Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.925
Filtrar
Más filtros

Intervalo de año de publicación
1.
Am J Hum Genet ; 110(5): 774-789, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37054711

RESUMEN

The Integrator complex is a multi-subunit protein complex that regulates the processing of nascent RNAs transcribed by RNA polymerase II (RNAPII), including small nuclear RNAs, enhancer RNAs, telomeric RNAs, viral RNAs, and protein-coding mRNAs. Integrator subunit 11 (INTS11) is the catalytic subunit that cleaves nascent RNAs, but, to date, mutations in this subunit have not been linked to human disease. Here, we describe 15 individuals from 10 unrelated families with bi-allelic variants in INTS11 who present with global developmental and language delay, intellectual disability, impaired motor development, and brain atrophy. Consistent with human observations, we find that the fly ortholog of INTS11, dIntS11, is essential and expressed in the central nervous systems in a subset of neurons and most glia in larval and adult stages. Using Drosophila as a model, we investigated the effect of seven variants. We found that two (p.Arg17Leu and p.His414Tyr) fail to rescue the lethality of null mutants, indicating that they are strong loss-of-function variants. Furthermore, we found that five variants (p.Gly55Ser, p.Leu138Phe, p.Lys396Glu, p.Val517Met, and p.Ile553Glu) rescue lethality but cause a shortened lifespan and bang sensitivity and affect locomotor activity, indicating that they are partial loss-of-function variants. Altogether, our results provide compelling evidence that integrity of the Integrator RNA endonuclease is critical for brain development.


Asunto(s)
Proteínas de Drosophila , Enfermedades del Sistema Nervioso , Adulto , Animales , Humanos , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mutación/genética , ARN Mensajero
2.
Brief Bioinform ; 24(5)2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37715282

RESUMEN

Gene regulatory network plays a crucial role in controlling the biological processes of living creatures. Deciphering the complex gene regulatory networks from experimental data remains a major challenge in system biology. Recent advances in single-cell RNA sequencing technology bring massive high-resolution data, enabling computational inference of cell-specific gene regulatory networks (GRNs). Many relevant algorithms have been developed to achieve this goal in the past years. However, GRN inference is still less ideal due to the extra noises involved in pseudo-time information and large amounts of dropouts in datasets. Here, we present a novel GRN inference method named Normi, which is based on non-redundant mutual information. Normi manipulates these problems by employing a sliding size-fixed window approach on the entire trajectory and conducts average smoothing strategy on the gene expression of the cells in each window to obtain representative cells. To further alleviate the impact of dropouts, we utilize the mixed KSG estimator to quantify the high-order time-delayed mutual information among genes, then filter out the redundant edges by adopting Max-Relevance and Min Redundancy algorithm. Moreover, we determined the optimal time delay for each gene pair by distance correlation. Normi outperforms other state-of-the-art GRN inference methods on both simulated data and single-cell RNA sequencing (scRNA-seq) datasets, demonstrating its superiority in robustness. The performance of Normi in real scRNA-seq data further reveals its ability to identify the key regulators and crucial biological processes.


Asunto(s)
Algoritmos , Redes Reguladoras de Genes
3.
Arterioscler Thromb Vasc Biol ; 44(3): 635-652, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38299355

RESUMEN

BACKGROUND: After subarachnoid hemorrhage (SAH), neutrophils are deleterious and contribute to poor outcomes. Neutrophils can produce neutrophil extracellular traps (NETs) after ischemic stroke. Our hypothesis was that, after SAH, neutrophils contribute to delayed cerebral ischemia (DCI) and worse outcomes via cerebrovascular occlusion by NETs. METHODS: SAH was induced via endovascular perforation, and SAH mice were given either a neutrophil-depleting antibody, a PAD4 (peptidylarginine deiminase 4) inhibitor (to prevent NETosis), DNAse-I (to degrade NETs), or a vehicle control. Mice underwent daily neurological assessment until day 7 and then euthanized for quantification of intravascular brain NETs (iNETs). Subsets of mice were used to quantify neutrophil infiltration, NETosis potential, iNETs, cerebral perfusion, and infarction. In addition, NET markers were assessed in the blood of aneurysmal SAH patients. RESULTS: In mice, SAH led to brain neutrophil infiltration within 24 hours, induced a pro-NETosis phenotype selectively in skull neutrophils, and caused a significant increase in iNETs by day 1, which persisted until at least day 7. Neutrophil depletion significantly reduced iNETs, improving cerebral perfusion, leading to less neurological deficits and less incidence of DCI (16% versus 51.9%). Similarly, PAD4 inhibition reduced iNETs, improved neurological outcome, and reduced incidence of DCI (5% versus 30%), whereas degrading NETs marginally improved outcomes. Patients with aneurysmal SAH who developed DCI had elevated markers of NETs compared with non-DCI patients. CONCLUSIONS: After SAH, skull-derived neutrophils are primed for NETosis, and there are persistent brain iNETs, which correlated with delayed deficits. The findings from this study suggest that, after SAH, neutrophils and NETosis are therapeutic targets, which can prevent vascular occlusion by NETs in the brain, thereby lessening the risk of DCI. Finally, NET markers may be biomarkers, which can predict which patients with aneurysmal SAH are at risk for developing DCI.


Asunto(s)
Isquemia Encefálica , Trastornos Cerebrovasculares , Trampas Extracelulares , Hemorragia Subaracnoidea , Humanos , Ratones , Animales , Hemorragia Subaracnoidea/complicaciones , Neutrófilos/metabolismo , Isquemia Encefálica/etiología , Isquemia Encefálica/prevención & control , Trastornos Cerebrovasculares/complicaciones
4.
Brain ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292993

RESUMEN

Erythrocyte Membrane Protein Band 4.1 Like 3 (EPB41L3: NM_012307.5), also known as DAL-1, encodes the ubiquitously expressed, neuronally enriched 4.1B protein, part of the 4.1 superfamily of membrane-cytoskeleton adaptors. 4.1B plays key roles in cell spreading, migration, and cytoskeletal scaffolding that support oligodendrocyte axon adhesions essential for proper myelination. We herein describe six individuals from five unrelated families with global developmental delay, intellectual disability, seizures, hypotonia, neuroregression, and delayed myelination. Exome sequencing identified biallelic variants in EPB41L3 in all affected individuals: two nonsense (c.466C>T, p.(R156*); c.2776C>T, p.(R926*)) and three frameshift (c.666delT, p.(F222Lfs*46); c.2289dupC, p.(V764Rfs*19); c.948_949delTG, p.(A317Kfs*33)). Quantitative-real time PCR and Western blot analysis in human fibroblasts harbouring EPB41L3:c.666delT, p.(F222Lfs*46) indicate ablation of EPB41L3 mRNA and 4.1B protein expression. Inhibition of the nonsense mediated decay (NMD) pathway led to an upregulation of EPB41L3:c.666delT transcripts, supporting NMD as a pathogenic mechanism. Epb41l3-deficient mouse oligodendroglia cells showed significant reduction in mRNA expression of key myelin genes, reduced branching, and increased apoptosis. Our report provides the first clinical description of an autosomal recessive disorder associated with variants in EPB41L3, which we refer to as EPB41L3-associated developmental disorder (EADD). Moreover, our functional studies substantiate the pathogenicity of EPB41L3 hypothesized loss-of-function variants.

5.
Brain ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39166526

RESUMEN

Transcranial direct current stimulation (tDCS) has garnered significant interest for its potential to enhance cognitive functions and as a therapeutic intervention in various cognitive disorders. However, the clinical application of tDCS has been hampered by significant variability in its cognitive outcomes. Furthermore, the widespread use of tDCS has raised concerns regarding its safety and efficacy, particularly due to our limited understanding of its underlying neural mechanisms at the cellular level. We still do not know 'where', 'when', and 'how' tDCS modulates information encoding by neurons, to lead to the observed changes in cognitive functions. Without elucidating these fundamental unknowns, the root causes of its outcome variability and long-term safety remain elusive, challenging the effective application of tDCS in clinical settings. Addressing this gap, our study investigates the effects of tDCS, applied over the dorsolateral prefrontal cortex (dlPFC), on cognitive abilities and individual neuron activity in macaque monkeys performing cognitive tasks. Like humans performing a Delayed Match-to-Sample task, monkeys exhibited practice-related slowing in their responses (within-session behavioural adaptation). Concurrently, there were practice-related changes in simultaneously recorded activity of prefrontal neurons (within-session neuronal adaptation). Anodal tDCS attenuated both these behavioural and neuronal adaptations when compared to sham. Furthermore, tDCS abolished the correlation between monkeys' response time and neuronal firing rate. At a single-cell level, we also found that following tDCS, neuronal firing rate was more likely to exhibit task-specific modulation than after sham stimulation. These tDCS-induced changes in both behaviour and neuronal activity persisted even after the end of tDCS stimulation. Importantly, multiple applications of tDCS did not alter burst-like firing rates of individual neurons when compared to sham stimulation. This suggests that tDCS modulates neural activity without enhancing susceptibility to epileptiform activity, confirming a potential for safe use in clinical settings. Our research contributes unprecedented insights into the 'where', 'when', and 'how' of tDCS effects on neuronal activity and cognitive functions by showing that modulation of monkeys' behaviour by the tDCS of the prefrontal cortex is accompanied by alterations in prefrontal cortical cell activity ('where') during distinct trial phases ('when'). Importantly, tDCS led to task-specific and state-dependent alterations in prefrontal cell activities ('how'). Our findings suggest a significant shift from the view that the tDCS effects are merely due to polarity-specific shifts in cortical excitability and instead, propose a more complex mechanism of action for tDCS that encompasses various aspects of cortical neuronal activity without increasing burst-like epileptiform susceptibility.

6.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38798003

RESUMEN

Deciding whether to wait for a future reward is crucial for surviving in an uncertain world. While seeking rewards, agents anticipate a reward in the present environment and constantly face a trade-off between staying in their environment or leaving it. It remains unclear, however, how humans make continuous decisions in such situations. Here, we show that anticipatory activity in the anterior prefrontal cortex, ventrolateral prefrontal cortex, and hippocampus underpins continuous stay-leave decision-making. Participants awaited real liquid rewards available after tens of seconds, and their continuous decision was tracked by dynamic brain activity associated with the anticipation of a reward. Participants stopped waiting more frequently and sooner after they experienced longer delays and received smaller rewards. When the dynamic anticipatory brain activity was enhanced in the anterior prefrontal cortex, participants remained in their current environment, but when this activity diminished, they left the environment. Moreover, while experiencing a delayed reward in a novel environment, the ventrolateral prefrontal cortex and hippocampus showed anticipatory activity. Finally, the activity in the anterior prefrontal cortex and ventrolateral prefrontal cortex was enhanced in participants adopting a leave strategy, whereas those remaining stationary showed enhanced hippocampal activity. Our results suggest that fronto-hippocampal anticipatory dynamics underlie continuous decision-making while anticipating a future reward.


Asunto(s)
Anticipación Psicológica , Toma de Decisiones , Hipocampo , Imagen por Resonancia Magnética , Corteza Prefrontal , Recompensa , Humanos , Masculino , Hipocampo/fisiología , Femenino , Toma de Decisiones/fisiología , Anticipación Psicológica/fisiología , Corteza Prefrontal/fisiología , Adulto Joven , Adulto , Mapeo Encefálico
7.
Mol Cell Neurosci ; 130: 103960, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39179163

RESUMEN

Neurodegeneration associated with ageing is closely linked to oxidative stress (OS) and disrupted calcium homeostasis. Some areas of the brain, like the hippocampus - particularly the CA1 region - have shown a high susceptibility to age-related changes, displaying early signs of pathology and neuronal loss. Antioxidants such as α-tocopherol (αT) have been effective in mitigating the impact of OS during ageing. αT homeostasis is primarily regulated by the α-tocopherol transfer protein (αTTP), which is widely distributed throughout the brain - where it plays a crucial role in maintaining αT levels within neuronal cells. This study investigates the distribution of αTTP in the hippocampus of 4- and 24-month-old Pol µ knockout mice (Pol µ-/-), a delayed-ageing model, and the wild type (Pol µ+/+). We also examine the colocalisation in the stratum oriens (st.or) of CA1 region with the primary interneuron populations expressing calcium-binding proteins (CBPs) (calbindin (CB), parvalbumin (PV), and calretinin (CR)). Our findings reveal that αTTP immunoreactivity (-IR) in the st.or of Pol µ mice is significantly reduced. The density of PV-expressing interneurons (INs) increased in aged mice in both Pol µ genotypes (Pol µ-/- and Pol µ+/+), although the density of PV-positive INs was lower in the aged Pol µ-/- mice compared to wild-type mice. By contrast, CR- and CB-positive INs in Pol µ mice remained unchanged during ageing. Furthermore, double immunohistochemistry reveals the colocalisation of αTTP with CBPs in INs of the CA1 st.or. Our study also shows that the PV/αTTP-positive IN population remains unchanged in all groups. A significant decrease of CB/αTTP-positive INs in young Pol µ-/- mice has been detected, as well as a significant increase in CR/αTTP-IR in older Pol µ-/- animals. These results suggest that the differential expression of αTTP and CBPs could have a crucial effect in aiding the survival and maintenance of the different IN populations in the CA1 st.or, and their coexpression could contribute to the enhancement of their resistance to OS-related damage and neurodegeneration associated with ageing.


Asunto(s)
Envejecimiento , Región CA1 Hipocampal , Proteínas Portadoras , Interneuronas , Parvalbúminas , Animales , Masculino , Ratones , Envejecimiento/metabolismo , Región CA1 Hipocampal/metabolismo , Calbindinas/metabolismo , Calbindinas/genética , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Interneuronas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Parvalbúminas/metabolismo
8.
Genomics ; 116(2): 110778, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38163575

RESUMEN

Ischemia-reperfusion injury (IRI) is an inevitable pathophysiological phenomenon in kidney transplantation. Necroptosis is an undoubtedly important contributing mechanism in renal IRI. We first screened differentially expressed necroptosis-related genes (DENRGs) from public databases. Eight DENRGs were validated by independent datasets and verified by qRT-PCR in a rat IRI model. We used univariate and multivariate Cox regression analyses to establish a prognostic signature, and graft survival analysis was performed. Immune infiltrating landscape analysis and gene set enrichment analysis (GSEA) were performed to understand the underlying mechanisms of graft loss, which suggested that necroptosis may aggravate the immune response, resulting in graft loss. Subsequently, a delayed graft function (DGF) diagnostic signature was constructed using the Least Absolute Shrinkage and Selection Operator (LASSO) and exhibited robust efficacy in validation datasets. After comprehensively analyzing DENRGs during IRI, we successfully constructed a prognostic signature and DGF predictive signature, which may provide clinical insights for kidney transplant.


Asunto(s)
Trasplante de Riñón , Ratas , Animales , Trasplante de Riñón/efectos adversos , Funcionamiento Retardado del Injerto/diagnóstico , Funcionamiento Retardado del Injerto/genética , Necroptosis , Riñón , Supervivencia de Injerto/fisiología
9.
Nano Lett ; 24(10): 3282-3289, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38421230

RESUMEN

X-ray radiation information storage, characterized by its ability to detect radiation with delayed readings, shows great promise in enabling reliable and readily accessible X-ray imaging and dosimetry in situations where conventional detectors may not be feasible. However, the lack of specific strategies to enhance the memory capability dramatically hampers its further development. Here, we present an effective anion substitution strategy to enhance the storage capability of NaLuF4:Tb3+ nanocrystals attributed to the increased concentration of trapping centers under X-ray irradiation. The stored radiation information can be read out as optical brightness via thermal, 980 nm laser, or mechanical stimulation, avoiding real-time measurement under ionizing radiation. Moreover, the radiation information can be maintained for more than 13 days, and the imaging resolution reaches 14.3 lp mm-1. These results demonstrate that anion substitution methods can effectively achieve high storage capability and broaden the application scope of X-ray information storage.

10.
Am J Physiol Cell Physiol ; 326(1): C74-C88, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37982174

RESUMEN

Diversity in the functional expression of ion channels contributes to the unique patterns of activity generated in visceral sensory A-type myelinated neurons versus C-type unmyelinated neurons in response to their natural stimuli. In the present study, Kv2 channels were identified as underlying a previously uncharacterized delayed rectifying potassium current expressed in both A- and C-type nodose ganglion neurons. Kv2.1 and 2.2 appear confined to the soma and initial segment of these sensory neurons; however, neither was identified in their central presynaptic terminals projecting onto relay neurons in the nucleus of the solitary tract (nTS). Kv2.1 and Kv2.2 were also not detected in the peripheral axons and sensory terminals in the aortic arch. Functionally, in nodose neuron somas, Kv2 currents exhibited frequency-dependent current inactivation and contributed to action potential repolarization in C-type neurons but not A-type neurons. Within the nTS, the block of Kv2 currents does not influence afferent presynaptic calcium influx or glutamate release in response to afferent activation, supporting our immunohistochemical observations. On the other hand, Kv2 channels contribute to membrane hyperpolarization and limit action potential discharge rate in second-order neurons. Together, these data demonstrate that Kv2 channels influence neuronal discharge within the vagal afferent-nTS circuit and indicate they may play a significant role in viscerosensory reflex function.NEW & NOTEWORTHY We demonstrate the expression and function of the voltage-gated delayed rectifier potassium channel Kv2 in vagal nodose neurons. Within sensory neurons, Kv2 channels limit the width of the broader C-type but not narrow A-type action potential. Within the nucleus of the solitary tract (nTS), the location of the vagal terminal field, Kv2 does not influence glutamate release. However, Kv2 limits the action potential discharge of nTS relay neurons. These data suggest a critical role for Kv2 in the vagal-nTS reflex arc.


Asunto(s)
Canales de Potasio con Entrada de Voltaje , Núcleo Solitario , Ratas , Animales , Núcleo Solitario/fisiología , Ratas Sprague-Dawley , Neuronas/metabolismo , Glutamatos/metabolismo , Reflejo
11.
J Proteome Res ; 23(1): 316-328, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38148664

RESUMEN

Delayed cerebral ischemia (DCI) following aneurysmal subarachnoid hemorrhage (aSAH) is a major cause of complications and death. Here, we set out to identify high-performance predictive biomarkers of DCI and its underlying metabolic disruptions using metabolomics and lipidomics approaches. This single-center prospective observational study enrolled 61 consecutive patients with severe aSAH; among them, 22 experienced a DCI. Nine patients without aSAH were included as validation controls. Blood and cerebrospinal fluid (CSF) were sampled within the first 24 h after admission. We identified a panel of 20 metabolites that, together, showed high predictive performance for DCI. This panel of metabolites included lactate, cotinine, salicylate, 6 phosphatidylcholines, and 4 sphingomyelins. The interplay of the metabolome and the lipidome found between CSF and plasma in our patients underscores that aSAH and its associated DCI complications can extend beyond cerebral implications, with a peripheral dimension as well. As an illustration, early biological disruptions that might explain the subsequent DCI found systemic hypoxia driven mainly by higher blood lactate, arginine, and proline metabolism likely associated with vascular NO and disrupted ceramide/sphingolipid metabolism. We conclude that targeting early peripheral hypoxia preceding DCI could provide an interesting strategy for the prevention of vascular dysfunction.


Asunto(s)
Isquemia Encefálica , Hemorragia Subaracnoidea , Humanos , Hemorragia Subaracnoidea/complicaciones , Isquemia Encefálica/etiología , Biomarcadores , Ácido Láctico , Hipoxia
12.
J Physiol ; 602(8): 1791-1813, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38532618

RESUMEN

Previous studies have suggested that an extended period of ventilation before delayed cord clamping (DCC) augments birth-related rises in pulmonary arterial (PA) blood flow. However, it is unknown whether this greater rise in PA flow is accompanied by increases in left ventricular (LV) output and systemic arterial perfusion or whether it reflects enhanced left-to-right shunting across the ductus arteriosus and/or foramen ovale (FO), with decreased systemic arterial perfusion. Using an established preterm lamb birth transition model, this study compared the effect of a short (∼40 s, n = 11), moderate (∼2 min, n = 11) or extended (∼5 min, n = 12) period of initial mechanical lung ventilation before DCC on flow probe-derived perinatal changes in PA flow, LV output, total systemic arterial blood flow, ductal shunting and FO shunting. The LV output was relatively stable during initial ventilation but increased after DCC, with similar responses in all groups. Systemic arterial flow patterns displayed only minor differences during brief and moderate periods of initial ventilation and were similar after DCC. However, an increase in PA flow was augmented with an extended initial ventilation (P < 0.001), owing to an earlier onset of left-to-right ductal and FO shunting (P < 0.001), and was accompanied by a pronounced reduction in total systemic arterial flow (P = 0.005) that persisted for 4 min after DCC (P ≤ 0.039). These findings suggest that, owing to increased left-to-right shunting and a greater reduction in systemic arterial perfusion, an extended period of ventilation before DCC does not result in greater perinatal circulatory benefits than shorter periods of initial ventilation in the birth transition. KEY POINTS: Previous studies suggest that an extended period of initial ventilation before delayed cord clamping (DCC) augments birth-related rises in pulmonary arterial (PA) blood flow. It is unknown whether this greater rise in PA flow is accompanied by an increased left ventricular output and systemic arterial perfusion or whether it reflects enhanced left-to-right shunting across the ductus arteriosus and/or foramen ovale, with decreased systemic arterial perfusion. Anaesthetized preterm fetal lambs instrumented with central arterial flow probes underwent a brief (∼40 s), moderate (∼2 min) or extended (∼5 min) period of ventilation before DCC. Perinatal changes in left ventricular output were similar in all groups, but extended initial ventilation augmented both perinatal increases in PA flow, owing to earlier onset and greater left-to-right ductal and foramen ovale shunting, and perinatal reductions in total systemic arterial perfusion. Extended ventilation before DCC does not confer a greater perinatal circulatory benefit than shorter periods of initial ventilation.


Asunto(s)
Conducto Arterial , Hipertensión Pulmonar , Embarazo , Femenino , Ovinos , Animales , Clampeo del Cordón Umbilical , Pulmón/irrigación sanguínea , Arteria Pulmonar/fisiología , Conducto Arterial/fisiología , Perfusión , Constricción
13.
Stroke ; 55(9): 2247-2253, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38994584

RESUMEN

BACKGROUND: Previous cohort studies of hospitalized patients with a delayed diagnosis of ischemic stroke found that these patients often had an initial emergency department (ED) diagnosis of a fall. We sought to evaluate whether ED visits for a fall resulting in discharge to home (ie, treat-and-release visits) were associated with increased short-term ischemic stroke risk. METHODS: A case-crossover design was used to compare ED visits for falls during case periods (0-15, 16-30, 31-90, and 91-180 days before stroke) and control periods (equivalent time periods exactly 1 year before stroke) using administrative data from the Healthcare Cost and Utilization Project on all hospital admissions and ED visits across 10 states from 2016 to 2020. To identify ED treat-and-release visits for a fall and patients hospitalized for acute ischemic stroke, we used previously validated International Classification of Diseases, Tenth Revision, Clinical Modification codes. Odds ratios and 95% CIs were calculated using conditional logistic regression. RESULTS: Among 90 592 hospitalized patients with ischemic stroke, 5230 (5.8%) had an ED treat-and-release visit for a fall within 180 days before their stroke. Patients with an ED treat-and-release visit for a fall were older (mean age, 74.7 [SD, 14.6] versus 70.8 [SD, 15.1] years), more often female (61.9% versus 53.4%), and had higher rates of vascular comorbidities than other patients with stroke. ED treat-and-release visits for a fall were significantly more common in the 15 days before stroke compared with the 15-day control period 1 year earlier (odds ratio, 2.7 [95% CI, 2.4-3.1]). The association between stroke and a preceding ED treat-and-release visit for a fall decreased in magnitude with increasing temporal distance from stroke. CONCLUSIONS: ED treat-and-release visits for a fall are associated with significantly increased short-term ischemic stroke risk. These visits may be opportunities to improve stroke diagnostic accuracy and treatment in the ED.


Asunto(s)
Accidentes por Caídas , Servicio de Urgencia en Hospital , Humanos , Femenino , Masculino , Servicio de Urgencia en Hospital/estadística & datos numéricos , Anciano , Accidentes por Caídas/estadística & datos numéricos , Persona de Mediana Edad , Anciano de 80 o más Años , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/terapia , Accidente Cerebrovascular Isquémico/epidemiología , Accidente Cerebrovascular Isquémico/terapia , Factores de Riesgo , Estudios Cruzados , Alta del Paciente/estadística & datos numéricos , Hospitalización/estadística & datos numéricos
14.
Stroke ; 55(5): 1299-1307, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38488379

RESUMEN

BACKGROUND: Time from stroke onset to hospital arrival determines treatment and impacts outcome. Structural, socioeconomic, and environmental factors are associated with health inequity and onset-to-arrival in adult stroke. We aimed to assess the association between health inequity and onset-to-arrival in a pediatric comprehensive stroke center. METHODS: A retrospective observational study was conducted on a consecutive cohort of children (>28 days-18 years) diagnosed with acute arterial ischemic stroke (AIS) between 2004 and 2019. Neighborhood-level material deprivation was derived from residential postal codes and used as a proxy measure for health inequity. Patients were stratified by level of neighborhood-level material deprivation, and onset-to-arrival was categorized into 3 groups: <6, 6 to 24, and >24 hours. Association between neighborhood-level material deprivation and onset-to-arrival was assessed in multivariable ordinal logistic regression analyses adjusting for sociodemographic and clinical factors. RESULTS: Two hundred and twenty-nine children were included (61% male; median age [interquartile range] at stroke diagnosis 5.8-years [1.1-11.3]). Over the 16-year study period, there was an increase in proportion of children diagnosed with AIS living in the most deprived neighborhoods and arriving at the emergency room within 6 hours (P=0.01). Among Asian patients, a higher proportion lived in the most deprived neighborhoods (P=0.02) and level of material deprivation was associated with AIS risk factors (P=0.001). CONCLUSIONS: Our study suggests an increase in pediatric stroke in deprived neighborhoods and certain communities, and earlier arrival times to the emergency room over time. However, whether these changes are due to an increase in incidence of childhood AIS or increased awareness and diagnosis is yet to be determined. The association between AIS risk factors and material deprivation highlights the intersectionality of clinical factors and social determinants of health. Finally, whether material deprivation impacts onset-to-arrival is likely complex and requires further examination.

15.
Pflugers Arch ; 476(3): 395-405, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38102488

RESUMEN

Delayed onset muscle soreness (DOMS) of the lower back is considered a surrogate for acute low back pain (aLBP) in experimental studies. Of note, it is often unquestioningly assumed to be muscle pain. To date, there has not been a study analyzing lumbar DOMS in terms of its pain origin, which was the aim of this study. Sixteen healthy individuals (L-DOMS) were enrolled for the present study and matched to participants from a previous study (n = 16, L-PAIN) who had undergone selective electrical stimulation of the thoracolumbar fascia and the multifidus muscle. DOMS was induced in the lower back of the L-DOMS group using eccentric trunk extensions performed until exhaustion. On subsequent days, pain on palpation (100-mm analogue scale), pressure pain threshold (PPT), and the Pain Sensation Scale (SES) were used to examine the sensory characteristics of DOMS. Pain on palpation showed a significant increase 24 and 48 h after eccentric training, whereas PPT was not affected (p > 0.05). Factor analysis of L-DOMS and L-PAIN sensory descriptors (SES) yielded a stable three-factor solution distinguishing superficial thermal ("heat pain ") from superficial mechanical pain ("sharp pain") and "deep pain." "Heat pain " and "deep pain" in L-DOMS were almost identical to sensory descriptors from electrical stimulation of fascial tissue (L-PAIN, all p > 0.679) but significantly different from muscle pain (all p < 0.029). The differences in sensory description patterns as well as in PPT and self-reported DOMS for palpation pain scores suggest that DOMS has a fascial rather than a muscular origin.


Asunto(s)
Músculo Esquelético , Mialgia , Humanos , Músculo Esquelético/fisiología , Umbral del Dolor/fisiología , Fascia , Dimensión del Dolor
16.
J Neurochem ; 168(9): 2736-2750, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38814273

RESUMEN

The reliability of plasma biomarkers of Alzheimer's disease (AD) can be compromised by protease-induced degradation. This can limit the feasibility of conducting plasma biomarker studies in environments that lack the capacity for immediate processing and appropriate storage of blood samples. We hypothesized that blood collection tube supplementation with protease inhibitors can improve the stability of plasma biomarkers at room temperatures (RT). In this study, we conducted a comparative analysis of blood biomarker stability in traditional ethylenediaminetetraacetic acid (EDTA) tubes versus BD™ P100 collection tubes, the latter being coated with a protease inhibitor cocktail. The stability of six plasma AD biomarkers was evaluated over time under RT conditions. We evaluated three experimental approaches. In Approach 1, pooled plasma samples underwent storage at RT for up to 96 h. In Approach 2, plasma samples isolated upfront from whole blood collected into EDTA or P100 tubes were stored at RT for 0 h or 24 h before biomarker measurements. In Approach 3, whole blood samples were collected into paired EDTA and P100 tubes, followed by storage at RT for 0 h or 24 h before isolating the plasma for analyses. Biomarkers were measured with Single Molecule Array (Simoa) and immunoprecipitation-mass spectrometry (IP-MS) assays. Both the IP-MS and Simoa methods revealed that the use of P100 tubes significantly improves the stability of Aß42 and Aß40 across all approaches. However, the Aß42/Aß40 ratio levels were significantly stabilized only in the IP-MS assay in Approach 3. No significant differences were observed in the levels of plasma p-tau181, GFAP, and NfL for samples collected using either tube type in any of the approaches. Supplementation of blood collection tubes with protease inhibitors could reduce the protease-induced degradation of plasma Aß42 and Aß40, and the Aß42/40 ratio for the IP-MS assay. These findings have crucial implications for preanalytical procedures, particularly in resource-limited settings.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Biomarcadores , Recolección de Muestras de Sangre , Inhibidores de Proteasas , Enfermedad de Alzheimer/sangre , Humanos , Recolección de Muestras de Sangre/métodos , Biomarcadores/sangre , Inhibidores de Proteasas/farmacología , Masculino , Anciano , Femenino , Péptidos beta-Amiloides/sangre , Anciano de 80 o más Años , Ácido Edético/farmacología , Proteínas tau/sangre , Fragmentos de Péptidos/sangre
17.
Curr Issues Mol Biol ; 46(9): 9555-9564, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39329919

RESUMEN

This study investigated the potential of phosphodiesterase type 5 (PDE-5) inhibitors, specifically tadalafil, in preventing the delayed cerebral ischemia (DCI) post-rupture of cerebral aneurysms. A total of 19 rabbits were used in this study, divided into different treatment groups, including nimodipine alone, tadalafil alone, and a combination of nimodipine and tadalafil. Both nimodipine and tadalafil showed some impact on reducing endothelial apoptosis in the basilar arteries, although the effects were not statistically significant. Notably, the nimodipine group exhibited significantly lower levels of Bax in the small arterioles compared to the SAH group. These findings suggest that while tadalafil may not directly prevent endothelial cell death like nimodipine, its neuroprotective properties hint at its potential utility in DCI treatment. Further research involving a broader range of apoptosis-related proteins is recommended to enhance our understanding in this area.

18.
Am J Epidemiol ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39367710

RESUMEN

Despite established links between prenatal nutritional deprivation and impaired offspring growth, the underlying dynamics and potential moderators remain largely unexplored. This study investigates the dynamics underlying Ramadan during pregnancy and its associations with children's linear growth, using data from the Indonesian Family Life Survey (1993 - 2015). We exploit Ramadan during pregnancy as a natural experiment, separating exposure from maternal background characteristics and season of birth effects. Employing OLS and logistic regressions, we explore two key mechanisms predicted by medical theory. First, the realization of health impairments in response to prenatal shocks is influenced by postnatal circumstances. Our results reveal significant growth impairments primarily in children raised under poor sanitary conditions, which is a risk factor for diminished linear growth by itself. Secondly, we assess whether prenatal Ramadan prompts epigenetic shifts towards earlier reproductive activity, potentially at the expense of height growth. Our data shows that prenatally exposed women tend to have their first childbirth at a younger age, though menarche onset remains unaffected. These results suggest that postnatal environments play a crucial role in mitigating sensitivity to prenatal shocks, highlighting the critical need for favorable living conditions for all children.

19.
Am J Epidemiol ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39317692

RESUMEN

Current methods for identifying temporal windows of effect for time-varying exposures in omics settings can control false discovery rates at the biomarker-level but cannot efficiently screen for timing-specific effects in high dimensions. Current approaches leverage separate models for site screening and identification of susceptible time windows, which miss associations that vary over time. We introduce the epigenome-wide distributed lag model (EWDLM), a novel approach that combines traditional false discovery rate methods with the distributed lag model (DLM) to screen for timing-specific effects in high dimensional settings. This is accomplished by marginalizing DLM effect estimates over time and correcting for multiple comparisons. In a simulation investigating timing-specific effects of ambient air pollution during pregnancy on DNA methylation across the epigenome at age 12 years, EWDLM achieved an increased sensitivity for associations limited to specific periods of time compared to traditional two-stage approaches. In a real-world EWDLM analysis, 353 CpG sites at which DNAm measured at age 12 was significantly associated with PM2.5 exposure during pregnancy were identified. EWDLM is a novel method that provides an efficient and sensitive way to screen epigenomic datasets for associations with exposures localized to specific time periods.

20.
Cancer ; 130(18): 3090-3105, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39012928

RESUMEN

Neuroendocrine neoplasms are a diverse group of neoplasms that can occur in various areas throughout the body. Well-differentiated neuroendocrine tumors (NETs) most often arise in the gastrointestinal tract, termed gastroenteropancreatic neuroendocrine tumors (GEP-NETs). Although GEP-NETs are still uncommon, their incidence and prevalence have been steadily increasing over the past decades. The primary treatment for GEP-NETs is surgery, which offers the best chance for a cure. However, because GEP-NETs are often slow-growing and do not cause symptoms until they have spread widely, curative surgery is not always an option. Significant advances have been made in systemic and locoregional treatment options in recent years, including peptide-receptor radionuclide therapy with α and ß emitters, somatostatin analogs, chemotherapy, and targeted molecular therapies.


Asunto(s)
Neoplasias Intestinales , Tumores Neuroendocrinos , Neoplasias Pancreáticas , Neoplasias Gástricas , Humanos , Tumores Neuroendocrinos/terapia , Tumores Neuroendocrinos/patología , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patología , Neoplasias Gástricas/terapia , Neoplasias Gástricas/patología , Neoplasias Intestinales/terapia , Neoplasias Intestinales/patología , Somatostatina/análogos & derivados , Somatostatina/uso terapéutico , Terapia Molecular Dirigida/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA