Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Eukaryot Microbiol ; 71(2): e13018, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38197812

RESUMEN

Twenty species/isolates of cyanobacteria and green algae were isolated from cyanobacterial bloom samples in lakes associated with the upper Qu'Appelle River drainage system in southern Saskatchewan, Canada. Three amoebae species (Cochliopodium sp., Vannella sp. and Vermamoeba vermiformis) were also isolated from one of these samples, and were subjected to grazing assays to determine which species of cyanobacteria or algae could potentially serve as a food source. Amoeba grazing rates were quantified based on the diameter of the plaque after 12 days on agar plate assays, and by estimation of the amoeba population growth rate from the rate of increase of plaque area. The common cyanobacterial bloom-formers Dolichospermum sp. and Aphanizomenon flos-aquae supported high growth rates for all three amoebae, while green algae, with the exception of one green alga/amoeba combination, did not support growth of the tested amoebae. Many of the cyanobacterial and algal isolates that did not support amoebae growth were ingested, suggesting that ingestion did not determine grazing success. Overall, while the cyanobacteria Dolichospermum sp. and Aphanizomenon flos-aquae were suitable food sources for the amoebae, the other cyanobacteria were grazed in an unpredictable manner, with some species/strains grazed by some amoebae and some species not grazed at all.


Asunto(s)
Amoeba , Aphanizomenon , Chlorophyta , Cianobacterias
2.
Environ Sci Technol ; 58(22): 9525-9535, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38758591

RESUMEN

While the ecological role that Trichodesmium sp. play in nitrogen fixation has been widely studied, little information is available on potential specialized metabolites that are associated with blooms and standing stock Trichodesmium colonies. While a collection of biological material from a T. thiebautii bloom event from North Padre Island, Texas, in 2014 indicated that this species was a prolific producer of chlorinated specialized metabolites, additional spatial and temporal resolution was needed. We have completed these metabolite comparison studies, detailed in the current report, utilizing LC-MS/MS-based molecular networking to visualize and annotate the specialized metabolite composition of these Trichodesmium blooms and colonies in the Gulf of Mexico (GoM) and other waters. Our results showed that T. thiebautii blooms and colonies found in the GoM have a remarkably consistent specialized metabolome. Additionally, we isolated and characterized one new macrocyclic compound from T. thiebautii, trichothilone A (1), which was also detected in three independent cultures of T. erythraeum. Genome mining identified genes predicted to synthesize certain functional groups in the T. thiebautii metabolites. These results provoke intriguing questions of how these specialized metabolites affect Trichodesmium ecophysiology, symbioses with marine invertebrates, and niche development in the global oligotrophic ocean.


Asunto(s)
Trichodesmium , Trichodesmium/metabolismo , Golfo de México , Cianobacterias/metabolismo , Eutrofización , Cromatografía Liquida , Espectrometría de Masas en Tándem
3.
Environ Res ; 257: 119394, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38866313

RESUMEN

Cyanobacterial blooms, a natural phenomenon in freshwater ecosystems, have increased in frequency and severity due to climate change and eutrophication. Some cyanobacteria are able to produce harmful substances called cyanotoxins. These metabolites possess different chemical structures and action mechanisms representing a serious concern for human health and the environment. The most studied cyanotoxins belong to the group of microcystins which are potent hepatotoxins. Anabaenopeptins are another class of cyclic peptides produced by certain species of cyanobacteria, including Planktothrix spp. Despite limited knowledge regarding individual effects of anabaenopeptins on freshwater organisms, reports have identified in vivo toxicity in representatives of freshwater zooplankton by cyanobacterial extracts or mixtures containing anabaenopeptins. This study focused on the isolation and toxicity evaluation of the cyanotoxins produced in the 2022 Planktothrix rubescens bloom in Averno lake, Italy. The three main cyclic peptides have been isolated and identified by nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS) and optical analyses as anabaenopeptins A and B, and oscillamide Y. Ecotoxicological tests on the aquatic model organisms Daphnia magna (crustacean), Raphidocelis subcapitata (algae), and Aliivibrio fischeri (bacterium) revealed that anabaenopeptins A and B do not generate significant toxicity at environmentally relevant concentrations, being also found a stimulatory effect on R. subcapitata in the case of anabaenopeptin A. By contrast, oscillamide Y displayed toxicity. Ecological implications based on ECOSAR predictions align with experimental data. Moreover, long-term exposure bioassays on different green unicellular algae species showed that R. subcapitata was not significantly affected, while Scenedesmus obliquus and Chlorella vulgaris exhibited altered growth patterns. These results, together with the already-known background in literature, highlight the complexity of interactions between organisms and the tested compounds, which may be influenced by species-specific sensitivities, physiological differences, and modes of action, possibly affected by parameters like lipophilicity.


Asunto(s)
Daphnia , Péptidos Cíclicos , Planktothrix , Péptidos Cíclicos/toxicidad , Péptidos Cíclicos/química , Animales , Daphnia/efectos de los fármacos , Planktothrix/efectos de los fármacos , Planktothrix/metabolismo , Aliivibrio fischeri/efectos de los fármacos , Italia , Ecotoxicología , Organismos Acuáticos/efectos de los fármacos , Eutrofización
4.
Appl Microbiol Biotechnol ; 108(1): 42, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38183480

RESUMEN

The massive proliferation of Microcystis threatens freshwater ecosystems and degrades water quality globally. Understanding the mechanisms that contribute to Microcystis growth is crucial for managing Microcystis blooms. The lifestyles of bacteria can be classified generally into two groups: particle-attached (PA; > 3 µm) and free-living (FL; 0.2-3.0 µm). However, little is known about the response of PA and FL bacteria to Microcystis blooms. Using 16S rRNA gene high-throughput sequencing, we investigated the stability, assembly process, and co-occurrence patterns of PA and FL bacterial communities during distinct bloom stages. PA bacteria were phylogenetically different from their FL counterparts. Microcystis blooms substantially influenced bacterial communities. The time decay relationship model revealed that Microcystis blooms might increase the stability of both PA and FL bacterial communities. A contrasting community assembly mechanism was observed between the PA and FL bacterial communities. Throughout Microcystis blooms, homogeneous selection was the major assembly process that impacted the PA bacterial community, whereas drift explained much of the turnover of the FL bacterial community. Both PA and FL bacterial communities could be separated into modules related to different phases of Microcystis blooms. Microcystis blooms altered the assembly process of PA and FL bacterial communities. PA bacterial community appeared to be more responsive to Microcystis blooms than FL bacteria. Decomposition of Microcystis blooms may enhance cooperation among bacteria. Our findings highlight the importance of studying bacterial lifestyles to understand their functions in regulating Microcystis blooms. KEY POINTS: • Microcystis blooms alter the assembly process of PA and FL bacterial communities • Microcystis blooms increase the stability of both PA and FL bacterial communities • PA bacteria seem to be more responsive to Microcystis blooms than FL bacteria.


Asunto(s)
Ecosistema , Microcystis , Microcystis/genética , ARN Ribosómico 16S/genética , Agua Dulce , Secuenciación de Nucleótidos de Alto Rendimiento
5.
Ecotoxicol Environ Saf ; 280: 116587, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878336

RESUMEN

Early cyanobacterial blooms studies observed that exposure to blue-green algae led to fish gills impairment. The objective of this work was to evaluate the toxic mechanisms of exudates of Microcystis aeruginosa (MaE) on fish gills. In this study, the toxic mechanism of MaE (2×106 cells/mL) and one of its main components phytosphingosine (PHS) with two concentrations 2.9 ng/mL and 145 ng/mL were conducted by integrating histopathology, biochemical biomarkers, and transcriptomics techniques in Sinocyclocheilus grahami (S. grahami) for 96 h exposure. Damaged gill tissue with epithelial hyperplasia and hypertrophy, remarkable Na+/K+-ATPase (NKA) enzyme activity, disrupted the redox homeostats including lipid peroxidation and inflammatory responses were observed in the fish of MaE exposure group. Compare to MaE exposure, two concentrations of PHS exposure appeared to be a trend of lower degree of tissue damage, NKA activity and oxidative stress, but induced obviously lipid metabolism disorder with higher triglycerides, total cholesterol and total bile acid, which might be responsible for inflammation responses in fish gill. By transcriptome analysis, MaE exposure were primarily enriched in pathways related to gill function and immune response. PHS exposure, with higher number of differentially expressed genes (DEGs), were enriched in Toll-like receptor (TLR), Mitogen-Activated Protein Kinase (MAPK) and NOD-like receptor protein 3 (NLRP3) pathways. We concluded that MaE and PHS were induced the inflammatory responses, with oxidative stress-induced inflammation for MaE exposure but lipid metabolism disorder-induced inflammation for PHS exposure. The present study provided two toxin-induced gill inflammation response pathways under cyanobacterial blooms, which could be a scientific basis for the ecological and health risk assessment in the aquatic environment.


Asunto(s)
Branquias , Microcystis , Estrés Oxidativo , Animales , Branquias/efectos de los fármacos , Branquias/patología , Estrés Oxidativo/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/patología , Metabolismo de los Lípidos/efectos de los fármacos
6.
Environ Monit Assess ; 196(10): 909, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39249606

RESUMEN

Currently, more and more lakes around the world are experiencing outbreaks of cyanobacterial blooms, and high-precision and rapid monitoring of the spatial distribution of algae in water bodies is an important task. Remote sensing technology is one of the effective means for monitoring algae in water bodies. Studies have shown that the Floating Algae Index (FAI) is superior to methods such as the Standardized Differential Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) in monitoring cyanobacterial blooms. However, compared to the NDVI method, the FAI method has difficulty in determining the threshold, and how to choose the threshold with the highest classification accuracy is challenging. In this study, FAI linear fitting model (FAI-L) is selected to solve the problem that FAI threshold is difficult to determine. Innovatively combine FAI index and NDVI index, and use NDVI index to find the threshold of FAI index. In order to analyze the applicability of FAI-L to extract cyanobacterial blooms, this paper selected multi-temporal Landsat8, HJ-1B, and Sentinel-2 remote sensing images as data sources, and took Chaohu Lake and Taihu Lake in China as research areas to extract cyanobacterial blooms. The results show that (1) the accuracy of extracting cyanobacterial bloom by FAI-L method is generally higher than that by NDVI and FAI. Under different data sources and different research areas, the average accuracy of extracting cyanobacterial blooms by FAI-L method is 95.13%, which is 6.98% and 18.43% higher than that by NDVI and FAI respectively. (2) The average accuracy of FAI-L method for extracting cyanobacterial blooms varies from 84.09 to 99.03%, with a standard deviation of 4.04, which is highly stable and applicable. (3) For simultaneous multi-source image data, the FAI-L method has the highest average accuracy in extracting cyanobacterial blooms, at 95.93%, which is 6.77% and 13.26% higher than NDVI and FAI methods, respectively. In this paper, it is found that FAI-L method shows high accuracy and stability in extracting cyanobacterial blooms, and it can extract the spatial distribution of cyanobacterial blooms well, which can provide a new method for monitoring cyanobacterial blooms.


Asunto(s)
Cianobacterias , Monitoreo del Ambiente , Eutrofización , Lagos , Tecnología de Sensores Remotos , Cianobacterias/crecimiento & desarrollo , Monitoreo del Ambiente/métodos , Lagos/microbiología , China , Modelos Lineales
7.
Brief Bioinform ; 22(4)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33320930

RESUMEN

CyanoPATH is a database that curates and analyzes the common genomic functional repertoire for cyanobacteria harmful algal blooms (CyanoHABs) in eutrophic waters. Based on the literature of empirical studies and genome/protein databases, it summarizes four types of information: common biological functions (pathways) driving CyanoHABs, customized pathway maps, classification of blooming type based on databases and the genomes of cyanobacteria. A total of 19 pathways are reconstructed, which are involved in the utilization of macronutrients (e.g. carbon, nitrogen, phosphorus and sulfur), micronutrients (e.g. zinc, magnesium, iron, etc.) and other resources (e.g. light and vitamins) and in stress resistance (e.g. lead and copper). These pathways, comprised of both transport and biochemical reactions, are reconstructed with proteins from NCBI and reactions from KEGG and visualized with self-created transport/reaction maps. The pathways are hierarchical and consist of subpathways, protein/enzyme complexes and constituent proteins. New cyanobacterial genomes can be annotated and visualized for these pathways and compared with existing species. This set of genomic functional repertoire is useful in analyzing aquatic metagenomes and metatranscriptomes in CyanoHAB research. Most importantly, it establishes a link between genome and ecology. All these reference proteins, pathways and maps and genomes are free to download at http://www.csbg-jlu.info/CyanoPATH.


Asunto(s)
Cianobacterias , Bases de Datos Genéticas , Genoma Bacteriano , Floraciones de Algas Nocivas , Bases del Conocimiento , Cianobacterias/genética , Cianobacterias/metabolismo
8.
New Phytol ; 238(3): 1101-1114, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36683448

RESUMEN

Cyanobacterial blooms pose a serious threat to public health due to the presence of cyanotoxins. Microcystin-LR (MC-LR) produced by Microcystis aeruginosa is the most common cyanotoxins. Due to the limitation of isolation, purification, and genetic manipulation techniques, it is difficult to study and verify in situ the biosynthetic pathways and molecular mechanisms of MC-LR. We reassembled the biosynthetic gene cluster (mcy cluster) of MC-LR in vitro by synthetic biology, designed and constructed the strong bidirectional promoter biPpsbA2 , transformed it into Synechococcus 7942, and successfully expressed MC-LR at a level of 0.006-0.018 fg cell-1 d-1 . We found the expression of MC-LR led to abnormal cell division and cellular filamentation, further using various methods proved that by irreversibly competing its GTP-binding site, MC-LR inhibits assembly of the cell division protein FtsZ. The study represents the first reconstitution and expression of the mcy cluster and the autotrophic production of MC-LR in model cyanobacterium, which lays the foundation for resolving the microcystins biosynthesis pathway. The discovered role of MC-LR in cell division reveals a mechanism of how blooming cyanobacteria gain a competitive edge over their nonblooming counterparts.


Asunto(s)
Microcistinas , Synechococcus , Microcistinas/genética , Synechococcus/genética , Toxinas de Cianobacterias , Familia de Multigenes , División Celular
9.
Glob Chang Biol ; 29(7): 1774-1790, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36607161

RESUMEN

Toxic cyanobacterial blooms are globally increasing with negative effects on aquatic ecosystems, water use and human health. Blooms' main driving forces are eutrophication, dam construction, urban waste, replacement of natural vegetation with croplands and climate change and variability. The relative effects of each driver have not still been properly addressed, particularly in large river basins. Here, we performed a historical analysis of cyanobacterial abundance in a large and important ecosystem of South America (Uruguay river, ca 1900 km long, 365,000 km2 basin). We evaluated the interannual relationships between cyanobacterial abundance and land use change, river flow, urban sewage, temperature and precipitation from 1963 to the present. Our results indicated an exponential increase in cyanobacterial abundance during the last two decades, congruent with an increase in phosphorus concentration. A sharp shift in the cyanobacterial abundance rate of increase after the year 2000 was identified, resulting in abundance levels above public health alert since 2010. Path analyses showed a strong positive correlation between cyanobacteria and cropland area at the entire catchment level, while precipitation, temperature and water flow effects were negligible. Present results help to identify high nutrient input agricultural practices and nutrient enrichment as the main factors driving toxic bloom formation. These practices are already exerting severe effects on both aquatic ecosystems and human health and projections suggest these trends will be intensified in the future. To avoid further water degradation and health risk for future generations, a large-scale (transboundary) change in agricultural management towards agroecological practices will be required.


Las floraciones de cianobacterias tóxicas vienen aumentando drásticamente a nivel mundial con efectos negativos en los ecosistemas acuáticos, los usos del agua y la salud humana. Los principales mecanismos promotores de las floraciones son la eutrofización, la construcción de represas, la contaminación con residuos urbanos, la pérdida de vegetación natural y el cambio y la variabilidad climáticos. Los efectos relativos de cada determinante aún no se han abordado adecuadamente, particularmente en las grandes cuencas fluviales de América del Sur. En este trabajo, realizamos un análisis histórico de la abundancia de cianobacterias en un gran e importante ecosistema de América del Sur (el Río Uruguay, c.a. 1.900 km de largo, cuenca de 365.000 km2). Evaluamos las relaciones entre la abundancia de cianobacterias y el cambio en los usos del suelo, el caudal de los ríos, la contaminación urbana, la temperatura y la precipitación desde 1963 hasta el presente. Nuestros resultados evidencian un aumento exponencial en la abundancia de cianobacterias durante las últimas dos décadas, de forma congruente con el aumento en la concentración de fósforo en agua. Fue identificado además, un cambio brusco en la tasa de aumento de la abundancia de cianobacterias después del año 2000, lo que resultó en niveles de alerta por encima de riesgo para la salud pública desde 2010. Los análisis estadísticos indicaron una fuerte y positiva correlación entre las cianobacterias y el área de cultivo en la cuenca, mientras que la precipitación, la temperatura y el flujo de agua fueron insignificantes. Estos resultados contribuyen a identificar que las prácticas agrícolas con alto aporte de nutrientes y el enriquecimiento de nutrientes son los principales impulsores de la formación de floraciones tóxicas. Estas prácticas ya están teniendo graves efectos en los ecosistemas acuáticos y la salud humana y las proyecciones sugieren que se intensificarán en el futuro. Para evitar una mayor degradación de la calidad del agua y el incremento de los riesgos para la salud de las generaciones futuras, se requerirá un cambio a gran escala (transfronterizo) en la gestión agrícola hacia prácticas agroecológicas.


Asunto(s)
Cianobacterias , Ríos , Humanos , Ecosistema , América del Sur , Eutrofización , Agua , Lagos
10.
Microb Ecol ; 85(3): 892-903, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35916937

RESUMEN

Soda lake environments are known to be variable and can have distinct differences according to geographical location. In this study, we investigated the effects of different environmental conditions of six adjacent soda lakes in the Pantanal biome (Mato Grosso do Sul state, Brazil) on bacterial communities and their functioning using a metagenomic approach combined with flow cytometry and chemical analyses. Ordination analysis using flow cytometry and water chemistry data from two sampling periods (wet and dry) clustered soda lakes into three different profiles: eutrophic turbid (ET), oligotrophic turbid (OT), and clear vegetated oligotrophic (CVO). Analysis of bacterial community composition and functioning corroborated this ordination; the exception was one ET lake, which was similar to one OT lake during the wet season, indicating drastic shifts between seasons. Microbial abundance and diversity increased during the dry period, along with a considerable number of limnological variables, all indicative of a strong effect of the precipitation-evaporation balance in these systems. Cyanobacteria were associated with high electric conductivity, pH, and nutrient availability, whereas Actinobacteria, Alphaproteobacteria, and Betaproteobacteria were correlated with landscape morphology variability (surface water, surface perimeter, and lake volume) and with lower salinity and pH levels. Stress response metabolism was enhanced in OT and ET lakes and underrepresented in CVO lakes. The microbiome dataset of this study can serve as a baseline for restoring impacted soda lakes. Altogether, the results of this study demonstrate the sensitivity of tropical soda lakes to climate change, as slight changes in hydrological regimes might produce drastic shifts in community diversity.


Asunto(s)
Cianobacterias , Lagos , Lagos/química , Lagos/microbiología , Brasil , Eutrofización , Cianobacterias/crecimiento & desarrollo , Cianobacterias/aislamiento & purificación , Metagenómica
11.
Environ Sci Technol ; 57(4): 1613-1624, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36653016

RESUMEN

Bacteria play a crucial role in driving ecological processes in aquatic ecosystems. Studies have shown that bacteria-cyanobacteria interactions contributed significantly to phytoplankton dynamics. However, information on the contribution of bacterial communities to blooms remains scarce. Here, we tracked changes in the bacterial community during the development of a cyanobacterial bloom in an equatorial estuarine reservoir. Two forms of blooms were observed simultaneously corresponding to the lotic and lentic characteristics of the sampling sites where significant spatial variabilities in physicochemical water quality, cyanobacterial biomass, secondary metabolites, and cyanobacterial/bacterial compositions were detected. Microcystis dominated the upstream sites during peak periods and were succeeded by Synechococcus when the bloom subsided. For the main body of the reservoir, a mixed bloom featuring coccoid and filamentous cyanobacteria (Microcystis, Synechococcus, Planktothricoides, Nodosilinea, Raphidiopsis, and Prochlorothrix) was observed. Concentrations of the picocyanobacteria Synechococcus remained high throughout the study, and their positive correlations with cylindrospermopsin and anatoxin-a suggested that they could produce cyanotoxins, which pose more damaging impacts than previously supposed. Succession of different cyanobacteria (Synechococcus and Microcystis) following changes in nutrient composition and ionic strength was demonstrated. The microbiomes associated with blooms were unique to the dominant cyanobacteria. Generic and specialized bloom biomarkers for the Microcystis and downstream mixed blooms were also identified. Microscillaceae, Chthoniobacteraceae, and Roseomonas were the major heterotrophic bacteria associated with Microcystis bloom, whereas Phycisphaeraceae and Methylacidiphilaceae were the most prominent groups for the Synechococcus bloom. Collectively, bacterial community can be greatly deviated by the geological condition, monsoon season, cyanobacterial density, and dominant cyanobacteria.


Asunto(s)
Microbiota , Microcystis , Synechococcus , Fitoplancton , Calidad del Agua , Lagos/microbiología
12.
Environ Sci Technol ; 57(4): 1600-1612, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36642923

RESUMEN

Extracellular polymeric substances (EPS) are crucial for cyanobacterial proliferation; however, certain queries, including how EPS affects cellular nutrient processes and what are the implications for nutrient management in lakes, are not well documented. Here, the dynamics of cyanobacterial EPS-associated phosphorus (EPS-P) were examined both in a shallow eutrophic lake (Lake Taihu, China) and in laboratory experiments with respect to nitrogen (N) and phosphorus (P) availability. Results indicated that 40-65% of the total cyanobacterial aggregate/particulate P presented as EPS-P (mainly labile P and Fe/Al-P). Phosphorus-starved cyanobacteria rapidly replenished their EPS-P pools after the P was resupplied, and the P concentration in this pool was stable for long afterward, although the environmental P concentration decreased dramatically. A low-N treatment enhanced the EPS production alongside two-fold EPS-P accumulation (particularly labile P) higher than the control. Such patterns occurred in the lake where EPS and EPS-P contents were high under N limitation. EPS-P enrichment increased the P content in cyanobacteria; subsequently, it could hold the total P concentration higher for longer and make bloom mitigation harder. The findings outline a new insight into EPS functions in the P process of cyanobacterial aggregates and encourage consideration of both N and P reductions in nutrient management.


Asunto(s)
Cianobacterias , Lagos , Lagos/microbiología , Fósforo/análisis , Matriz Extracelular de Sustancias Poliméricas/química , Eutrofización , China , Nutrientes
13.
Environ Sci Technol ; 57(44): 16929-16939, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37665318

RESUMEN

Globally, cyanobacterial blooms have become serious problems in eutrophic water. Most previous studies have focused on environmental factors but have neglected the role of quorum sensing (QS) in bloom development and control. This study explored a key quorum sensing molecule (QSM) that promotes cell growth and then proposed a targeted quorum quencher to control blooms. A new QSM 3-OH-C4-HSL was identified with high-resolution mass spectrometry. It was found to regulate cellular carbon metabolism and energy metabolism as a means to promote Microcystis aeruginosa growth. To quench the QS induced by 3-OH-C4-HSL, three furanone-like inhibitors were proposed based on molecular structure, of which dihydro-3-amino-2-(3H)-furanone (FN) at a concentration of 20 µM exhibited excellent inhibition of M. aeruginosa growth (by 67%). Molecular docking analysis revealed that the inhibitor strongly occupied the QSM receptor protein LuxR by binding with Asn164(A) and His167(A) via two hydrogen bonds (the bond lengths were 3.04 and 4.04 Å) and the binding energy was -5.9 kcal/mol. The inhibitor blocked signaling regulation and induced programmed cell death in Microcystis. Importantly, FN presented little aquatic biotoxicity and negligibly affected aquatic microbial function. This study provides a promising new and eco-friendly strategy for controlling cyanobacterial blooms.


Asunto(s)
Cianobacterias , Microcystis , Percepción de Quorum , Microcystis/fisiología , Simulación del Acoplamiento Molecular
14.
Environ Sci Technol ; 57(42): 16016-16032, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37819800

RESUMEN

We conducted a field study to investigate the role of stringent response in cyanobacteria and coexisting bacterioplankton during nutrient-deprived periods at various stages of bloom in a freshwater lake (Utah Lake) for the first time. Using metagenomics and metatranscriptomics analyses, we examined the cyanobacterial ecology and expression of important functional genes related to stringent response, N and P metabolism, and regulation. Our findings mark a significant advancement in understanding the mechanisms by which toxic cyanobacteria survive and proliferate during nitrogen (N) and phosphorus (P) limitations. We successfully identified and analyzed the metagenome-assembled genomes (MAGs) of the dominant bloom-forming cyanobacteria, namely, Dolichospermum circinale, Aphanizomenon flos-aquae UKL13-PB, Planktothrix agardhii, and Microcystis aeruginosa. By mapping RNA-seq data to the coding sequences of the MAGs, we observed that these four prevalent cyanobacteria species activated multiple functions to adapt to the depletion of inorganic nutrients. During and after the blooms, the four dominant cyanobacteria species expressed high levels of transcripts related to toxin production, such as microcystins (mcy), anatoxins (ana), and cylindrospermopsins (cyr). Additionally, genes associated with polyphosphate (poly-P) storage and the stringent response alarmone (p)ppGpp synthesis/hydrolysis, including ppk, relA, and spoT, were highly activated in both cyanobacteria and bacterioplankton. Under N deficiency, the main N pathways shifted from denitrification and dissimilatory nitrate reduction in bacterioplankton toward N2-fixing and assimilatory nitrate reduction in certain cyanobacteria with a corresponding shift in the community composition. P deprivation triggered a stringent response mediated by spoT-dependent (p)ppGpp accumulation and activation of the Pho regulon in both cyanobacteria and bacterioplankton, facilitating inorganic and organic P uptake. The dominant cyanobacterial MAGs exhibited the presence of multiple alkaline phosphatase (APase) transcripts (e.g., phoA in Dolichospermum, phoX in Planktothrix, and Microcystis), suggesting their ability to synthesize and release APase enzymes to convert ambient organic P into bioavailable forms. Conversely, transcripts associated with bacterioplankton-dominated pathways like denitrification were low and did not align with the occurrence of intense cyanoHABs. The strong correlations observed among N, P, stringent response metabolisms and the succession of blooms caused by dominant cyanobacterial species provide evidence that the stringent response, induced by nutrient limitation, may activate unique N and P functions in toxin-producing cyanobacteria, thereby sustaining cyanoHABs.


Asunto(s)
Cianobacterias , Microcystis , Guanosina Pentafosfato , Nitratos , Cianobacterias/genética , Lagos , Organismos Acuáticos
15.
Environ Sci Technol ; 57(9): 4003-4013, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36802563

RESUMEN

Phosphorus (P) precipitation is among the most effective treatments to mitigate lake eutrophication. However, after a period of high effectiveness, studies have shown possible re-eutrophication and the return of harmful algal blooms. While such abrupt ecological changes were attributed to the internal P loading, the role of lake warming and its potential synergistic effects with internal loading, thus far, has been understudied. Here, in a eutrophic lake in central Germany, we quantified the driving mechanisms of the abrupt re-eutrophication and cyanobacterial blooms in 2016 (30 years after the first P precipitation). A process-based lake ecosystem model (GOTM-WET) was established using a high-frequency monitoring data set covering contrasting trophic states. Model analyses suggested that the internal P release accounted for 68% of the cyanobacterial biomass proliferation, while lake warming contributed to 32%, including direct effects via promoting growth (18%) and synergistic effects via intensifying internal P loading (14%). The model further showed that the synergy was attributed to prolonged lake hypolimnion warming and oxygen depletion. Our study unravels the substantial role of lake warming in promoting cyanobacterial blooms in re-eutrophicated lakes. The warming effects on cyanobacteria via promoting internal loading need more attention in lake management, particularly for urban lakes.


Asunto(s)
Cianobacterias , Lagos , Lagos/microbiología , Ecosistema , Eutrofización , Nutrientes , Floraciones de Algas Nocivas , Fósforo/análisis , China
16.
Environ Res ; 216(Pt 3): 114670, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36341794

RESUMEN

The global expansion of cyanobacterial blooms poses a major risk to the safety of freshwater resources. As a result, many explorations have been performed at a regional scale to determine the underlying impact mechanism of cyanobacterial blooms for one or several waterbodies. However, two questions still need to be answered quantitatively at a global scale to assist the water management. One is to specify which factors were often selected as the driving forces of cyanobacterial blooms, and the other is to estimate their quantitative relationships. For that, this paper applied a systematic literature review for 41 peer-reviewed studies published before May 2021 and a statistical meta-analysis based on the Pearson's or Spearman's correlation coefficients from 27 studies. These results showed that the water quality, hydraulic conditions, meteorological conditions and nutrient levels were often considered the driving forces of cyanobacterial blooms in global freshwater systems. Among these, meteorological conditions and nutrient level had the highest probability of being chosen as the driving force. In addition, knowledge of the quantitative relationships between these driving forces and cyanobacterial blooms was newly synthesized based on the correlation coefficients. The results indicated that, at a global scale, meteorological conditions were negatively related to cyanobacterial blooms, and other driving forces, such as water quality, hydraulic conditions and nutrient levels, were positively related to cyanobacterial blooms. In addition, the measurement indicators of these driving forces had diverse forms. For example, the nutrient level can be measured by the concentration of different forms of nitrogen or phosphorus, which may lead to different results in correlation analysis. Thus, a subgroup meta-analysis was necessary for the subdivided driving forces and cyanobacterial blooms, which had a better accuracy. Overall, the synthesized knowledge can help guide advanced cyanobacteria-centered water management, especially when the necessary cyanobacterial data of targeting waterbodies are inaccessible.


Asunto(s)
Cianobacterias , Eutrofización , Agua Dulce/microbiología , Calidad del Agua , Fósforo/análisis , Lagos/microbiología
17.
Pestic Biochem Physiol ; 191: 105344, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36963926

RESUMEN

The frequency and intensity of harmful cyanobacterial blooms (HCBs) are increasing all over the world, their prevention and control have become a great challenge. In this paper, a series of 1,3,4-thiadiazole thioacetamides (T series) were designed and synthesized as potential algaecides. Among them, the compound T3 showed its best algacidal activity against Synechocystis sp. PCC 6803 (PCC 6803, EC50 = 1.51 µM) and Microcystis aeruginosa FACHB 905 (FACHB905, EC50 = 4.88 µM), which was more effective than the lead compound L1 (PCC6803, EC50 = 7.7 µM; FACHB905, EC50 = 8.8 µM) and the commercially available herbicide prometryn (PCC6803, EC50 = 4.64 µM;FACHB905, EC50 = 6.52 µM). Meanwhile, T3 showed a lower inhibitory activity (EC50 = 12.76 µM) than prometryn (EC50 = 7.98 µM) to Chlorella FACHB1227, indicating that T3 had selective inhibition to prokaryotic algae (PCC6803, FACHB905) and eukaryotic algae (FACHB1227). Furthermore, the algacidal and anti-algae activities of T3 were significantly better than those of prometryn, while the toxicity of zebrafish and human cells was less than prometryn. Electron microscope, physiological, biochemical and metabonomic analysis showed that T3 interfered with light absorption and light conversion during photosynthesis by significantly reducing chlorophyll content, thus inhibited metabolic pathways such as the Calvin cycle and TCA cycle, and eventually led to the cell rupture of cyanobacteria. These results afforded further development of effective and safe algaecides.


Asunto(s)
Chlorella , Herbicidas , Synechocystis , Animales , Humanos , Herbicidas/toxicidad , Prometrina/farmacología , Pez Cebra , Synechocystis/química
18.
Sensors (Basel) ; 23(18)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37765856

RESUMEN

This study determines an optimal spectral configuration for the CyanoSat imager for the discrimination and retrieval of cyanobacterial pigments using a simulated dataset with machine learning (ML). A minimum viable spectral configuration with as few as three spectral bands enabled the determination of cyanobacterial pigments phycocyanin (PC) and chlorophyll-a (Chl-a) but may not be suitable for determining cyanobacteria composition. A spectral configuration with about nine ideally positioned spectral bands enabled estimation of the cyanobacteria-to-algae ratio (CAR) and pigment concentrations with almost the same accuracy as using all 300 spectral channels. A narrower spectral band full-width half-maximum (FWHM) did not provide improved performance compared to the nominal 12 nm configuration. In conclusion, continuous sampling of the visible spectrum is not a requirement for cyanobacterial detection, provided that a multi-spectral configuration with ideally positioned, narrow bands is used. The spectral configurations identified here could be used to guide the selection of bands for future ocean and water color radiometry sensors.


Asunto(s)
Cianobacterias , Monitoreo del Ambiente , Clorofila/análisis , Clorofila A , Agua , Aprendizaje Automático
19.
Sensors (Basel) ; 23(18)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37765881

RESUMEN

This study introduces a prototype end-to-end Simulator software tool for simulating two-dimensional satellite multispectral imagery for a variety of satellite instrument models in aquatic environments. Using case studies, the impact of variable sensor configurations on the performance of value-added products for challenging applications, such as coral reefs and cyanobacterial algal blooms, is assessed. This demonstrates how decisions regarding satellite sensor design, driven by cost constraints, directly influence the quality of value-added remote sensing products. Furthermore, the Simulator is used to identify situations where retrieval algorithms require further parameterization before application to unsimulated satellite data, where error sources cannot always be identified or isolated. The application of the Simulator can verify whether a given instrument design meets the performance requirements of end-users before build and launch, critically allowing for the justification of the cost and specifications for planned and future sensors. It is hoped that the Simulator will enable engineers and scientists to understand important design trade-offs in phase 0/A studies easily, quickly, reliably, and accurately in future Earth observation satellites and systems.

20.
Appl Environ Microbiol ; 88(14): e0180321, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35862730

RESUMEN

Interactions between bacteria and phytoplankton can influence primary production, community composition, and algal bloom development. However, these interactions are poorly described for many consortia, particularly for freshwater bloom-forming cyanobacteria. Here, we assessed the gene content and expression of two uncultivated Acidobacteria from Lake Erie Microcystis blooms. These organisms were targeted because they were previously identified as important catalase producers in Microcystis blooms, suggesting that they protect Microcystis from H2O2. Metatranscriptomics revealed that both Acidobacteria transcribed genes for uptake of organic compounds that are known cyanobacterial products and exudates, including lactate, glycolate, amino acids, peptides, and cobalamins. Expressed genes for amino acid metabolism and peptide transport and degradation suggest that use of amino acids and peptides by Acidobacteria may regenerate nitrogen for cyanobacteria and other organisms. The Acidobacteria genomes lacked genes for biosynthesis of cobalamins but expressed genes for its transport and remodeling. This indicates that the Acidobacteria obtained cobalamins externally, potentially from Microcystis, which has a complete gene repertoire for pseudocobalamin biosynthesis; expressed them in field samples; and produced pseudocobalamin in axenic culture. Both Acidobacteria were detected in Microcystis blooms worldwide. Together, the data support the hypotheses that uncultured and previously unidentified Acidobacteria taxa exchange metabolites with phytoplankton during harmful cyanobacterial blooms and influence nitrogen available to phytoplankton. Thus, novel Acidobacteria may play a role in cyanobacterial physiology and bloom development. IMPORTANCE Interactions between heterotrophic bacteria and phytoplankton influence competition and successions between phytoplankton taxa, thereby influencing ecosystem-wide processes such as carbon cycling and algal bloom development. The cyanobacterium Microcystis forms harmful blooms in freshwaters worldwide and grows in buoyant colonies that harbor other bacteria in their phycospheres. Bacteria in the phycosphere and in the surrounding community likely influence Microcystis physiology and ecology and thus the development of freshwater harmful cyanobacterial blooms. However, the impacts and mechanisms of interaction between bacteria and Microcystis are not fully understood. This study explores the mechanisms of interaction between Microcystis and uncultured members of its phycosphere in situ with population genome resolution to investigate the cooccurrence of Microcystis and freshwater Acidobacteria in blooms worldwide.


Asunto(s)
Cianobacterias , Microcystis , Acidobacteria/metabolismo , Aminoácidos/metabolismo , Carbono/metabolismo , Cianobacterias/genética , Ecosistema , Peróxido de Hidrógeno/metabolismo , Lagos/microbiología , Microcystis/genética , Microcystis/metabolismo , Nitrógeno/metabolismo , Fitoplancton/metabolismo , Vitamina B 12/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA