/2 and MEK1/2, the key kinases of the ERK1/2 signaling pathway. The progression of the AMD-like pathology was also associated with the ERK1/2-dependent tau protein hyperphosphorylation and increase in the ERK1/2-dependent phosphorylation of alpha B crystallin at Ser45 in the retina.


Asunto(s)
Degeneración Macular , Enfermedades Neurodegenerativas , Enfermedades de la Retina , Ratas , Animales , Ratas Wistar , Sistema de Señalización de MAP Quinasas , Enfermedades Neurodegenerativas/metabolismo , Retina/metabolismo , Degeneración Macular/metabolismo , Enfermedades de la Retina/metabolismo , Enfermedades de la Retina/patología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA