Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.175
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Small ; : e2403717, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046075

RESUMEN

In organic-inorganic hybrid devices, fine interfacial controls by organic components directly affect the device performance. However, fabrication of uniformed interfaces using π-conjugated molecules remains challenging due to facile aggregation by their strong π-π interaction. In this report, a π-conjugated scaffold insulated by covalently linked permethylated α-cyclodextrin moiety with an azido group is synthesized for surface Huisgen cycloaddition on metal oxides. Fourier-transformed infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy confirm the successful immobilization of the insulated azido scaffold on ZnO nanowire array surfaces. Owing to the highly independent immobilization, the scaffold allows rapid and complete conversion of the surface azido group in Huisgen cycloaddition reactions with ethynyl-terminated molecules, as confirmed by FT-IR spectroscopy monitoring. Cyclic voltammetry analysis of modified indium tin oxide substrates shows the positive effects of cyclic insulation toward suppression of intermolecular interaction between molecules introduced by the surface Huisgen cycloaddition reactions. The utility of the scaffold for heterogeneous catalysis is demonstrated in electrocatalytic selective O2 reduction to H2O2 with cobalt(II) chlorin modified fluorine doped tin oxide electrode and photocatalytic H2 generation with iridium(III) dye-sensitized Pt-loaded TiO2 nanoparticle. These results highlight the potential of the insulated azido scaffold for a stepwise functionalization process, enabling precise and well-defined hybrid interfaces.

2.
Electrophoresis ; 45(11-12): 1000-1009, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38195812

RESUMEN

The incorporation of phosphorothioate linkages has recently been extensively employed in therapeutic oligonucleotides. For their separation and quality control, new high-efficient and high-sensitive analytical methods are needed. In this work, a new affinity capillary electrophoresis method has been developed and applied for the separation of a potential anticancer drug, 2',3'-cyclic diadenosine diphosphorothioate (Rp, Rp) (ADU-S100), and three recently newly synthesized diastereomers of its difluorinated derivative, 3',3'-cyclic di(2'-fluoro, 2'-deoxyadenosine phosphorothioate). The separation was performed in the various background electrolytes (BGEs) within a pH range 5-9 using several native and derivatized cyclodextrins (CDs) as chiral additives of the BGE. Relatively good separations were obtained with ß-, γ-, and 2-hydroxypropyl-γ-CDs in some of the BGEs tested. However, the best separation was achieved using the 2-hydroxypropyl-ß-CD chiral selector at 43.5 mM average concentration in the BGE composed of 40 mM Tris, 40 mM tricine, pH 8.1. Under these conditions, all the previous four cyclic dinucleotides (CDNs) were baseline separated within 4 min. Additionally, the average apparent binding constants and the average actual ionic mobilities of the complexes of all four CDNs with 2-hydroxypropyl-ß-CD in the above BGE were determined. The formed complexes were found to be relatively weak, with the average apparent binding constants in the range of 12.2-94.1 L mol-1 and with the actual ionic mobilities spanning the interval (-7.8 to -12.7) × 10-9 m2 V-1 s-1. The developed method can be applied for the separation, analysis, and characterization of the above and similar CDNs.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina , Electroforesis Capilar , beta-Ciclodextrinas , Electroforesis Capilar/métodos , Estereoisomerismo , beta-Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina/química , Concentración de Iones de Hidrógeno , Fosfatos de Dinucleósidos/química , Fosfatos de Dinucleósidos/aislamiento & purificación , Fosfatos de Dinucleósidos/análisis
3.
Chemistry ; 30(25): e202400535, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38415892

RESUMEN

Redox-active components are highly valuable in the construction of molecular devices. We combined two p-phenylenediamines (p-PDA) with a biphenyl (BiPhe) unit to prepare a supramolecular guest 4 consisting of three binding sites for cucurbit[7/8]uril (CBn) and/or cyclodextrins (CD). Supramolecular properties of 4 were investigated using NMR, UV-vis, mass spectrometry and isothermal titration calorimetry. Our analysis revealed that 4 forms higher-order host-guest complexes, wherein a CD unit occupies the central BiPhe site, secured by two CBn units at the terminal p-PDA sites. Additionally, 1 : 1 complexes with α-CD and ß-CD, a 1 : 2 complex with γ-CD and 2 : 1 complexes with CB7 and CB8 were identified. Through UV-vis and cyclic voltammetry, redox processes leading to the formation of a stable, deep blue dication diradical of 4 are elucidated. Furthermore, it is demonstrated that CB7 selectively protects oxidised 4 from reduction in the presence of a reducing agent. The supramolecular and redox properties of the structural motif represented by 4 render it an interesting candidate for the construction of supramolecular devices.

4.
Chemistry ; 30(18): e202303815, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38146753

RESUMEN

Supramolecular polymers built from stimuli-responsive host-guest interactions represent an attractive way of tailoring smart materials. Herein, we exploit the chaotropic effect of polyoxometalates and related host-guest properties to design unconventional polymer systems with reversible redox and thermo-responsive sol-gel transition. These supramolecular networks result from the association of cyclodextrin-based oligomers and Keggin-type POMs acting as electro-active crosslinking agents. The structure and the dynamics of such self-assembly systems have been investigated using a multiscale approach involving MALDI-TOF, viscosity measurements, cyclic voltammetry, 1H-NMR (1D and DOSY), and Small-Angle X-ray Scattering. Our results reveal that the chaotropic effect corresponds to a powerful and efficient force that can be used to induce responsiveness in hybrid supramolecular oligomeric systems.

5.
Chemistry ; : e202402012, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39072899

RESUMEN

​Considerable attention has been directed towards cyclodextrins (CDs) in the creation of co-assembled CPL-active materials, owing to their intrinsic chiral host cavities and synergistic host-guest interactions. However, achieving reversed CPL emission regulation with single-handedness CDs moiety poses a significant challenge. In this study, we have devised a series of γ-CD-based host-guest complexes comprising dual pyrene imidazolium derivatives with multiple linkers, which exhibit reversed circularly polarized emission. We have uncovered that the transformation of excimer stacking within γ-CD/pyrene complexes contributes to the inverted CPL emissions originating from a single-handed chiral host. This research elucidates the phenomenom of (+)- and (-)-circularly polarized excimer emission (CPEE) within γ-CD, arising from right- and left-handed stacking conformations, respectively.

6.
Chemistry ; : e202402068, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39136668

RESUMEN

The morphological symmetry-retaining and symmetry-breaking of single crystals of the γ-cyclodextrin metal-organic framework have been achieved via introducing lower symmetric ß-cyclodextrins and α-cyclodextrins, respectively. ß-cyclodextrins led to a morphological evolution with retained symmetry from cubic to rhombic dodecahedra, while α-cyclodextrins resulted in the original cubic crystal missing a vertex angle presenting symmetry-breaking behavior. The crystal structures of rhombic dodecahedra and angle-deficient crystals were confirmed through X-ray crystallography, and the mechanisms underlying the morphological transformation evolution were further analyzed. Our work not only provides a rare case realizing two different paths of morphological evolution in one system, but also encourages future efforts towards the evolution of artificial crystal systems in a natural way.

7.
Macromol Rapid Commun ; : e2400441, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042093

RESUMEN

Synthesis of polyurethane-type poly[3]rotaxanes is achieved by polyaddition between a cyclodextrin (CD)-based [3]rotaxane diol and various diisocyanate species, which provide a more defined structure compared to conventional polyrotaxane syntheses. In this study, hydroxyl groups on CDs of [3]rotaxane diol are initially acetylated, and deprotected after the polyaddition to introduce polyurethane backbone structure into polyrotaxane framework. Despite a relatively complicated chemical structure, [3]rotaxane diol monomer is successfully synthesized in a high yield (overall 67%) without any taxing purification process, which is beneficial for practical applications. The polymerization itself proceeds well under a standard polyaddition reaction condition to afford corresponding polyurethanes around 80% yield with Mn > 30 kDa. The poly[3]rotaxanes show different aggregation behavior or optical properties, whether or not acetyl groups are present, and are analyzed by XRD, SEM, and fluorescence measurements.

8.
J Appl Microbiol ; 135(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38744659

RESUMEN

AIM: This study investigated the effectiveness of a drug-modified tissue conditioner in an animal model of denture stomatitis. METHODS AND RESULTS: Wistar rats wore a Candida albicans-contaminated palatal device for 4 days. Next, nystatin (Nys) or chlorhexidine (Chx) were added to a tissue conditioner in their raw or ß-cyclodextrin-complexed (ßCD) forms at their minimum inhibitory concentrations. As controls, one group was not subjected to any procedure (NC), one group used sterile devices, one group had denture stomatitis but was not treated (DS), and another had the devices relined with the tissue conditioner without the addition of any drug (Soft). After 4 days of treatment, treatment effectiveness was assessed visually, histologically, and through CFU count, and myeloperoxidase (MPO) and N-acetylglucosaminidase (NAG) assays. Rats from the Soft, Nys, Nys:ßCD, and Chx groups presented a significant decrease in the microbial load compared with the untreated group. Treatment groups showed lower MPO and NAG activity compared to the non-treated group. CONCLUSIONS: The addition of antifungals to a soft tissue conditioner can be a promising approach for denture stomatitis treatment.


Asunto(s)
Antifúngicos , Candida albicans , Clorhexidina , Nistatina , Ratas Wistar , Estomatitis Subprotética , Animales , Estomatitis Subprotética/microbiología , Estomatitis Subprotética/tratamiento farmacológico , Ratas , Antifúngicos/uso terapéutico , Antifúngicos/farmacología , Nistatina/farmacología , Nistatina/uso terapéutico , Clorhexidina/farmacología , Candida albicans/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino , Recuento de Colonia Microbiana , Pruebas de Sensibilidad Microbiana , Candidiasis Bucal/tratamiento farmacológico , Candidiasis Bucal/microbiología , Peroxidasa/metabolismo , Acetilglucosaminidasa/metabolismo , beta-Ciclodextrinas
9.
Appl Microbiol Biotechnol ; 108(1): 271, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517512

RESUMEN

Various virulence determinants in Pseudomonas aeruginosa are regulated by the quorum sensing (QS) network producing and releasing signalling molecules. Two of these virulence determinants are the pyocyanin and pyoverdine, which interfere with multiple cellular functions during infection. The application of QS-inhibiting agents, such as cyclodextrins (CDs), appears to be a promising approach. Further to method development, this research tested in large-volume test systems the effect of α- and ß-CD (ACD, BCD) at 1, 5, and 10 mM concentrations on the production of pyocyanin in the P. aeruginosa model system. The concentration and time-dependent quorum quenching effect of native CDs and their derivatives on pyoverdine production was tested in a small-volume high-throughput system. In the large-volume system, both ACD and BCD significantly inhibited pyocyanin production, but ACD to a greater extent. 10 mM ACD resulted in 58% inhibition, while BCD only ~40%. Similarly, ACD was more effective in the inhibition of pyoverdine production; nevertheless, the results of RMANOVA demonstrated the significant efficiency of both ACD and BCD, as well as their derivatives. Both the contact time and the cyclodextrin treatments significantly influenced pyoverdine production. In this case, the inhibitory effect of ACD after 48 h at 12.5 mM was 57%, while the inhibitory effect of BCD and its derivatives was lower than 40%. The high-level significant inhibition of both pyocyanin and pyoverdine production by ACD was detectable. Consequently, the potential value of CDs as QS inhibitors and the antivirulence strategy should be considered. KEYPOINTS: • Applicability of a simplified method for quantification of pyocyanin production was demonstrated. • The cyclodextrins significantly affected the pyocyanin and pyoverdine production. • The native ACD exhibited the highest attenuation in pyoverdine production.


Asunto(s)
Oligopéptidos , Infecciones por Pseudomonas , Percepción de Quorum , Humanos , Pseudomonas aeruginosa , Virulencia , Piocianina , Factores de Virulencia , Antibacterianos/farmacología , Biopelículas
10.
J Sep Sci ; 47(11): e2400286, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38863086

RESUMEN

The enantiomers of diquats (DQs), a new class of functional organic molecules, were recently separated by capillary electrophoresis (CE) with high resolution up to 11.4 within 5-7 min using randomly sulfated α-, ß-, and γ-cyclodextrins (CDs) as chiral selectors. These results indicated strong interactions between dicationic diquats and multiply negatively charged sulfated CDs (S-CDs). However, the binding strength of these interactions was not quantified. For that reason, in this study, affinity CE was applied for the determination of the binding constants and ionic mobilities of the complexes of DQ P- and M-enantiomers with CD chiral selectors in an aqueous medium. The non-covalent interactions of 10 pairs of DQ enantiomers with the above CDs were investigated in a background electrolyte (BGE) composed of 22 mM NaOH, 35 mM H3PO4, pH 2.5, and 0.0-1.0 mM concentrations of CDs. The average apparent binding constant and the average actual ionic mobility of the DQ-CD complexes were determined by nonlinear regression analysis of the dependence of the effective mobility of DQ enantiomers on the concentration of CDs in the BGE. The complexes were found to be relatively strong with the averaged apparent binding constants in the range 13 600-547 400 L/mol.

11.
J Appl Toxicol ; 44(5): 747-755, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38198744

RESUMEN

The emergence of resistant fungal species and the toxicity of currently available antifungal drugs are relevant issues that require special consideration. Cyclodextrins inclusion complexes could optimize the antimicrobial activity of such drugs and create a controlled release system with few side effects. This study aimed to assess the in vitro toxicity and antifungal effectiveness of nystatin (Nys) and chlorhexidine (Chx) complexed or not with ß-cyclodextrin (ßCD). First, a drug toxicity screening was performed through the Artemia salina bioassay. Then, the minimum inhibitory concentrations (MICs) against Candida albicans were determined with the broth microdilution test. After MICs determination, the cytotoxicity of the drugs was evaluated through the methyl-thiazolyl-tetrazolium (MTT) and neutral red (NR) assays and through cell morphology analysis. The PROBIT analysis was used to determine the median lethal concentration (LC50), and the cell viability values were submitted to one-way analysis of variance(ANOVA)/Tukey (α = 0.05). Overall, the ßCD-complexed antifungals were less toxic against A. salina than their raw forms, suggesting that inclusion complexes can reduce the toxicity of drugs. The MICs obtained were as follows: Nys 0.5 mg/L; Nys:ßCD 4 mg/L; Chx 4 mg/L; and Chx:ßCD 8 mg/L. Chx showed significant cytotoxicity (MTT: 12.9 ± 9.6%; NR: 10.6 ± 12.5%) and promoted important morphological changes. Cells exposed to the other drugs showed viability above 70% with no cellular damage. These results suggest that antifungals complexed with ßCD might be a biocompatible option for the treatment of Candida-related infections.


Asunto(s)
Antifúngicos , beta-Ciclodextrinas , Antifúngicos/toxicidad , Candida , Nistatina/toxicidad , Candida albicans , Clorhexidina/farmacología , beta-Ciclodextrinas/toxicidad
12.
Environ Toxicol ; 39(1): 44-60, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37615264

RESUMEN

Paraquat (PQ) is a commercially important and effective herbicide in the world. Nevertheless, it has higher toxicity causing acute organ damage and different complications, mainly in the lungs and kidneys. Ferulic acid (FA), 4-hydroxy-3-methoxycinnamic acid imposes multiple pharmacological impacts. No protective effect of FA on PQ poisoning-caused human embryonic lung fibroblast damage has not been reported. Despite their many beneficial effects, FA is characterized by poor water solubility, low bioavailability, and phytochemical instability. To solve the problem, ß-cyclodextrin nanosponge (ß-CD NSs) was utilized to increase the solubility of FA so that it was grafted into ß-CD NSs to establish ß-CD@FA NSs. The purpose of this work was to examine for the first time the protective effect of ß-CD@FA NS on MRC-5 human lung cells damages induced by PQ poisoning. MTS assay was performed to investigate the viability of MRC-5 cells at different concentrations of FA/ß-CD@FA NSs when cells were co-cultured with 0.2 µg/mL PQ. The flow cytometry study was carried out to determine apoptosis. Malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) levels were detected using appropriate biochemistry kits. Compared with the PQ group, the cell activity, CAT, and SOD levels were significantly increased in the FA and chiefly in ß-CD@FA NSs intervention groups, whereas apoptosis and MDA levels were markedly decreased. The inflammatory factors tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), and interleukin 22 (IL-22) were detected. The results demonstrate that ß-CD@FA NSs can inhibit PQ-induced cell damage by enhancing antioxidant stress capacity and regulation of inflammatory responses.


Asunto(s)
Paraquat , beta-Ciclodextrinas , Humanos , Paraquat/toxicidad , Pulmón , beta-Ciclodextrinas/farmacología , Superóxido Dismutasa/metabolismo , Estrés Oxidativo
13.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38673912

RESUMEN

In this work, we propose a comprehensive experimental study of the diffusion of nickel ions in combination with different cyclodextrins as carrier molecules for enhanced solubility and facilitated transport. For this, ternary mutual diffusion coefficients measured by Taylor dispersion method are reported for aqueous solutions containing nickel salts and different cyclodextrins (that is, α-CD, ß-CD, and γ-CD) at 298.15 K. A combination of Taylor dispersion and other methods, such as UV-vis spectroscopy, will be used to obtain complementary information on these systems. The determination of the physicochemical properties of these salts with CDs in aqueous solution provides information that allows us to understand solute-solvent interactions, and gives a significant contribution to understanding the mechanisms underlying diffusional transport in aqueous solutions, and, consequently, to mitigating the potential toxicity associated with these metal ions. For example, using mutual diffusion data, it is possible to estimate the number of moles of each ion transported per mole of the cyclodextrin driven by its own concentration gradient.


Asunto(s)
Ciclodextrinas , Níquel , Níquel/química , Ciclodextrinas/química , Difusión , Solubilidad , Iones/química
14.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000246

RESUMEN

Quorum sensing (QS) allows bacteria to coordinate their activities by producing and detecting low-molecular-weight signal molecules based on population density, thereby controlling the infectivity of bacteria through various virulence factors. Quorum-sensing inhibition is a promising approach to tackle bacterial communication. Cyclodextrins (CDs) are a class of cyclic oligosaccharides that reversibly encapsulate the acyl chain of the signal molecules, thereby preventing their binding to receptors and interrupting bacterial communication. This results in the inhibition of the expression of various properties, including different virulence factors. To examine the potential quorum-quenching (QQ) ability of newly prepared cyclodextrin derivatives, we conducted short-term tests using Aliivibrio fischeri, a heterotrophic marine bacterium capable of bioluminescence controlled by quorum sensing. α- and ß-cyclodextrins monosubstituted with alkylthio moieties and further derivatized with quaternary ammonium groups were used as the test agents. The effect of these cyclodextrins on the quorum-sensing system of A. fischeri was investigated by adding them to an exponential growth phase of the culture and then measuring bioluminescence intensity, population growth, and cell viability. Our results demonstrate that the tested cyclodextrins have an inhibitory effect on the quorum-sensing system of A. fischeri. The inhibitory effect varies based on the length of the alkyl chain, with alkylthio substitution enhancing it and the presence of quaternary ammonium groups decreasing it. Our findings suggest that cyclodextrins can be a promising therapeutic agent for the treatment of bacterial infections.


Asunto(s)
Aliivibrio fischeri , Ciclodextrinas , Percepción de Quorum , Aliivibrio fischeri/efectos de los fármacos , Percepción de Quorum/efectos de los fármacos , Ciclodextrinas/farmacología , Ciclodextrinas/química , Mediciones Luminiscentes/métodos , Luminiscencia
15.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474076

RESUMEN

The significant environmental issue of water pollution caused by emerging contaminants underscores the imperative for developing novel cleanup methods that are efficient, economically viable, and that are intended to operate at high capacity and under continuous flows at the industrial scale. This study shows the results of the operational design to build a prototype for the retention at lab scale of pollutant residues in water by using as adsorbent material, insoluble polymers prepared by ß-cyclodextrin and epichlorohydrin as a cross-linking agent. Laboratory in-batch tests were run to find out the adsorbent performances against furosemide and hydrochlorothiazide as pollutant models. The initial evaluation concerning the dosage of adsorbent, pH levels, agitation, and concentration of pharmaceutical pollutants enabled us to identify the optimal conditions for conducting the subsequent experiments. The adsorption kinetic and the mechanisms involved were evaluated revealing that the experimental data perfectly fit the pseudo second-order model, with the adsorption process being mainly governed by chemisorption. With KF constant values of 0.044 (L/g) and 0.029 (L/g) for furosemide and hydrochlorothiazide, respectively, and the determination coefficient (R2) being higher than 0.9 for both compounds, Freundlich yielded the most favorable outcomes, suggesting that the adsorption process occurs on heterogeneous surfaces involving both chemisorption and physisorption processes. The maximum monolayer adsorption capacity (qmax) obtained by the Langmuir isotherm revealed a saturation of the ß-CDs-EPI polymer surface 1.45 times higher for furosemide (qmax = 1.282 mg/g) than hydrochlorothiazide (qmax = 0.844 mg/g). Based on these results, the sizing design and building of a lab-scale model were carried out, which in turn will be used later to evaluate its performance working in continuous flow in a real scenario.


Asunto(s)
Ciclodextrinas , Contaminantes Químicos del Agua , Purificación del Agua , Agua , Furosemida , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Polímeros/química , Adsorción , Cinética , Hidroclorotiazida , Concentración de Iones de Hidrógeno
16.
Int J Mol Sci ; 25(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125950

RESUMEN

In vitro alternative therapy of human epidermoid squamous carcinoma (A431) by superparamagnetic hyperthermia (SPMHT) using Fe3O4 (magnetite) superparamagnetic nanoparticles (SPIONs) with an average diameter of 15.8 nm, bioconjugated with hydroxypropyl gamma-cyclodextrins (HP-γ-CDs) by means of polyacrylic acid (PAA) biopolymer, is presented in this paper. The therapy was carried out at a temperature of 43 °C for 30 min using the concentrations of Fe3O4 ferrimagnetic nanoparticles from nanobioconjugates of 1, 5, and 10 mg/mL nanoparticles in cell suspension, which were previously found by us to be non-toxic for healthy cells (cell viabilities close to 100%), according to ISO standards (cell viability must be greater than 70%). The temperature for the in vitro therapy was obtained by the safe application (without exceeding the biological limit and cellular damage) of an alternating magnetic field with a frequency of 312.4 kHz and amplitudes of 168, 208, and 370 G, depending on the concentration of the magnetic nanoparticles. The optimal concentration of magnetic nanoparticles in suspension was found experimentally. The results obtained after the treatment show its high effectiveness in destroying the A431 tumor cells, up to 83%, with the possibility of increasing even more, which demonstrates the viability of the SPMHT method with Fe3O4-PAA-(HP-γ-CDs) nanobioconjugates for human squamous cancer therapy.


Asunto(s)
Carcinoma de Células Escamosas , Hipertermia Inducida , Nanopartículas de Magnetita , Neoplasias Cutáneas , gamma-Ciclodextrinas , Humanos , Hipertermia Inducida/métodos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapéutico , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , gamma-Ciclodextrinas/química , Neoplasias Cutáneas/terapia , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Supervivencia Celular/efectos de los fármacos , Nanoconjugados/química
17.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38256239

RESUMEN

Ropinirole is a non-ergolinic dopamine agonist used to manage Parkinson's disease and it is characterized by poor oral bioavailability. This study aimed to design and develop advanced drug delivery systems composed of poloxamer 407, a non-ionic surfactant (Tween 80), and cyclodextrins (methyl-ß-CD or hydroxy-propyl-ß-CD) for possible brain targeting of ropinirole after nasal administration for the treatment of Parkinson's disease. The hybrid systems were formed by the thin-film hydration method, followed by an extensive physicochemical and morphological characterization. The in vitro cytotoxicity of the systems on HEK293 cell lines was also tested. In vitro release and ex vivo mucosal permeation of ropinirole were assessed using Franz cells at 34 °C and with phosphate buffer solution at pH 5.6 in the donor compartment, simulating the conditions of the nasal cavity. The results indicated that the diffusion-controlled drug release exhibited a progressive increase throughout the experiment, while a proof-of-concept experiment on ex vivo permeation through rabbit nasal mucosa revealed a better performance of the prepared hybrid systems in comparison to ropinirole solution. The encouraging results in drug release and mucosal permeation indicate that these hybrid systems can serve as attractive platforms for effective and targeted nose-to-brain delivery of ropinirole with a possible application in Parkinson's disease. Further ex vivo and in vivo studies to support the results of the present work are ongoing.


Asunto(s)
Indoles , Enfermedad de Parkinson , Surfactantes Pulmonares , Humanos , Animales , Conejos , Tensoactivos , Polímeros , Células HEK293 , Enfermedad de Parkinson/tratamiento farmacológico , Encéfalo , Lipoproteínas , Mucosa Nasal
18.
J Environ Manage ; 351: 119830, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141340

RESUMEN

Cyclodextrin (CD) and its derivatives are receiving attention as a new-generation adsorbent for water pollution treatment due to their external hydrophilic and internal hydrophobic properties. Among types of CD, ß-Cyclodextrin (ßCD) has been a material of choice with a proven track record for a range of utilities in distinct domains, owing to its unique cage-like structural conformations and inclusion complex-forming ability, especially to mitigate emerging contaminants (ECs). This article outlines ßCD composites in developing approaches of their melds and composites for purposes such as membranes for removal of the ECs in aqueous setups have been explored with emphasis on recent trends. Electrospinning has bestowed an entirely different viewpoint on polymeric materials, comprising ßCD, in the framework of diverse functions across a multitude of niches. Besides, this article especially discusses ßCD polymer composite membrane-based removal of contaminants such as pharmaceutical substances, endocrine disruptors chemicals, and dyes. Finally, in this article, the challenges and future directions of ßCD-based adsorbents are discussed, which may shed light on pragmatic commercial applications of ßCD polymer composite membranes.


Asunto(s)
Celulosa , Ciclodextrinas , Disruptores Endocrinos , beta-Ciclodextrinas , Polímeros , Colorantes , beta-Ciclodextrinas/química , Ciclodextrinas/química , Preparaciones Farmacéuticas
19.
Molecules ; 29(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39125102

RESUMEN

Cyclodextrins, commonly used as excipients in antifungal formulations to improve the physicochemical properties and availability of the host molecules, have not been systematically studied for their effects and bioactivity without a complex active substance. This paper evaluates the effects of various cyclodextrins on the physiology of the test organism Candida boidinii. The research examines their impact on yeast growth, viability, biofilm formation and morphological changes. Native ACD, BCD, randomly methylated α- and ß-CD and quaternary ammonium α-CD and ß-CD were investigated in the 0.5-12.5 mM concentration range in both static and dynamic systems. The study revealed that certain cyclodextrins exhibited notable antifungal effects (up to ~69%) in dynamic systems; however, the biofilm formation was enhanced in static systems. The magnitude of these effects was influenced by several variables, including the size of the internal cavity, the concentration and structure of the cyclodextrins, and the contact time. Furthermore, the study found that CDs exhibited distinct effects in both static and dynamic systems, potentially related to their tendency to form aggregates. The findings suggest that cyclodextrins may have the potential to act as antifungal agents or growth promoters, depending on their structure and surrounding environments.


Asunto(s)
Antifúngicos , Biopelículas , Candida , Ciclodextrinas , Candida/efectos de los fármacos , Ciclodextrinas/química , Ciclodextrinas/farmacología , Antifúngicos/farmacología , Antifúngicos/química , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana
20.
Molecules ; 29(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38792072

RESUMEN

Olmesartan medoxomil (OLM) is a selective angiotensin II receptor antagonist used in the treatment of hypertension. Its therapeutic potential is limited by its poor water solubility, leading to poor bioavailability. Encapsulation of the drug substance by two methylated cyclodextrins, namely randomly methylated ß-cyclodextrin (RM-ß-CD) and heptakis(2,3,6-tri-O-methyl)-ß-cyclodextrin (TM-ß-CD), was carried out to overcome the limitation related to OLM solubility, which, in turn, is expected to result in an improved biopharmaceutical profile. Supramolecular entities were evaluated by means of thermoanalytical techniques (TG-thermogravimetry; DTG-derivative thermogravimetry), spectroscopic methods including powder X-ray diffractometry (PXRD), universal-attenuated total reflectance Fourier-transform infrared (UATR-FTIR) and UV spectroscopy, saturation solubility studies, and by a theoretical approach using molecular modeling. The phase solubility method reveals an AL-type diagram for both inclusion complexes, indicating a stoichiometry ratio of 1:1. The values of the apparent stability constant indicate the higher stability of the host-guest system OLM/RM-ß-CD. The physicochemical properties of the binary systems are different from those of the parent compounds, emphasizing the formation of inclusion complexes between the drug and CDs when the kneading method was used. The molecular encapsulation of OLM in RM-ß-CD led to an increase in drug solubility, thus the supramolecular adduct can be the subject of further research to design a new pharmaceutical formulation containing OLM, with improved bioavailability.


Asunto(s)
Olmesartán Medoxomilo , Solubilidad , Difracción de Rayos X , beta-Ciclodextrinas , beta-Ciclodextrinas/química , Olmesartán Medoxomilo/química , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA