Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(3): 594-613, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38423010

RESUMEN

The endosomal sorting complex required for transport (ESCRT) machinery is essential for membrane remodeling and autophagy and it comprises three multi-subunit complexes (ESCRT I-III). We report nine individuals from six families presenting with a spectrum of neurodevelopmental/neurodegenerative features caused by bi-allelic variants in SNF8 (GenBank: NM_007241.4), encoding the ESCRT-II subunit SNF8. The phenotypic spectrum included four individuals with severe developmental and epileptic encephalopathy, massive reduction of white matter, hypo-/aplasia of the corpus callosum, neurodevelopmental arrest, and early death. A second cohort shows a milder phenotype with intellectual disability, childhood-onset optic atrophy, or ataxia. All mildly affected individuals shared the same hypomorphic variant, c.304G>A (p.Val102Ile). In patient-derived fibroblasts, bi-allelic SNF8 variants cause loss of ESCRT-II subunits. Snf8 loss of function in zebrafish results in global developmental delay and altered embryo morphology, impaired optic nerve development, and reduced forebrain size. In vivo experiments corroborated the pathogenicity of the tested SNF8 variants and their variable impact on embryo development, validating the observed clinical heterogeneity. Taken together, we conclude that loss of ESCRT-II due to bi-allelic SNF8 variants is associated with a spectrum of neurodevelopmental/neurodegenerative phenotypes mediated likely via impairment of the autophagic flux.


Asunto(s)
Epilepsia Generalizada , Atrofia Óptica , Animales , Humanos , Niño , Pez Cebra/genética , Atrofia Óptica/genética , Fenotipo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética
2.
Am J Hum Genet ; 111(6): 1184-1205, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38744284

RESUMEN

Anoctamins are a family of Ca2+-activated proteins that may act as ion channels and/or phospholipid scramblases with limited understanding of function and disease association. Here, we identified five de novo and two inherited missense variants in ANO4 (alias TMEM16D) as a cause of fever-sensitive developmental and epileptic or epileptic encephalopathy (DEE/EE) and generalized epilepsy with febrile seizures plus (GEFS+) or temporal lobe epilepsy. In silico modeling of the ANO4 structure predicted that all identified variants lead to destabilization of the ANO4 structure. Four variants are localized close to the Ca2+ binding sites of ANO4, suggesting impaired protein function. Variant mapping to the protein topology suggests a preliminary genotype-phenotype correlation. Moreover, the observation of a heterozygous ANO4 deletion in a healthy individual suggests a dysfunctional protein as disease mechanism rather than haploinsufficiency. To test this hypothesis, we examined mutant ANO4 functional properties in a heterologous expression system by patch-clamp recordings, immunocytochemistry, and surface expression of annexin A5 as a measure of phosphatidylserine scramblase activity. All ANO4 variants showed severe loss of ion channel function and DEE/EE associated variants presented mild loss of surface expression due to impaired plasma membrane trafficking. Increased levels of Ca2+-independent annexin A5 at the cell surface suggested an increased apoptosis rate in DEE-mutant expressing cells, but no changes in Ca2+-dependent scramblase activity were observed. Co-transfection with ANO4 wild-type suggested a dominant-negative effect. In summary, we expand the genetic base for both encephalopathic sporadic and inherited fever-sensitive epilepsies and link germline variants in ANO4 to a hereditary disease.


Asunto(s)
Anoctaminas , Mutación Missense , Humanos , Anoctaminas/genética , Anoctaminas/metabolismo , Mutación Missense/genética , Masculino , Femenino , Epilepsia/genética , Niño , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Estudios de Asociación Genética , Linaje , Calcio/metabolismo , Genes Dominantes , Preescolar , Células HEK293 , Adolescente
3.
Proc Natl Acad Sci U S A ; 120(32): e2303402120, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37523531

RESUMEN

The endoplasmic reticulum (ER) and mitochondria form a unique subcellular compartment called mitochondria-associated ER membranes (MAMs). Disruption of MAMs impairs Ca2+ homeostasis, triggering pleiotropic effects in the neuronal system. Genome-wide kinase-MAM interactome screening identifies casein kinase 2 alpha 1 (CK2A1) as a regulator of composition and Ca2+ transport of MAMs. CK2A1-mediated phosphorylation of PACS2 at Ser207/208/213 facilitates MAM localization of the CK2A1-PACS2-PKD2 complex, regulating PKD2-dependent mitochondrial Ca2+ influx. We further reveal that mutations of PACS2 (E209K and E211K) associated with developmental and epileptic encephalopathy-66 (DEE66) impair MAM integrity through the disturbance of PACS2 phosphorylation at Ser207/208/213. This, in turn, causes the reduction of mitochondrial Ca2+ uptake and the dramatic increase of the cytosolic Ca2+ level, thereby, inducing neurotransmitter release at the axon boutons of glutamatergic neurons. In conclusion, our findings suggest a molecular mechanism that MAM alterations induced by pathological PACS2 mutations modulate Ca2+-dependent neurotransmitter release.


Asunto(s)
Retículo Endoplásmico , Mitocondrias , Mitocondrias/metabolismo , Retículo Endoplásmico/metabolismo , Fosforilación , Neurotransmisores/metabolismo
4.
Annu Rev Pharmacol Toxicol ; 62: 641-662, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34579535

RESUMEN

Epilepsy is an etiologically heterogeneous condition; however, genetic factors are thought to play a role in most patients. For those with infantile-onset developmental and epileptic encephalopathy (DEE), a genetic diagnosis is now obtained in more than 50% of patients. There is considerable motivation to utilize these molecular diagnostic data to help guide treatment, as children with DEEs often have drug-resistant seizures as well as developmental impairment related to cerebral epileptiform activity. Precision medicine approaches have the potential to dramatically improve the quality of life for these children and their families. At present, treatment can be targeted for patients with diagnoses in many genetic causes of infantile-onset DEE, including genes encoding sodium or potassium channel subunits, tuberous sclerosis, and congenital metabolic diseases. Precision medicine may refer to more intelligent choices of conventional antiseizure medications, repurposed agents previously used for other indications, novel compounds, enzyme replacement, or gene therapy approaches.


Asunto(s)
Encefalopatías , Medicina de Precisión , Niño , Humanos , Calidad de Vida
5.
Am J Hum Genet ; 109(12): 2253-2269, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36413998

RESUMEN

Heterozygous pathogenic variants in DNM1 cause developmental and epileptic encephalopathy (DEE) as a result of a dominant-negative mechanism impeding vesicular fission. Thus far, pathogenic variants in DNM1 have been studied with a canonical transcript that includes the alternatively spliced exon 10b. However, after performing RNA sequencing in 39 pediatric brain samples, we find the primary transcript expressed in the brain includes the downstream exon 10a instead. Using this information, we evaluated genotype-phenotype correlations of variants affecting exon 10a and identified a cohort of eleven previously unreported individuals. Eight individuals harbor a recurrent de novo splice site variant, c.1197-8G>A (GenBank: NM_001288739.1), which affects exon 10a and leads to DEE consistent with the classical DNM1 phenotype. We find this splice site variant leads to disease through an unexpected dominant-negative mechanism. Functional testing reveals an in-frame upstream splice acceptor causing insertion of two amino acids predicted to impair oligomerization-dependent activity. This is supported by neuropathological samples showing accumulation of enlarged synaptic vesicles adherent to the plasma membrane consistent with impaired vesicular fission. Two additional individuals with missense variants affecting exon 10a, p.Arg399Trp and p.Gly401Asp, had a similar DEE phenotype. In contrast, one individual with a missense variant affecting exon 10b, p.Pro405Leu, which is less expressed in the brain, had a correspondingly less severe presentation. Thus, we implicate variants affecting exon 10a as causing the severe DEE typically associated with DNM1-related disorders. We highlight the importance of considering relevant isoforms for disease-causing variants as well as the possibility of splice site variants acting through a dominant-negative mechanism.


Asunto(s)
Encefalopatías , Dinaminas , Síndromes Epilépticos , Humanos , Encefalopatías/genética , Causalidad , Dinaminas/genética , Exones/genética , Heterocigoto , Mutación/genética , Síndromes Epilépticos/genética
6.
Brain ; 147(1): 224-239, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37647766

RESUMEN

Genetic variants associated with developmental and epileptic encephalopathies have been identified in the GABRB3 gene that encodes the ß3 subunit of GABAA receptors. Typically, variants alter receptor sensitivity to GABA resulting in either gain- or loss-of-function, which correlates with patient phenotypes. However, it is unclear how another important receptor property, desensitization, contributes to the greater clinical severity of gain-of-function variants. Desensitization properties of 20 gain-of-function GABRB3 variant receptors were evaluated using two-electrode voltage-clamp electrophysiology. The parameters measured included current decay rates and steady-state currents. Selected variants with increased or reduced desensitization were also evaluated using whole-cell electrophysiology in transfected mammalian cell lines. Of the 20 gain-of-function variants assessed, 13 were found to alter receptor desensitization properties. Seven variants reduced desensitization at equilibrium, which acts to worsen gain-of-function traits. Six variants accelerated current decay kinetics, which limits gain-of-function traits. All affected patients displayed severe clinical phenotypes with intellectual disability and difficult-to-treat epilepsy. Nevertheless, variants that reduced desensitization at equilibrium were associated with more severe clinical outcomes. This included younger age of first seizure onset (median 0.5 months), movement disorders (dystonia and dyskinesia), epilepsy of infancy with migrating focal seizures (EIMFS) and risk of early mortality. Variants that accelerated current decay kinetics were associated with slightly milder phenotypes with later seizure onset (median 4 months), unclassifiable developmental and epileptic encephalopathies or Lennox-Gastaut syndrome and no movement disorders. Our study reveals that gain-of-function GABRB3 variants can increase or decrease receptor desensitization properties and that there is a correlation with the degree of disease severity. Variants that reduced the desensitization at equilibrium were clustered in the transmembrane regions that constitute the channel pore and correlated with greater disease severity, while variants that accelerated current decay were clustered in the coupling loops responsible for receptor activation and correlated with lesser severity.


Asunto(s)
Epilepsia Generalizada , Epilepsia , Trastornos del Movimiento , Animales , Humanos , Recién Nacido , Mutación con Ganancia de Función , Mutación/genética , Epilepsia/genética , Convulsiones , Mamíferos/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo
7.
Brain ; 147(8): 2761-2774, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38651838

RESUMEN

SCN2A-related disorders secondary to altered function in the voltage-gated sodium channel Nav1.2 are rare, with clinically heterogeneous expressions that include epilepsy, autism and multiple severe to profound impairments and other conditions. To advance understanding of the clinical phenotypes and their relationship to channel function, 81 patients (36 female, 44%, median age 5.4 years) with 69 unique SCN2A variants were systematically phenotyped and their Nav1.2 channel function systematically assessed. Participants were recruited through the FamileSCN2A Foundation. Primary phenotype (epilepsy of neonatal onset, n = 27; infant onset, n = 18; and later onset n = 24; and autism without seizures, n = 12) was strongly correlated with a non-seizure severity index (P = 0.002), which was based on presence of severe impairments in gross motor, fine motor, communication abilities, gastrostomy tube dependence and diagnosis of cortical visual impairment and scoliosis. Non-seizure severity was greatest in the neonatal-onset group and least in the autism group (P = 0.002). Children with the lowest severity indices were still severely impaired, as reflected by an average Vineland Adaptive Behavior composite score of 49.5 (>3 standard deviations below the norm-referenced mean of the test). Epileptic spasms were significantly more common in infant-onset (67%) than in neonatal (22%) or later-onset (29%) epilepsy (P = 0.007). Primary phenotype was also strongly correlated with variant function (P < 0.0001); gain-of-function and mixed function variants predominated in neonatal-onset epilepsy, shifting to moderate loss of function in infant-onset epilepsy and to severe and complete loss of function in later-onset epilepsy and autism groups. Exploratory cluster analysis identified five groups, representing: (i) primarily later-onset epilepsy with moderate loss-of-function variants and low severity indices; (ii) mostly infant-onset epilepsy with moderate loss-of-function variants but higher severity indices; and (iii) late-onset and autism only, with the lowest severity indices (mostly zero) and severe/complete loss-of-function variants. Two exclusively neonatal clusters were distinguished from each other largely on non-seizure severity scores and secondarily on variant function. The relationship between primary phenotype and variant function emphasizes the role of developmental factors in the differential clinical expression of SCN2A variants based on their effects on Nav1.2 channel function. The non-seizure severity of SCN2A disorders depends on a combination of the age at seizure onset (primary phenotype) and variant function. As precision therapies for SCN2A-related disorders advance towards clinical trials, knowledge of the relationship between variant function and clinical disease expression will be valuable for identifying appropriate patients for these trials and in selecting efficient clinical outcomes.


Asunto(s)
Epilepsia , Canal de Sodio Activado por Voltaje NAV1.2 , Fenotipo , Humanos , Canal de Sodio Activado por Voltaje NAV1.2/genética , Femenino , Masculino , Preescolar , Niño , Lactante , Adolescente , Epilepsia/genética , Adulto , Adulto Joven , Mutación , Trastorno Autístico/genética , Índice de Severidad de la Enfermedad
8.
Brain ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38939966

RESUMEN

SCN2A gene-related early-infantile developmental and epileptic encephalopathy (EI-DEE) is a rare and severe disorder that manifests in early infancy. SCN2A mutations affecting the fast inactivation gating mechanism can result in altered voltage dependence and incomplete inactivation of the encoded neuronal Nav1.2 channel and lead to abnormal neuronal excitability. In this study, we evaluated clinical data of seven missense Nav1.2 variants associated with DEE and performed molecular dynamics simulations, patch-clamp electrophysiology, and dynamic clamp real-time neuronal modelling to elucidate the molecular and neuron-scale phenotypic consequences of the mutations. The N1662D mutation almost completely prevented fast inactivation without affecting activation. The comparison of wild-type and N1662D channel structures suggested that the ambifunctional hydrogen bond formation between residues N1662 and Q1494 is essential for fast inactivation. Fast inactivation could also be prevented with engineered Q1494A or Q1494L Nav1.2 channel variants, whereas Q1494E or Q1494 K variants resulted in incomplete inactivation and persistent current. Molecular dynamics simulations revealed a reduced affinity of the hydrophobic IFM-motif to its receptor site with N1662D and Q1494L variants relative to wild-type. These results demonstrate that the interactions between N1662 and Q1494 underpin the stability and the orientation of the inactivation gate and are essential for the development of fast inactivation. Six DEE-associated Nav1.2 variants, with mutations mapped to channel segments known to be implicated in fast inactivation were also evaluated. Remarkably, the L1657P variant also prevented fast inactivation and produced biophysical characteristics that were similar to those of N1662D, whereas the M1501 V, M1501T, F1651C, P1658S, and A1659 V variants resulted in biophysical properties that were consistent with gain-of-function and enhanced action potential firing of hybrid neurons in dynamic action potential clamp experiments. Paradoxically, low densities of N1662D or L1657P currents potentiated action potential firing, whereas increased densities resulted in sustained depolarization. Our results provide novel structural insights into the molecular mechanism of Nav1.2 channel fast inactivation and inform treatment strategies for SCN2A-related EI-DEE. The contribution of non-inactivating Nav1.2 channels to neuronal excitability may constitute a distinct cellular mechanism in the pathogenesis of SCN2A-related DEE.

9.
Brain ; 147(5): 1653-1666, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38380699

RESUMEN

GRIN-related disorders are rare developmental encephalopathies with variable manifestations and limited therapeutic options. Here, we present the first non-randomized, open-label, single-arm trial (NCT04646447) designed to evaluate the tolerability and efficacy of L-serine in children with GRIN genetic variants leading to loss-of-function. In this phase 2A trial, patients aged 2-18 years with GRIN loss-of-function pathogenic variants received L-serine for 52 weeks. Primary end points included safety and efficacy by measuring changes in the Vineland Adaptive Behavior Scales, Bayley Scales, age-appropriate Wechsler Scales, Gross Motor Function-88, Sleep Disturbance Scale for Children, Pediatric Quality of Life Inventory, Child Behavior Checklist and the Caregiver-Teacher Report Form following 12 months of treatment. Secondary outcomes included seizure frequency and intensity reduction and EEG improvement. Assessments were performed 3 months and 1 day before starting treatment and 1, 3, 6 and 12 months after beginning the supplement. Twenty-four participants were enrolled (13 males/11 females, mean age 9.8 years, SD 4.8), 23 of whom completed the study. Patients had GRIN2B, GRIN1 and GRIN2A variants (12, 6 and 5 cases, respectively). Their clinical phenotypes showed 91% had intellectual disability (61% severe), 83% had behavioural problems, 78% had movement disorders and 58% had epilepsy. Based on the Vineland Adaptive Behavior Composite standard scores, nine children were classified as mildly impaired (cut-off score > 55), whereas 14 were assigned to the clinically severe group. An improvement was detected in the Daily Living Skills domain (P = 0035) from the Vineland Scales within the mild group. Expressive (P = 0.005), Personal (P = 0.003), Community (P = 0.009), Interpersonal (P = 0.005) and Fine Motor (P = 0.031) subdomains improved for the whole cohort, although improvement was mostly found in the mild group. The Growth Scale Values in the Cognitive subdomain of the Bayley-III Scale showed a significant improvement in the severe group (P = 0.016), with a mean increase of 21.6 points. L-serine treatment was associated with significant improvement in the median Gross Motor Function-88 total score (P = 0.002) and the mean Pediatric Quality of Life total score (P = 0.00068), regardless of severity. L-serine normalized the EEG pattern in five children and the frequency of seizures in one clinically affected child. One patient discontinued treatment due to irritability and insomnia. The trial provides evidence that L-serine is a safe treatment for children with GRIN loss-of-function variants, having the potential to improve adaptive behaviour, motor function and quality of life, with a better response to the treatment in mild phenotypes.


Asunto(s)
Receptores de N-Metil-D-Aspartato , Serina , Humanos , Femenino , Masculino , Niño , Preescolar , Adolescente , Serina/uso terapéutico , Serina/genética , Receptores de N-Metil-D-Aspartato/genética , Encefalopatías/genética , Encefalopatías/tratamiento farmacológico , Resultado del Tratamiento , Calidad de Vida
10.
Mol Ther ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127888

RESUMEN

Effective gene therapy for gain-of-function or dominant-negative disease mutations may require eliminating expression of the mutant copy together with wild-type replacement. We evaluated such a knockdown-replace strategy in a mouse model of DNM1 disease, a debilitating and intractable neurodevelopmental epilepsy. To challenge the approach robustly, we expressed a patient-based variant in GABAergic neurons-which resulted in growth delay and lethal seizures evident by postnatal week three-and delivered to newborn pups an AAV9-based vector encoding a ubiquitously expressed, Dnm1-specific interfering RNA (RNAi) bivalently in tail-to-tail configuration with a neuron-specific, RNAi-resistant, codon-optimized Dnm1 cDNA. Pups receiving RNAi or cDNA alone fared no better than untreated pups, whereas the vast majority of mutants receiving modest doses survived with almost full growth recovery. Synaptic recordings of cortical neurons derived from treated pups revealed that significant alterations in transmission from inhibitory to excitatory neurons were rectified by bivalent vector application. To examine the mutant transcriptome and impact of treatment, we used RNA sequencing and functional annotation clustering. Mutants displayed abnormal expression of more than 1,000 genes in highly significant and relevant functional clusters, clusters that were abrogated by treatment. Together these results suggest knockdown-replace as a potentially effective strategy for treating DNM1 and related genetic neurodevelopmental disease.

11.
Neurogenetics ; 25(3): 225-232, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38622440

RESUMEN

Developmental and epileptic encephalopathy (DEEs) (OMIM#618,328) is characterized by seizures, hypotonia, and brain abnormalities, often arising from mutations in genes crucial for brain function. Among these genes, GLS stands out due to its vital role in the central nervous system (CNS), with homozygous variants potentially causing DEE type 71. Using Whole Exome Sequencing (WES) on a patient exhibiting symptoms of epileptic encephalopathy, we identified a novel homozygous variant, NM_014905.5:c.1849G > T; p.(Asp617Tyr), in the GLS gene. The 5-year-old patient, born to consanguineous parents, presented with developmental delay, encephalopathy, frequent seizures, and hypotonia. Sanger sequencing further validated the GLS gene variant in both the patient and his family. Furthermore, our bioinformatics analysis indicated that this missense variant could lead to alteration of splicing, resulting in the activation of a cryptic donor site and potentially causing loss of protein function. Our finding highlights the pathogenic significance of the GLS gene, particularly in the context of brain disorders, specifically DEE71.


Asunto(s)
Secuenciación del Exoma , Homocigoto , Humanos , Masculino , Preescolar , Mutación Missense , Linaje , Discapacidades del Desarrollo/genética , Epilepsia/genética , Consanguinidad , Femenino , Espasmos Infantiles/genética
12.
Neurogenetics ; 25(3): 281-286, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38498292

RESUMEN

Mannosyl-oligosaccharide glucosidase - congenital disorder of glycosylation (MOGS-CDG) is determined by biallelic mutations in the mannosyl-oligosaccharide glucosidase (glucosidase I) gene. MOGS-CDG is a rare disorder affecting the processing of N-Glycans (CDG type II) and is characterized by prominent neurological involvement including hypotonia, developmental delay, seizures and movement disorders. To the best of our knowledge, 30 patients with MOGS-CDG have been published so far. We described a child who is compound heterozygous for two novel variants in the MOGS gene. He presented Early Infantile Developmental and Epileptic Encephalopathy (EI-DEE) in the absence of other specific systemic involvement and unrevealing first-line biochemical findings. In addition to the previously described features, the patient presented a Hirschprung disease, never reported before in individuals with MOGS-CDG.


Asunto(s)
Trastornos Congénitos de Glicosilación , Secuenciación del Exoma , Humanos , Masculino , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/diagnóstico , Lactante , alfa-Glucosidasas/genética , Mutación/genética , Espasmos Infantiles/genética , Espasmos Infantiles/diagnóstico , Epilepsia/genética , Epilepsia/diagnóstico , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/diagnóstico
13.
Hum Genet ; 143(5): 667-681, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38578438

RESUMEN

CLCN4-related disorder is a rare X-linked neurodevelopmental condition with a pathogenic mechanism yet to be elucidated. CLCN4 encodes the vesicular 2Cl-/H+ exchanger ClC-4, and CLCN4 pathogenic variants frequently result in altered ClC-4 transport activity. The precise cellular and molecular function of ClC-4 remains unknown; however, together with ClC-3, ClC-4 is thought to have a role in the ion homeostasis of endosomes and intracellular trafficking. We reviewed our research database for patients with CLCN4 variants and epilepsy, and performed thorough phenotyping. We examined the functional properties of the variants in mammalian cells using patch-clamp electrophysiology, protein biochemistry, and confocal fluorescence microscopy. Three male patients with developmental and epileptic encephalopathy were identified, with differing phenotypes. Patients #1 and #2 had normal growth parameters and normal-appearing brains on MRI, while patient #3 had microcephaly, microsomia, complete agenesis of the corpus callosum and cerebellar and brainstem hypoplasia. The p.(Gly342Arg) variant of patient #1 significantly impaired ClC-4's heterodimerization capability with ClC-3 and suppressed anion currents. The p.(Ile549Leu) variant of patient #2 and p.(Asp89Asn) variant of patient #3 both shift the voltage dependency of transport activation by 20 mV to more hyperpolarizing potentials, relative to the wild-type, with p.(Asp89Asn) favouring higher transport activity. We concluded that p.(Gly342Arg) carried by patient #1 and the p.(Ile549Leu) expressed by patient #2 impair ClC-4 transport function, while the p.(Asp89Asn) variant results in a gain-of-transport function; all three variants result in epilepsy and global developmental impairment, but with differences in epilepsy presentation, growth parameters, and presence or absence of brain malformations.


Asunto(s)
Canales de Cloruro , Epilepsia , Estudios de Asociación Genética , Humanos , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Masculino , Epilepsia/genética , Preescolar , Niño , Fenotipo , Lactante , Mutación
14.
Am J Hum Genet ; 108(12): 2368-2384, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34800363

RESUMEN

The 2-oxoglutarate dehydrogenase-like (OGDHL) protein is a rate-limiting enzyme in the Krebs cycle that plays a pivotal role in mitochondrial metabolism. OGDHL expression is restricted mainly to the brain in humans. Here, we report nine individuals from eight unrelated families carrying bi-allelic variants in OGDHL with a range of neurological and neurodevelopmental phenotypes including epilepsy, hearing loss, visual impairment, gait ataxia, microcephaly, and hypoplastic corpus callosum. The variants include three homozygous missense variants (p.Pro852Ala, p.Arg244Trp, and p.Arg299Gly), three compound heterozygous single-nucleotide variants (p.Arg673Gln/p.Val488Val, p.Phe734Ser/p.Ala327Val, and p.Trp220Cys/p.Asp491Val), one homozygous frameshift variant (p.Cys553Leufs∗16), and one homozygous stop-gain variant (p.Arg440Ter). To support the pathogenicity of the variants, we developed a novel CRISPR-Cas9-mediated tissue-specific knockout with cDNA rescue system for dOgdh, the Drosophila ortholog of human OGDHL. Pan-neuronal knockout of dOgdh led to developmental lethality as well as defects in Krebs cycle metabolism, which was fully rescued by expression of wild-type dOgdh. Studies using the Drosophila system indicate that p.Arg673Gln, p.Phe734Ser, and p.Arg299Gly are severe loss-of-function alleles, leading to developmental lethality, whereas p.Pro852Ala, p.Ala327Val, p.Trp220Cys, p.Asp491Val, and p.Arg244Trp are hypomorphic alleles, causing behavioral defects. Transcript analysis from fibroblasts obtained from the individual carrying the synonymous variant (c.1464T>C [p.Val488Val]) in family 2 showed that the synonymous variant affects splicing of exon 11 in OGDHL. Human neuronal cells with OGDHL knockout exhibited defects in mitochondrial respiration, indicating the essential role of OGDHL in mitochondrial metabolism in humans. Together, our data establish that the bi-allelic variants in OGDHL are pathogenic, leading to a Mendelian neurodevelopmental disease in humans.


Asunto(s)
Ataxia/genética , Epilepsia/genética , Pérdida Auditiva/genética , Complejo Cetoglutarato Deshidrogenasa/genética , Mutación , Trastornos del Neurodesarrollo/genética , Trastornos de la Visión/genética , Alelos , Animales , Células Cultivadas , Niño , Estudios de Cohortes , Análisis Mutacional de ADN , Drosophila melanogaster/genética , Salud de la Familia , Femenino , Fibroblastos , Humanos , Masculino , Empalme del ARN
15.
Am J Hum Genet ; 108(1): 176-185, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33245860

RESUMEN

Fibroblast growth factor homologous factors (FHFs) are intracellular proteins which regulate voltage-gated sodium (Nav) channels in the brain and other tissues. FHF dysfunction has been linked to neurological disorders including epilepsy. Here, we describe two sibling pairs and three unrelated males who presented in infancy with intractable focal seizures and severe developmental delay. Whole-exome sequencing identified hemi- and heterozygous variants in the N-terminal domain of the A isoform of FHF2 (FHF2A). The X-linked FHF2 gene (also known as FGF13) has alternative first exons which produce multiple protein isoforms that differ in their N-terminal sequence. The variants were located at highly conserved residues in the FHF2A inactivation particle that competes with the intrinsic fast inactivation mechanism of Nav channels. Functional characterization of mutant FHF2A co-expressed with wild-type Nav1.6 (SCN8A) revealed that mutant FHF2A proteins lost the ability to induce rapid-onset, long-term blockade of the channel while retaining pro-excitatory properties. These gain-of-function effects are likely to increase neuronal excitability consistent with the epileptic potential of FHF2 variants. Our findings demonstrate that FHF2 variants are a cause of infantile-onset developmental and epileptic encephalopathy and underline the critical role of the FHF2A isoform in regulating Nav channel function.


Asunto(s)
Encefalopatías/genética , Epilepsia/genética , Factores de Crecimiento de Fibroblastos/genética , Mutación Missense/genética , Isoformas de Proteínas/genética , Adolescente , Secuencia de Aminoácidos , Niño , Exones/genética , Femenino , Mutación con Ganancia de Función/genética , Genes Ligados a X/genética , Heterocigoto , Humanos , Masculino , Canal de Sodio Activado por Voltaje NAV1.6/genética , Neuronas/fisiología , Convulsiones/genética
16.
Clin Genet ; 105(5): 510-522, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38221827

RESUMEN

Developmental and epileptic encephalopathies (DEEs) are a heterogeneous group of epilepsies characterized by early-onset, refractory seizures associated with developmental regression or impairment, with a heterogeneous genetic landscape including genes implicated in various pathways and mechanisms. We retrospectively studied the clinical and genetic data of patients with genetic DEE who presented at two tertiary centers in Egypt over a 10-year period. Exome sequencing was used for genetic testing. We report 74 patients from 63 unrelated Egyptian families, with a high rate of consanguinity (58%). The most common seizure type was generalized tonic-clonic (58%) and multiple seizure types were common (55%). The most common epilepsy syndrome was early infantile DEE (50%). All patients showed variable degrees of developmental impairment. Microcephaly, hypotonia, ophthalmological involvement and neuroimaging abnormalities were common. Eighteen novel variants were identified and the phenotypes of five DEE genes were expanded with novel phenotype-genotype associations. Obtaining a genetic diagnosis had implications on epilepsy management in 17 patients with variants in 12 genes. In this study, we expand the phenotype and genotype spectrum of DEE in a large single ethnic cohort of patients. Reaching a genetic diagnosis guided precision management of epilepsy in a significant proportion of patients.


Asunto(s)
Epilepsia Generalizada , Epilepsia , Niño , Humanos , Egipto/epidemiología , Estudios Retrospectivos , Epilepsia/diagnóstico , Convulsiones/genética , Convulsiones/complicaciones , Fenotipo
17.
Am J Med Genet A ; : e63843, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39205479

RESUMEN

Pathogenic variants in the cyclin-dependent kinase-like 5 (CDKL5) gene are associated with CDKL5 deficiency disorder (CDD), a severe X-linked developmental and epileptic encephalopathy. Deletions affecting the 5' untranslated region (UTR) of CDKL5, which involve the noncoding exon 1 and/or alternatively spliced first exons (exons 1a-e), are uncommonly reported. We describe genetic and phenotypic characteristics for 15 individuals with CDKL5 partial gene deletions affecting the 5' UTR. All individuals presented characteristic features of CDD, including medically refractory infantile-onset epilepsy, global developmental delay, and visual impairment. We performed RNA sequencing on fibroblast samples from three individuals with small deletions involving exons 1 and/or 1a/1b only. Results demonstrated reduced CDKL5 mRNA expression with no evidence of expression from alternatively spliced first exons. Our study broadens the genotypic spectrum for CDD by adding to existing evidence that deletions affecting the 5' UTR of the CDKL5 gene are associated with the disorder. We propose that smaller 5' UTR deletions may require additional molecular testing approaches such as RNA sequencing to determine pathogenicity.

18.
Epilepsia ; 65(2): 322-337, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38049202

RESUMEN

OBJECTIVE: Dravet syndrome (DS) is a developmental and epileptic encephalopathy characterized by high seizure burden, treatment-resistant epilepsy, and developmental stagnation. Family members rate communication deficits among the most impactful disease manifestations. We evaluated seizure burden and language/communication development in children with DS. METHODS: ENVISION was a prospective, observational study evaluating children with DS associated with SCN1A pathogenic variants (SCN1A+ DS) enrolled at age ≤5 years. Seizure burden and antiseizure medications were assessed every 3 months and communication and language every 6 months with the Bayley Scales of Infant and Toddler Development 3rd edition and the parent-reported Vineland Adaptive Behavior Scales 3rd edition. We report data from the first year of observation, including analyses stratified by age at Baseline: 0:6-2:0 years:months (Y:M; youngest), 2:1-3:6 Y:M (middle), and 3:7-5:0 Y:M (oldest). RESULTS: Between December 2020 and March 2023, 58 children with DS enrolled at 16 sites internationally. Median follow-up was 17.5 months (range = .0-24.0), with 54 of 58 (93.1%) followed for at least 6 months and 51 of 58 (87.9%) for 12 months. Monthly countable seizure frequency (MCSF) increased with age (median [minimum-maximum] = 1.0 in the youngest [1.0-70.0] and middle [1.0-242.0] age groups and 4.5 [.0-2647.0] in the oldest age group), and remained high, despite use of currently approved antiseizure medications. Language/communication delays were observed early, and developmental stagnation occurred after age 2 years with both instruments. In predictive modeling, chronologic age was the only significant covariate of seizure frequency (effect size = .52, p = .024). MCSF, number of antiseizure medications, age at first seizure, and convulsive status epilepticus were not predictors of language/communication raw scores. SIGNIFICANCE: In infants and young children with SCN1A+ DS, language/communication delay and stagnation were independent of seizure burden. Our findings emphasize that the optimal therapeutic window to prevent language/communication delay is before 3 years of age.


Asunto(s)
Epilepsias Mioclónicas , Lactante , Humanos , Preescolar , Recién Nacido , Estudios Prospectivos , Mutación , Epilepsias Mioclónicas/tratamiento farmacológico , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/complicaciones , Convulsiones/tratamiento farmacológico , Convulsiones/genética , Convulsiones/complicaciones , Canal de Sodio Activado por Voltaje NAV1.1/genética , Comunicación
19.
Epilepsia ; 65(8): 2308-2321, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38802989

RESUMEN

OBJECTIVES: We aimed to develop consensus on comorbidities (frequency, severity, and prognosis) and overall outcomes in epilepsy, development, and cognition for the five phenotypes of SCN8A-related disorders. METHODS: A core panel consisting of 13 clinicians, 1 researcher, and 6 caregivers was formed and split into three workgroups. One group focused on comorbidities and prognosis. All groups performed a literature review and developed questions for use in a modified-Delphi process. Twenty-eight clinicians, one researcher, and 13 caregivers from 16 countries participated in three rounds of the modified-Delphi process. Consensus was defined as follows: strong consensus ≥80% fully agree; moderate consensus ≥80% fully or partially agree, <10% disagree; and modest consensus 67%-79% fully or partially agree, <10% disagree. RESULTS: Consensus was reached on the presence of 14 comorbidities in patients with Severe Developmental and Epileptic Encephalopathy (Severe DEE) spanning non-seizure neurological disorders and other organ systems; impacts were mostly severe and unlikely to improve or resolve. Across Mild/Moderate Developmental and Epileptic Encephalopathy (Mild/Moderate DEE), Neurodevelopmental Delay with Generalized Epilepsy (NDDwGE), and NDD without Epilepsy (NDDwoE) phenotypes, cognitive and sleep-related comorbidities as well as fine and gross motor delays may be present but are less severe and more likely to improve compared to Severe DEE. There was no consensus on comorbidities in the SeL(F)IE phenotype but strong conesensus that seizures would largely resolve. Seizure freedom is rare in patients with Severe DEE but may occur in some with Mild/Moderate DEE and NDDwGE. SIGNIFICANCE: Significant comorbidities are present in most phenotypes of SCN8A-related disorders but are most severe and pervasive in the Severe DEE phenotype. We hope that this work will improve recognition, early intervention, and long-term management for patients with these comorbidities and provide the basis for future evidence-based studies on optimal treatments of SCN8A-related disorders. Identifying the prognosis of patients with SCN8A-related disorders will also improve care and quality-of-life for patients and their caregivers.


Asunto(s)
Comorbilidad , Consenso , Epilepsia , Canal de Sodio Activado por Voltaje NAV1.6 , Trastornos del Neurodesarrollo , Humanos , Técnica Delphi , Epilepsia/epidemiología , Epilepsia/genética , Epilepsia/diagnóstico , Canal de Sodio Activado por Voltaje NAV1.6/genética , Trastornos del Neurodesarrollo/epidemiología , Trastornos del Neurodesarrollo/genética , Pronóstico
20.
Epilepsia ; 65(8): 2322-2338, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38802994

RESUMEN

OBJECTIVE: We aimed to develop consensus for diagnosis/management of SCN8A-related disorders. Utilizing a modified Delphi process, a global cohort of experienced clinicians and caregivers provided input on diagnosis, phenotypes, treatment, and management of SCN8A-related disorders. METHODS: A Core Panel (13 clinicians, one researcher, six caregivers), divided into three subgroups (diagnosis/phenotypes, treatment, comorbidities/prognosis), performed a literature review and developed questions for the modified Delphi process. Twenty-eight expert clinicians, one researcher, and 13 caregivers from 16 countries participated in the subsequent three survey rounds. We defined consensus as follows: strong consensus, ≥80% fully agree; moderate consensus, ≥80% fully/partially agree, <10% disagree; and modest consensus, 67%-79% fully/partially agree, <10% disagree. RESULTS: Early diagnosis is important for long-term clinical outcomes in SCN8A-related disorders. There are five phenotypes: three with early seizure onset (severe developmental and epileptic encephalopathy [DEE], mild/moderate DEE, self-limited (familial) infantile epilepsy [SeL(F)IE]) and two with later/no seizure onset (neurodevelopmental delay with generalized epilepsy [NDDwGE], NDD without epilepsy [NDDwoE]). Caregivers represented six patients with severe DEE, five mild/moderate DEE, one NDDwGE, and one NDDwoE. Phenotypes vary by age at seizures/developmental delay onset, seizure type, electroencephalographic/magnetic resonance imaging findings, and first-line treatment. Gain of function (GOF) versus loss of function (LOF) is valuable for informing treatment. Sodium channel blockers are optimal first-line treatment for GOF, severe DEE, mild/moderate DEE, and SeL(F)IE; levetiracetam is relatively contraindicated in GOF patients. First-line treatment for NDDwGE is valproate, ethosuximide, or lamotrigine; sodium channel blockers are relatively contraindicated in LOF patients. SIGNIFICANCE: This is the first-ever global consensus for the diagnosis and treatment of SCN8A-related disorders. This consensus will reduce knowledge gaps in disease recognition and inform preferred treatment across this heterogeneous disorder. Consensus of this type allows more clinicians to provide evidence-based care and empowers SCN8A families to advocate for their children.


Asunto(s)
Consenso , Epilepsia , Canal de Sodio Activado por Voltaje NAV1.6 , Trastornos del Neurodesarrollo , Humanos , Anticonvulsivantes/uso terapéutico , Técnica Delphi , Epilepsia/diagnóstico , Epilepsia/terapia , Epilepsia/genética , Canal de Sodio Activado por Voltaje NAV1.6/genética , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/terapia , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA